Power systems and Queueing theory: Storage and Electric Vehicles

(Joint work with Lisa Flatley, Richard Gibbens, Stan Zachary, Seva Shneer)

James Cruise

Maxwell Institute for Mathematical Sciences Edinburgh and Heriot-Watt Universities

December 13, 2017

Lecture 1: Storage and Arbitrage

Lecture 2: Storage, Buffering and Competition

Lecture 3: Stability and Electric Vehicles

Today:

1 Background

- 2 The Arbitrage Problem
- 3 Toy Example Price taker
- 4 General Theory Lagrangian Sufficiency
- 5 Forecast and Decision Horizon
- 6 Real Data Example
- 7 Market Impact

Why do we want electricity storage?

- Need to balance supply and demand at all times.
- Wind power can fluctuate substantially on a short timescale.
- Thermal power plants slow to react.
- Can either use expensive alternatives.
- Alternatively can use electricity storage.

Why do we want electricity storage?

- Need to balance supply and demand at all times.
- Wind power can fluctuate substantially on a short timescale.
- Thermal power plants slow to react.
- Can either use expensive alternatives.
- Alternatively can use electricity storage.

There are many other uses:

- Arbitrage
- Frequency regulation
- Reactive power support
- Voltage support
- Black start

Dinorwig: capacity: 9 GWh rate: 1.8 GW efficiency 0.75-0.80

Storage comes in many forms.

There are many types of storage with different properties:

- Pumped storage
- Battery storage
- Compressed gas storage
- Fuel Cells
- Thermal
- Fly wheels

Storage comes in many forms.

There are many types of storage with different properties:

- Pumped storage
- Battery storage
- Compressed gas storage
- Fuel Cells
- Thermal
- Fly wheels

As well we can consider dynamic demand as storage:

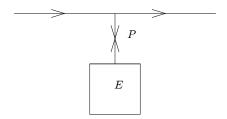
- Control of fridges.
- Thermal inertia of buildings.
- Washing machines.
- Aluminium smelting.

The Problem:

- Storage facilities are expensive, high capital cost.
- To facilitate investment we need to understand the value of storage.
- Today we will only consider money made from arbitrage by an aggregate store.
- Sensible since it is expected most of the profit will have come from this source.
- Need to also be able to compare to alternatives, for example demand side management.
- Also need to understand the effect of multiple competing stores.

Model

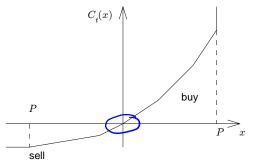
We will work in discrete time. (Natural in many electricity markets)



 $E = \text{size of store} - capacity constraint}$ $P = \max \text{ input/output rate} - rate constraint}$

Cost function

At any (discrete) time t,



 $C_t(x) = \text{cost of increasing level of store by } x$ (positive or negative) Assume *convex* (reasonable). This may model

- market impact
- efficiency of store
- rate constraints

Problem

Let $S_t = level$ of store at time t, $0 \le t \le T$. Policy $S = (S_0, \dots, S_T)$, $S_0 = S_0^*$ (fixed), $S_T = S_T^*$ (fixed). Define also $x_t(S) = S_t - S_{t-1}$ (energy "bought" by store at time t – positive or negative)

Problem: minimise cost

$$\sum_{t=1}^{T} C_t(x_t(S))$$

subject to

and

$$S_0 = S_0^*, \qquad S_T = S_T^*$$

 $0 \le S_t \le E, \qquad 1 \le t \le T - 1.$

Small store

This is a store whose activities are not so great as to impact upon the *market*, and which thus has *linear* buy and sell prices. Thus, for all t,

$$C_t(x) = egin{cases} c_t^{(b)}x & ext{if } 0 \leq x \leq P \ c_t^{(s)}x & ext{if } -P \leq x < 0 \end{cases}$$

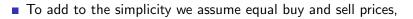
where $0 < c_t^{(s)} \le c_t^{(b)}$ and P is rate constraint.

Optimal control is bang-bang. At each time step either:

- buy as much as possible,
- do nothing,
- or *sell* as much as possible.

Considering extreme cases provides insight into problem structure. Two natural extreme cases to consider:

- No capacity constraint, $E = \infty$.
- No rate constraint, $P = \infty$.



$$c_t = c_t^{(b)} = c_t^{(s)}.$$

- This is equivalent to assuming 100% efficient.
- In both cases we can give a clean representation of optimal control.

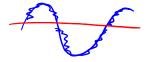
$E = \infty$

Solution:

- We find a single global reference price π .
- If $c_t > \pi$ we sell maximum amount.
- If $c_t < \pi$ we buy maximum amount.
- π is selected such that buy and sell for an equal number of time periods.

Comments:

- Time horizon for making decisions is long
- \blacksquare Need all data to decide on value of π
- Optimal solution is global in nature.



 $P = \infty$

Solution:

- Only buy and sell at local maximums and minimums.
- Fill store completely at minimums.
- Empty store completely at maximums.

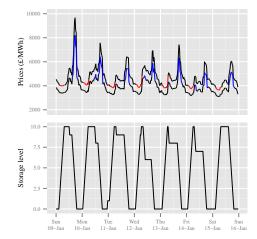
Comments:

- Time horizon for making decisions is short.
- Only need to look one time step ahead to decide if local maximum or minimum.
- Optimal solution is local in nature.

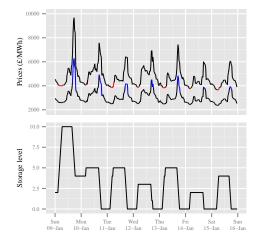
Example: Periodic Cost functions

- Consider sinusoidal prices.
- Interested in what happens as frequency is varied.
- Assume P = 1.
- Then for a given value of *E*, there exists a pair μ_b < μ_s such that we buy if c_t < μ_b and sell if c_t > μ_s.
- Further μ_b is increasing in E and μ_s is decreasing in E.
- Also μ_b is increasing and μ_s is decreasing in frequency.
- These are bounded by μ_b^* and μ_s^* , the parameters obtained for $E = \infty$ which does not depend on frequency.
- For a given *E*, as frequency increases profit increases upto the unconstrained case, and there is a frequency beyond which you obtain no further benefit.

E/P = 5 hrs Efficiency = 0.85 (ratio of sell to buy price). Solution is *bang-bang*: red points buy, blue points sell



E/P = 5 hrs Efficiency = 0.65 (ratio of sell to buy price). Solution is *bang-bang*: red points buy, blue points sell



General Result: Lagrangian sufficiency

Suppose there exists a vector $\mu^* = (\mu_1^*, \dots, \mu_T^*)$ and a value $S^* = (S_0^*, \dots, S_T^*)$ of S such that

- S* is feasible,
- $x_t(S^*)$ minimises $C_t(x) \mu_t^* x$ over all x, $1 \le t \le T$,
- the pair (S*, µ*) satisfies the complementary slackness conditions, for 1 ≤ t ≤ T − 1,

$$\begin{cases} \mu_{t+1}^* = \mu_t^* & \text{if } 0 < S_t^* < E, \\ \mu_{t+1}^* \le \mu_t^* & \text{if } S_t^* = 0, \\ \mu_{t+1}^* \ge \mu_t^* & \text{if } S_t^* = E. \end{cases}$$
(1)

Then S^* solves the stated problem.

Comment

- The above result (essentially an application of the Lagrangian Sufficiency Principle) does not require convexity of the functions C_t.
- However, convexity the functions C_t is sufficient to guarantee the existence of a pair (S^*, μ^*) as above.

The latter result is a standard application of *Strong Lagrangian* theory (i.e. the *Supporting Hyperplane Theorem*).

Algorithm

- We need to identify the relevant value of μ_t^* at each time t.
- It is important to note that the value of µ^{*}_t only changes at times when the store is full or empty.
- Further μ^{*}_t acts as a reference level since the optimal action at time t is given by the x which minimizes:

$$C_t(x) - \mu_t^* x.$$

- This is generally equivalent to finding the amount to sell such that μ_t^* is the marginal price.
- We can use this to carry at a search for μ^* .
- Further this method is local in time, as we can ignore times after filling or emptying the store.

Careful consideration of how we find μ_t^* allows to bound computational cost of this process.

- Can show we need to carry out at most 2*T* linear searches in general case.
- Work forward from time 0 considering unconstrained problem (Energy).
- Find
 - μ_t^u , value need to fill the store at time t
 - μ'_t , value need to empty the store at time t
- Find time when $\min_{0,t}(\mu_t^u)$ and $\max_{0,t}(\mu_t^l)$ cross.

Consider the problem of finding the optimal decision at time 0. In some problems we can find times:

- τ , a Decision Horizon
- $\bar{ au}$, a Forecast Horizon
- Have $\tau \leq \bar{\tau}$

Such that:

- \blacksquare We can make all optimal decisions up to time τ
- \blacksquare With no need for any information after $\bar{\tau}$

So in this example if we can find a pair τ and $\overline{\tau}$, changing the cost functions C_t for $t > \overline{\tau}$ will not change the optimal decisions upto time τ .

Importance of such Horizons

Why do we care?

- Often we are making decisions based on forecasts with increasing uncertainity.
- If the forecast horizon is short, do not need much future knowledge to make decisions.
- Allows decomposition of long/infinite horizon problems.

Methodology:

- Initially only solve the problem up to the first decision horizon
- Extend the solution when this time is reached.

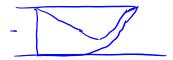
Forecast horizons often occur because of path coupling.

Examples include:

- Trunking
- Holding costs
- Constrained state space

Existence of Horizons

- The constraint on the store level (between 0 and E) leads to a forecast horizon.
- Paths couple as squeezed against boundaries
- Similar to ideas from coupling from the past.
- Means that the forecast horizon length is on the order the length of the filling/emptying cycle.
- In many examples this will be on the order of a 1 or 2 days in reality.



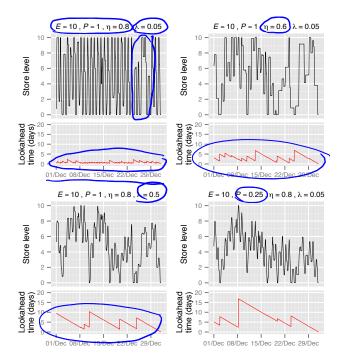
- Again consider real price data but incorporate market impact by the store.
- Use a quadratic cost function:

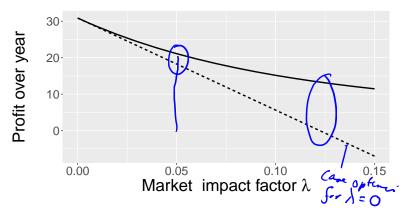
$$C_t(x) = \begin{cases} p_t x(1 + \lambda x) & \text{if } 0 \le x \le P \\ -p_t \nu x(1 + \lambda \nu x) & \text{if } -P \le x < 0 \end{cases}$$

- *p_t* is the historic price.
- λ is a measure of market impact by the store.
- ν is the round trip efficiency of the store.
- *P* is the power constraint.

Case Study

- Cost series (p₁,..., p_T) corresponding to the real half-hourly spot market wholesale electricity prices in Great Britain for the year 2011.
- Provided by National Grid plc
- Prices show a strong daily cyclical behaviour
- Initially consider parameter choices E = 10, P = 1.
- Relates to Dinorwig pumped storage facility in Snowdonia.





A *large store* may impact *costs* (be a *price-maker*), and hence the rest of *society*.

A *large store* may impact *costs* (be a *price-maker*), and hence the rest of *society*.

Impact of **storage** on **consumer surplus** is in general *beneficial*, but not *necessarily*.

A *large store* may impact *costs* (be a *price-maker*), and hence the rest of *society*.

Impact of **storage** on **consumer surplus** is in general *beneficial*, but not *necessarily*.

Example (T = 2**):** Buy x at time 1 (increasing price by p_1) and sell at time 2 (decreasing price by p_2).

Increase in consumer surplus is

$$p_2d_2-p_1d_1$$

where d_1 and d_2 are the respective demands at times 1 and 2.

In general expect $d_2 > d_1$ and p_2 to be comparable to p_1 , so effect on consumer surplus is *beneficial*.

However, the latter need not be the case.

