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Why do we want electricity storage?

Need to balance supply and demand at all times.

Wind power can fluctuate substantially on a short timescale.

Thermal power plants slow to react.

Can either use expensive alternatives.

Alternatively can use electricity storage.

There are many other uses:

Arbitrage

Frequency regulation

Reactive power support

Voltage support

Black start
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Dinorwig: capacity: 9 GWh rate: 1.8 GW efficiency 0.75–0.80



Storage comes in many forms.

There are many types of storage with different properties:

Pumped storage

Battery storage

Compressed gas storage

Fuel Cells

Thermal

Fly wheels

As well we can consider dynamic demand as storage:

Control of fridges.

Thermal inertia of buildings.

Washing machines.

Aluminium smelting.
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The Problem:

Storage facilities are expensive, high capital cost.

To facilitate investment we need to understand the value of
storage.

Today we will only consider money made from arbitrage by an
aggregate store.

Sensible since it is expected most of the profit will have come
from this source.

Need to also be able to compare to alternatives, for example
demand side management.

Also need to understand the effect of multiple competing
stores.



Model

We will work in discrete time. (Natural in many electricity markets)

E

P

E = size of store — capacity constraint

P = max input/output rate — rate constraint



Cost function

At any (discrete) time t,

P

P

sell

buy

x

)x(
t

C

Ct(x) = cost of increasing level of store by x (positive or negative)
Assume convex (reasonable). This may model

market impact

efficiency of store

rate constraints
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Problem

Let St = level of store at time t, 0 ≤ t ≤ T .

Policy S = (S0, . . . ,ST ), S0 = S∗
0 (fixed), ST = S∗

T (fixed).

Define also xt(S) = St − St−1

(energy “bought” by store at time t – positive or negative)

Problem: minimise cost

T∑
t=1

Ct(xt(S))

subject to
S0 = S∗

0 , ST = S∗
T

and
0 ≤ St ≤ E , 1 ≤ t ≤ T − 1.
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Small store

This is a store whose activities are not so great as to impact upon
the market, and which thus has linear buy and sell prices. Thus,
for all t,

Ct(x) =

{
c
(b)
t x if 0 ≤ x ≤ P

c
(s)
t x if −P ≤ x < 0

where 0 < c
(s)
t ≤ c

(b)
t and P is rate constraint.

Optimal control is bang-bang. At each time step either:

buy as much as possible,

do nothing,

or sell as much as possible.



Extreme cases

Considering extreme cases provides insight into problem structure.
Two natural extreme cases to consider:

No capacity constraint, E =∞.

No rate constraint, P =∞.

To add to the simplicity we assume equal buy and sell prices,

ct = c
(b)
t = c

(s)
t .

This is equivalent to assuming 100% efficient.

In both cases we can give a clean representation of optimal
control.
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E =∞

Solution:

We find a single global reference price π.

If ct > π we sell maximum amount.

If ct < π we buy maximum amount.

π is selected such that buy and sell for an equal number of
time periods.

Comments:

Time horizon for making decisions is long

Need all data to decide on value of π

Optimal solution is global in nature.

James Cruise


James Cruise


James Cruise


James Cruise


James Cruise




P =∞

Solution:

Only buy and sell at local maximums and minimums.

Fill store completely at minimums.

Empty store completely at maximums.

Comments:

Time horizon for making decisions is short.

Only need to look one time step ahead to decide if local
maximum or minimum.

Optimal solution is local in nature.
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Example: Periodic Cost functions

Consider sinusoidal prices.

Interested in what happens as frequency is varied.

Assume P = 1.

Then for a given value of E , there exists a pair µb < µs such
that we buy if ct < µb and sell if ct > µs .

Further µb is increasing in E and µs is decreasing in E .

Also µb is increasing and µs is decreasing in frequency.

These are bounded by µ∗b and µ∗s , the parameters obtained for
E =∞ which does not depend on frequency.

For a given E , as frequency increases profit increases upto the
unconstrained case, and there is a frequency beyond which
you obtain no further benefit.
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Example: Real prices with Dinorwig parameters

E/P = 5 hrs Efficiency = 0.85 (ratio of sell to buy price).
Solution is bang-bang: red points buy, blue points sell
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Example: Real prices with Dinorwig parameters

E/P = 5 hrs Efficiency = 0.65 (ratio of sell to buy price).
Solution is bang-bang: red points buy, blue points sell
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General Result: Lagrangian sufficiency

Suppose there exists a vector µ∗ = (µ∗1, . . . , µ
∗
T ) and a value

S∗ = (S∗
0 , . . . ,S

∗
T ) of S such that

S∗ is feasible,

xt(S
∗) minimises Ct(x)− µ∗t x over all x , 1 ≤ t ≤ T ,

the pair (S∗, µ∗) satisfies the complementary slackness
conditions, for 1 ≤ t ≤ T − 1,

µ∗t+1 = µ∗t if 0 < S∗
t < E ,

µ∗t+1 ≤ µ∗t if S∗
t = 0,

µ∗t+1 ≥ µ∗t if S∗
t = E .

(1)

Then S∗ solves the stated problem.



Comment

The above result (essentially an application of the Lagrangian
Sufficiency Principle) does not require convexity of the
functions Ct .

However, convexity the functions Ct is sufficient to guarantee
the existence of a pair (S∗, µ∗) as above.

The latter result is a standard application of Strong
Lagrangian theory (i.e. the Supporting Hyperplane Theorem).



Algorithm

We need to identify the relevant value of µ∗t at each time t.

It is important to note that the value of µ∗t only changes at
times when the store is full or empty.

Further µ∗t acts as a reference level since the optimal action at
time t is given by the x which minimizes:

Ct(x)− µ∗t x .

This is generally equivalent to finding the amount to sell such
that µ∗t is the marginal price.

We can use this to carry at a search for µ∗.

Further this method is local in time, as we can ignore times
after filling or emptying the store.
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Computational Cost

Careful consideration of how we find µ∗t allows to bound
computational cost of this process.

Can show we need to carry out at most 2T linear searches in
general case.

Work forward from time 0 considering unconstrained problem
(Energy).

Find

µu
t , value need to fill the store at time t
µl
t , value need to empty the store at time t

Find time when min0,t(µ
u
t ) and max0,t(µ

l
t) cross.
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Definition of Forecast and Decision Horizon

Consider the problem of finding the optimal decision at time 0. In
some problems we can find times:

τ , a Decision Horizon

τ̄ , a Forecast Horizon

Have τ ≤ τ̄
Such that:

We can make all optimal decisions up to time τ

With no need for any information after τ̄

So in this example if we can find a pair τ and τ̄ , changing the cost
functions Ct for t > τ̄ will not change the optimal decisions upto
time τ .
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Importance of such Horizons

Why do we care?

Often we are making decisions based on forecasts with
increasing uncertainity.

If the forecast horizon is short, do not need much future
knowledge to make decisions.

Allows decomposition of long/infinite horizon problems.

Methodology:

Initially only solve the problem up to the first decision horizon

Extend the solution when this time is reached.



Horizons and Coupling

Forecast horizons often occur because of path coupling.

Examples include:

Trunking

Holding costs

Constrained state space



Existence of Horizons

The constraint on the store level (between 0 and E ) leads to a
forecast horizon.

Paths couple as squeezed against boundaries

Similar to ideas from coupling from the past.

Means that the forecast horizon length is on the order the
length of the filling/emptying cycle.

In many examples this will be on the order of a 1 or 2 days in
reality.
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Example

Again consider real price data but incorporate market impact
by the store.

Use a quadratic cost function:

Ct(x) =

{
ptx(1 + λx) if 0 ≤ x ≤ P

−ptνx(1 + λνx) if −P ≤ x < 0

pt is the historic price.

λ is a measure of market impact by the store.

ν is the round trip efficiency of the store.

P is the power constraint.



Case Study

Cost series (p1, . . . , pT ) corresponding to the real half-hourly
spot market wholesale electricity prices in Great Britain for
the year 2011.

Provided by National Grid plc

Prices show a strong daily cyclical behaviour

Initially consider parameter choices E = 10, P = 1.

Relates to Dinorwig pumped storage facility in Snowdonia.
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Market impact of storage

A large store may impact costs (be a price-maker), and hence the
rest of society.

Impact of storage on consumer surplus is in general beneficial,
but not necessarily.

Example (T = 2): Buy x at time 1 (increasing price by p1) and
sell at time 2 (decreasing price by p2).

Increase in consumer surplus is

p2d2 − p1d1

where d1 and d2 are the respective demands at times 1 and 2.

In general expect d2 > d1 and p2 to be comparable to p1, so effect
on consumer surplus is beneficial.

However, the latter need not be the case.
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