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Reminder: Cost function

At any (discrete) time t,

P

P

sell

buy

x

)x(
t

C

Ct(x) = cost of increasing level of store by x (positive or negative)
Assume convex (reasonable). This may model

market impact

efficiency of store

rate constraints



Reminder: Problem

Let St = level of store at time t, 0 ≤ t ≤ T .

Policy S = (S0, . . . ,ST ), S0 = S∗0 (fixed), ST = S∗T (fixed).

Define also xt(S) = St − St−1

(energy “bought” by store at time t – positive or negative)

Problem: minimise cost

T∑
t=1

Ct(xt(S))

subject to
S0 = S∗0 , ST = S∗T

and
0 ≤ St ≤ E , 1 ≤ t ≤ T − 1.



N stores in competition

We assume the stores are sufficiently large as to have market
impact: the activity of each store negatively affects profits which
can be made by the others.

Model costs at each time t as being derived from a price
function pt(·), where pt(x) is the price per unit traded when the
total amount traded is x .

Suppose that each store i buys xit at time t. Then store i incurs a
total cost over time of

T∑
t=1

xitpt

( n∑
j=1

xjt

)
. (*)

What happens now depends of the RULES OF THE GAME
(the mechanism by which the market is cleared).
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Bertrand competition

Stores bid “prices”.

Any single unconstrained store able to offer lowest price corners
entire market.

If overcapacity then typically little or no profits to be made.

CAPITAL COSTS CANNOT BE RECOVERED.
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Cournot competition

Stores bid “quantities”.

Each store optimises its own profit given the activities over time of
all the other stores.

Result. There exists at least one Nash equilibrium.

Proof. Given some set of strategies x = (x1, . . . , xn) of all the
stores over all time 1, . . . ,T , suppose that each store i
(simultaneously) updates its entire strategy from xi to x ′i given the
activities xj of all the remaining stores j 6= i . This defines a
mapping (x1, . . . , xn)→ (x ′1, . . . , x

′
n) which is continuous and

defined on a compact convex set.
Hence by the Brouwer fixed point theorem, the above mapping has
a fixed point (x1, . . . , xn). This (by definition) is a Nash
equilibrium.
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Behaviour of stores

At a Nash equilibrium each store tend to “overtrade” (compared to
an optimal cooperative solution): it thereby increases its revenue,
the excess costs (in terms of price impact) being borne by the
other stores.



Example: Competition example
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Linearised price functions

Assume that, for each t,

pt(x) = at + btx

(a reasonable first approximation).

Result. There is a unique Nash equilibrium, given by the
minimiser (x1, . . . , xn) of the quadratic function

T∑
t=1

[
at

n∑
i=1

xit +
1

2
bt

(
n∑

i=1

x2it +

( n∑
i=1

xit

)2
)]

(**)

subject to the given rate and capacity constraints on each store.

Proof. For each i , minimisation in xi of the above function is
equivalent to minimisation of the earlier function (*).



Unconstrained stores in competition

Assume linear prices and n stores subject to neither capacity nor
rate constraints, and each of which has the same starting and
finishing level.

Result. At the (unique and necessarily symmetric) Nash
equilibrium, the quantity traded per store is proportional to
1/(n + 1) and the profit per store is proportional to 1/(n + 1)2.

Proof. This follows easily from the observed symmetry of the
solution and the use of strong Lagrangian theory to minimise the
function (**) subject to the constraint

∑n
i=1 xit = 0 for all i .

Consequence. In comparison to the optimal cooperative solution,
the n unconstrained stores in Cournot competition

overtrade by a factor 2n/(n + 1)

make a total profit proportional to 4n/(n + 1)2.
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Buffer shocks

Major role of storage is to provide very fast response:

TV pick-up
Buffering renewable generation (forecast errors)
Generation failure

Leads to cost dependent on storage level.

Random fluctuations in storage due to unexpected demands.



Stochastic Dynamic Programme

Decision at time t. As before:

Current store level st−1

Cost functions Ct

Purchase amount xt

Additionally:

Random cost D(st−1 + xt)

Random storage level at next time period, st .



Problem (Diagram)
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Solution Strategy

Instead of writing down full SDP consider non-standard version:

Vt−1(st−1) = min
xt∈Xt

st−1+xt∈∩[0,Et ]

[Ct(xt) + At(st−1 + xt) + Vt(st−1 + xt)] ,

(1)

Ct costs as before,

At(st−1 + xt) expected cost of the shock (see later)

Vt the expected future cost under optimal strategy.

Recast as a deterministic optimisation which we solve with using
Lagrangian methods.



Price taker example

Consider special case of cost function:

Ct(x) =

{
c
(b)
t x , if x ≥ 0

c
(s)
t x , if x < 0.

(2)

Then:

Proposition

Suppose that, for each t, we have c
(b)
t = c

(s)
t = ct say; define

ŝt = argmins∈[0,Et ][cts + At(s) + Vt(s)]. (3)

Then, for each t and for each st−1, we have x̂t(st−1) = ŝt − st−1
provided only that this quantity belongs to the set Xt .



Price taker example

If the store is not total efficient we need At is convex.
Define:

s
(b)
t = argmins∈[0,Et ][c

(b)
t s + At(s) + Vt(s)] (4)

and similarly define

s
(s)
t = argmins∈[0,Et ][c

(s)
t s + At(s) + Vt(s)]. (5)

Proposition

Suppose that the cost functions Ct are as given by (2) and that
the functions At are convex. Then the optimal policy is given by:
for each t and given st−1, take

xt =


min(s

(b)
t − st−1, PIt) if st−1 < s

(b)
t ,

0 if s
(b)
t ≤ st−1 ≤ s

(s)
t ,

max(s
(s)
t − st−1, −POt) if st−1 > s

(s)
t .

(6)



Relation to previous work

Interested in buffering against wind forecast errors, minimising
excess conventional generation.

Bejan, Kelly, Gibbens, ”Statistical aspects of storage systems
modelling in energy networks”

Gast,Tomozei,Le Boudec, ”Optimal storage policies with wind
forecast uncertainties”



Function At

Reminder: At(st−1 + xt) average cost of the shock
Made of two parts:

1 Cost of due to the shock, e.g. energy unserved

2 Cost due to random fluctuation in store level.
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Estimating At

Āt(st−1 + xt) the expected additional cost to immediately
returning the level of the store to its planned level st−1 + xt
by the end of time period.

The cost of the energy which will be purchased to rectify the
situation as well as penalty costs.

Here Āt is readily determinable, since it does not depend on
how the store is controlled outside the time period t.



Estimating At

Then Āt is a good approximation of At if one of the following is
true:

Linear cost functions, Ct(x) = ctx .

since the optimal level for the store is unchanged.

Shocks are rare but expensive.

since the major contribution to At is the cost due to the shock
not the readjustment.

Approximation can be improved by allowing longer time periods for
the coupling.

In many applications the value of At may need to be determined
by observation.



Optimal control

Define also the following (deterministic) optimisation problem:
P:Choose s = (s0, . . . , sT ) with s0 = s∗0 so as to minimise

T∑
t=1

[Ct(xt(s)) + At(st)] (7)

subject to the capacity constraints

0 ≤ st ≤ Et , 1 ≤ t ≤ T , (8)

and the rate constraints

xt(s) ∈ Xt , 1 ≤ t ≤ T . (9)

It can be shown that the solution to this problem solves the SDP
up to times of shocks.
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Lagrangian Theory

Theorem
Let s∗ denote the solution to the problem P. Then there exists a
vector λ∗ = (λ∗1, . . . , λ

∗
T ) such that

1 for all vectors s such that s0 = s∗0 and xt(s) ∈ Xt for all t (s is
not otherwise constrained),

T∑
t=1

[Ct(xt(s)) + At(st)− λ∗t st ] ≥
T∑
t=1

[Ct(xt(s
∗)) + At(s

∗
t )− λ∗t s∗t ] .

(10)



Lagrangian Theory

Theorem

2 the pair (s∗, λ∗) satisfies the complementary slackness
conditions, for 1 ≤ t ≤ T,

λ∗t = 0 if 0 < s∗t < Et ,

λ∗t ≥ 0 if s∗t = 0,

λ∗t ≤ 0 if s∗t = Et .

(11)

Conversely, suppose that there exists a pair of vectors (s∗, λ∗),
with s0 = s∗0 , satisfying the conditions (1) and (2) and such that
s∗ is additionally feasible for the problem P. Then s∗ solves the
problem P.



Finding (s∗, λ∗)

Proposition

Suppose that the functions At are differentiable, and that the
pair (s∗, λ∗) is such that s∗ is feasible for the problem P, while
(s∗, λ∗) satisfies the conditions of previous Theorem. For each t
define

ν∗t =
T∑

u=t

[λ∗u − A′u(s∗u)]. (12)

Then the condition that (s∗, λ∗) satisfies the condition (1) of
previous Theorem is equivalent to the condition that

xt(s
∗) minimises Ct(x)− ν∗t x in x ∈ Xt , 1 ≤ t ≤ T . (13)
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UK Market Example

E/P = 5 hrs Efficiency = 0.85 (ratio of sell to buy price).
At(S) = ν/S (Black:ν = 0.02,Red:ν = 0.2, Blue: ν = 1)

Time (March 2011)
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Two Cooperating Stores

Consider two stores working in co-operation

Already looked at case of two identical stores

Interesting question if two stores are very different:

A fast small store (demand side response)
A small large store (pumped storage)

Best outcome is complete resource pooling, i.e. can treat as a
single store with parameters as sum of individuals.

But when will this occur?

How far away from this are we?
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Demand Side Response

Demand side response can be viewed as also moving energy
through time.

We now have an energy debt S , such that −E ≤ S ≤ 0.

So we have to sell before we can buy, but the problem
formulation is the same.

Often demand response has further binding constraints:

Frequency at which actions can be taken.
Length of time energy debt can be maintained.

But for a first approximation this work provides some insight.



Stochastic Prices

So far nearly everything we have done has assumed
deterministic price functions.

In reality this problem is stochastic in nature.

We have side stepped that issue by talking about a
re-optimisation framework.

Under a specific stochastic model the optimal behaviour does
not changes, multiplicative errors.

But if these are not true how sub-optimal is re-optimization?

E.G. if prices follow a mean reverting process?
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