Power systems and Queueing theory: Storage and Electric Vehicles

(Joint work with Lisa Flatley, Richard Gibbens, Stan Zachary, Seva Shneer)

James Cruise
Maxwell Institute for Mathematical Sciences
Edinburgh and Heriot-Watt Universities

December 14, 2017

Lecture 1: Storage and Arbitrage

Lecture 2: Storage, Buffering and Competition

Lecture 3: Stability and Electric Vehicles

Today:

1 Arbitrage Continued

- Reminders
- Competition

2 Extending to Buffering
■ Stochastic Dynamic Programming Problem and Reformulation

- Price Taker Example

■ Price Maker General Theory
3 Directions of Research
■ Multiple Stores and Resource Pooling
■ Demand Side Response
■ Stochastic Prices

Reminder: Cost function

At any (discrete) time t,

$C_{t}(x)=$ cost of increasing level of store by x (positive or negative) Assume convex (reasonable). This may model

- market impact
- efficiency of store
- rate constraints

Reminder: Problem

Let $S_{t}=$ level of store at time $t, \quad 0 \leq t \leq T$.
Policy $S=\left(S_{0}, \ldots, S_{T}\right), \quad S_{0}=S_{0}^{*}($ fixed $), \quad S_{T}=S_{T}^{*}($ fixed $)$.
Define also $x_{t}(S)=S_{t}-S_{t-1}$
(energy "bought" by store at time t - positive or negative)
Problem: minimise cost

$$
\sum_{t=1}^{T} C_{t}\left(x_{t}(S)\right)
$$

subject to

$$
S_{0}=S_{0}^{*}, \quad S_{T}=S_{T}^{*}
$$

and

$$
0 \leq S_{t} \leq E, \quad 1 \leq t \leq T-1
$$

N stores in competition

We assume the stores are sufficiently large as to have market impact: the activity of each store negatively affects profits which can be made by the others.

Model costs at each time t as being derived from a price function $p_{t}(\cdot)$, where $p_{t}(x)$ is the price per unit traded when the total amount traded is x.

Suppose that each store i buys $x_{i t}$ at time t. Then store i incurs a total cost over time of

$$
\sum_{t=1}^{T} x_{i t} p_{t}\left(\sum_{j=1}^{n} x_{j t}\right)
$$

What happens now depends of the RULES OF THE GAME (the mechanism by which the market is cleared).

Bertrand competition

Stores bid "prices".
Any single unconstrained store able to offer lowest price corners entire market.

If overcapacity then typically little or no profits to be made.

Bertrand competition

Stores bid "prices".
Any single unconstrained store able to offer lowest price corners entire market.

If overcapacity then typically little or no profits to be made.

CAPITAL COSTS CANNOT BE RECOVERED.

Cournot competition

Stores bid "quantities".
Each store optimises its own profit given the activities over time of all the other stores.

Result. There exists at least one Nash equilibrium.

Cournot competition

Stores bid "quantities".

Each store optimises its own profit given the activities over time of all the other stores.

Result. There exists at least one Nash equilibrium.
Proof. Given some set of strategies $x=\left(x_{1}, \ldots, x_{n}\right)$ of all the stores over all time $1, \ldots, T$, suppose that each store i (simultaneously) updates its entire strategy from x_{i} to x_{i}^{\prime} given the activities x_{j} of all the remaining stores $j \neq i$. This defines a mapping $\left(x_{1}, \ldots, x_{n}\right) \rightarrow\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)$ which is continuous and defined on a compact convex set.
Hence by the Brouwer fixed point theorem, the above mapping has
a fixed point $\left(x_{1}, \ldots, x_{n}\right)$. This (by definition) is a Nash equilibrium.

Behaviour of stores

At a Nash equilibrium each store tend to "overtrade" (compared to an optimal cooperative solution): it thereby increases its revenue, the excess costs (in terms of price impact) being borne by the other stores.

Example: Competition example

Linearised price functions

Assume that, for each t,

$$
p_{t}(x)=a_{t}+b_{t} x
$$

(a reasonable first approximation).
Result. There is a unique Nash equilibrium, given by the minimiser $\left(x_{1}, \ldots, x_{n}\right)$ of the quadratic function

$$
\begin{equation*}
\sum_{t=1}^{T}\left[a_{t} \sum_{i=1}^{n} x_{i t}+\frac{1}{2} b_{t}\left(\sum_{i=1}^{n} x_{i t}^{2}+\left(\sum_{i=1}^{n} x_{i t}\right)^{2}\right)\right] \tag{**}
\end{equation*}
$$

subject to the given rate and capacity constraints on each store.
Proof. For each i, minimisation in x_{i} of the above function is equivalent to minimisation of the earlier function (*).

HERIOT

Unconstrained stores in competition

Assume linear prices and n stores subject to neither capacity nor rate constraints, and each of which has the same starting and finishing level.

Result. At the (unique and necessarily symmetric) Nash equilibrium, the quantity traded per store is proportional to $1 /(n+1)$ and the profit per store is proportional to $1 /(n+1)^{2}$.

Proof. This follows easily from the observed symmetry of the solution and the use of strong Lagrangian theory to minimise the function $\left({ }^{* *}\right)$ subject to the constraint $\sum_{i=1}^{n} x_{i t}=0$ for all i.

Unconstrained stores in competition

Assume linear prices and n stores subject to neither capacity nor rate constraints, and each of which has the same starting and finishing level.

Result. At the (unique and necessarily symmetric) Nash equilibrium, the quantity traded per store is proportional to $1 /(n+1)$ and the profit per store is proportional to $1 /(n+1)^{2}$.
Proof. This follows easily from the observed symmetry of the solution and the use of strong Lagrangian theory to minimise the function $\left({ }^{* *}\right)$ subject to the constraint $\sum_{i=1}^{n} x_{i t}=0$ for all i.

Consequence. In comparison to the optimal cooperative solution, the n unconstrained stores in Cournot competition

- overtrade by a factor $2 n /(n+1)$
- make a total profit proportional to $4 n /(n+1)^{2}$.

1 Arbitrage Continued

- Reminders
- Competition

2 Extending to Buffering
■ Stochastic Dynamic Programming Problem and Reformulation

- Price Taker Example

■ Price Maker General Theory
3 Directions of Research

- Multiple Stores and Resource Pooling
- Demand Side Response
- Stochastic Prices

Buffer shocks

■ Major role of storage is to provide very fast response:
■ TV pick-up

- Buffering renewable generation (forecast errors)
- Generation failure

■ Leads to cost dependent on storage level.
■ Random fluctuations in storage due to unexpected demands.

Stochastic Dynamic Programme

Decision at time t. As before:
■ Current store level s_{t-1}

- Cost functions C_{t}

■ Purchase amount x_{t}
Additionally:

- Random cost $D\left(s_{t-1}+x_{t}\right)$
- Random storage level at next time period, s_{t}.

Problem (Diagram)

Solution Strategy

Instead of writing down full SDP consider non-standard version:

$$
V_{t-1}\left(s_{t-1}\right)=\min _{\substack{x_{t} \in X_{t} \\ s_{t-1}+x_{t} \in \cap\left[0, E_{t}\right]}}\left[C_{t}\left(x_{t}\right)+A_{t}\left(s_{t-1}+x_{t}\right)+V_{t}\left(s_{t-1}+x_{t}\right)\right]
$$

- C_{t} costs as before,
- $A_{t}\left(s_{t-1}+x_{t}\right)$ expected cost of the shock (see later)

■ V_{t} the expected future cost under optimal strategy.
Recast as a deterministic optimisation which we solve with using Lagrangian methods.

Price taker example

Consider special case of cost function:

$$
C_{t}(x)= \begin{cases}c_{t}^{(b)} x, & \text { if } x \geq 0 \tag{2}\\ c_{t}^{(s)} x, & \text { if } x<0\end{cases}
$$

Then:

Proposition

Suppose that, for each t, we have $c_{t}^{(b)}=c_{t}^{(s)}=c_{t}$ say; define

$$
\begin{equation*}
\hat{s}_{t}=\operatorname{argmin}_{s \in\left[0, E_{t}\right]}\left[c_{t} s+A_{t}(s)+V_{t}(s)\right] . \tag{3}
\end{equation*}
$$

Then, for each t and for each s_{t-1}, we have $\hat{x}_{t}\left(s_{t-1}\right)=\hat{s}_{t}-s_{t-1}$ provided only that this quantity belongs to the set X_{t}.

Price taker example

If the store is not total efficient we need A_{t} is convex.
Define:

$$
\begin{equation*}
s_{t}^{(b)}=\operatorname{argmin}_{s \in\left[0, E_{t}\right]}\left[c_{t}^{(b)} s+A_{t}(s)+V_{t}(s)\right] \tag{4}
\end{equation*}
$$

and similarly define

$$
\begin{equation*}
s_{t}^{(s)}=\operatorname{argmin}_{s \in\left[0, E_{t}\right]}\left[c_{t}^{(s)} s+A_{t}(s)+V_{t}(s)\right] . \tag{5}
\end{equation*}
$$

Proposition

Suppose that the cost functions C_{t} are as given by (2) and that the functions A_{t} are convex. Then the optimal policy is given by: for each t and given s_{t-1}, take

$$
x_{t}= \begin{cases}\min \left(s_{t}^{(b)}-s_{t-1}, P_{l t}\right) & \text { if } s_{t-1}<s_{t}^{(b)} \\ 0 & \text { if } s_{t}^{(b)} \leq s_{t-1} \leq s_{t}^{(s)} \\ \max \left(s_{t}^{(s)}-s_{t-1},-P_{O t}\right) & \text { if } s_{t-1}>s_{t}^{(s)}\end{cases}
$$

Relation to previous work

Interested in buffering against wind forecast errors, minimising excess conventional generation.

■ Bejan, Kelly, Gibbens, "Statistical aspects of storage systems modelling in energy networks"

■ Gast,Tomozei,Le Boudec, " Optimal storage policies with wind forecast uncertainties"

Function A_{t}

Reminder: $A_{t}\left(s_{t-1}+x_{t}\right)$ average cost of the shock Made of two parts:
1 Cost of due to the shock, e.g. energy unserved

2 Cost due to random fluctuation in store level.

Estimating A_{t}

■ $\bar{A}_{t}\left(s_{t-1}+x_{t}\right)$ the expected additional cost to immediately returning the level of the store to its planned level $s_{t-1}+x_{t}$ by the end of time period.
■ The cost of the energy which will be purchased to rectify the situation as well as penalty costs.
■ Here \bar{A}_{t} is readily determinable, since it does not depend on how the store is controlled outside the time period t.

Estimating A_{t}

Then \bar{A}_{t} is a good approximation of A_{t} if one of the following is true:

■ Linear cost functions, $C_{t}(x)=c_{t} x$.

- since the optimal level for the store is unchanged.
- Shocks are rare but expensive.
- since the major contribution to A_{t} is the cost due to the shock not the readjustment.
Approximation can be improved by allowing longer time periods for the coupling.

In many applications the value of A_{t} may need to be determined by observation.

Optimal control

Define also the following (deterministic) optimisation problem:
\mathbf{P} :Choose $s=\left(s_{0}, \ldots, s_{T}\right)$ with $s_{0}=s_{0}^{*}$ so as to minimise

$$
\begin{equation*}
\sum_{t=1}^{T}\left[C_{t}\left(x_{t}(s)\right)+A_{t}\left(s_{t}\right)\right] \tag{7}
\end{equation*}
$$

subject to the capacity constraints

$$
\begin{equation*}
0 \leq s_{t} \leq E_{t}, \quad 1 \leq t \leq T \tag{8}
\end{equation*}
$$

and the rate constraints

$$
\begin{equation*}
x_{t}(s) \in X_{t}, \quad 1 \leq t \leq T \tag{9}
\end{equation*}
$$

It can be shown that the solution to this problem solves the SDP
up to times of shocks.

Lagrangian Theory

Theorem

Let s* denote the solution to the problem \mathbf{P}. Then there exists a vector $\lambda^{*}=\left(\lambda_{1}^{*}, \ldots, \lambda_{T}^{*}\right)$ such that

1 for all vectors s such that $s_{0}=s_{0}^{*}$ and $x_{t}(s) \in X_{t}$ for all t (s is not otherwise constrained),

$$
\begin{equation*}
\sum_{t=1}^{T}\left[C_{t}\left(x_{t}(s)\right)+A_{t}\left(s_{t}\right)-\lambda_{t}^{*} s_{t}\right] \geq \sum_{t=1}^{T}\left[C_{t}\left(x_{t}\left(s^{*}\right)\right)+A_{t}\left(s_{t}^{*}\right)-\lambda_{t}^{*} s_{t}^{*}\right] \tag{10}
\end{equation*}
$$

Lagrangian Theory

Theorem

2 the pair $\left(s^{*}, \lambda^{*}\right)$ satisfies the complementary slackness conditions, for $1 \leq t \leq T$,

$$
\begin{cases}\lambda_{t}^{*}=0 & \text { if } 0<s_{t}^{*}<E_{t} \tag{11}\\ \lambda_{t}^{*} \geq 0 & \text { if } s_{t}^{*}=0 \\ \lambda_{t}^{*} \leq 0 & \text { if } s_{t}^{*}=E_{t}\end{cases}
$$

Conversely, suppose that there exists a pair of vectors (s^{*}, λ^{*}), with $s_{0}=s_{0}^{*}$, satisfying the conditions (1) and (2) and such that s^{*} is additionally feasible for the problem \mathbf{P}. Then s^{*} solves the problem \mathbf{P}.

Finding $\left(s^{*}, \lambda^{*}\right)$

Proposition

Suppose that the functions A_{t} are differentiable, and that the pair $\left(s^{*}, \lambda^{*}\right)$ is such that s^{*} is feasible for the problem \mathbf{P}, while $\left(s^{*}, \lambda^{*}\right)$ satisfies the conditions of previous Theorem. For each t define

$$
\begin{equation*}
\nu_{t}^{*}=\sum_{u=t}^{T}\left[\lambda_{u}^{*}-A_{u}^{\prime}\left(s_{u}^{*}\right)\right] . \tag{12}
\end{equation*}
$$

Then the condition that $\left(s^{*}, \lambda^{*}\right)$ satisfies the condition (1) of previous Theorem is equivalent to the condition that

$$
\begin{equation*}
x_{t}\left(s^{*}\right) \text { minimises } C_{t}(x)-\nu_{t}^{*} x \text { in } x \in X_{t}, \quad 1 \leq t \leq T \tag{13}
\end{equation*}
$$

UK Market Example

$E / P=5$ hrs \quad Efficiency $=0.85$ (ratio of sell to buy price). $A_{t}(S)=\nu / S$ (Black: $\nu=0.02$, Red: $\nu=0.2$, Blue: $\left.\nu=1\right)$

1 Arbitrage Continued

- Reminders
- Competition

2 Extending to Buffering
■ Stochastic Dynamic Programming Problem and Reformulation

- Price Taker Example

■ Price Maker General Theory
3 Directions of Research
■ Multiple Stores and Resource Pooling
■ Demand Side Response

- Stochastic Prices

Two Cooperating Stores

- Consider two stores working in co-operation

■ Already looked at case of two identical stores
■ Interesting question if two stores are very different:

- A fast small store (demand side response)
- A small large store (pumped storage)

Two Cooperating Stores

- Consider two stores working in co-operation

■ Already looked at case of two identical stores
■ Interesting question if two stores are very different:

- A fast small store (demand side response)
- A small large store (pumped storage)
- Best outcome is complete resource pooling, i.e. can treat as a single store with parameters as sum of individuals.
■ But when will this occur?
- How far away from this are we?

Demand Side Response

- Demand side response can be viewed as also moving energy through time.
- We now have an energy debt S, such that $-E \leq S \leq 0$.
- So we have to sell before we can buy, but the problem formulation is the same.
■ Often demand response has further binding constraints:
- Frequency at which actions can be taken.
- Length of time energy debt can be maintained.

■ But for a first approximation this work provides some insight.

Stochastic Prices

■ So far nearly everything we have done has assumed deterministic price functions.

- In reality this problem is stochastic in nature.

■ We have side stepped that issue by talking about a re-optimisation framework.
■ Under a specific stochastic model the optimal behaviour does not changes, multiplicative errors.
■ But if these are not true how sub-optimal is re-optimization?

- E.G. if prices follow a mean reverting process?

