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The 37% Rule

At the British Psychological Society’s conference in April 1997 Dr
Peter Todd, of the Max Planck Institute in Munich, spoke about
the best (optimal) strategy for

finding a partner, or

finding a suitable new employee from a range of applicants

Source: Plus magazine
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He quoted the following rule:

The 37% rule

Once you have seen 37% of the applicants, a coherent picture of
the ideal employee is built up and the next person to fulfil these
criteria should be given the job.

This is an example of an optimal stopping problem: when to stop
merely observing, and act.

Figure: Another optimal stopping problem (source: Plus magazine)
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Suppose there is a pool of N candidates and you decide to
observe at least M. That is, you

Observe the first M−1 candidates without acting, then

Select the next candidate which is better then all of these
M−1.

Example: Let N = 4 and number the candidates from 1 to 4 (4 is
best, no ties).

Figure: Left: Permutations when N = 4. Centre: For each M,
permutations yielding best choice: Best M = 2. Right: The
asymptotically optimal proportion for large N is 1/e (source: Plus magazine)
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Optimal stopping has been the subject of wide study:

First solved in discrete time:

Wald (1947): problems of sequential analysis
Snell (1952): general results for optimal stopping problems

Then in continuous time, first by Dynkin (1963) using the
concepts of excessive and superharmonic functions

Still very active research area today, underpins Real Options
Analysis

In power systems engineering, applied in context of demand
response (see Iwayemi et al. (2011))
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Optimal stopping theory aims to tell us the best possible time at
which to take an action in an online fashion.

That is, given the model, there is no possible better way to react
in real time to the available information.
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OS theory is therefore potentially relevant to any time-sensitive
situation, provided it can be modelled. Some examples at different
timescales in energy systems (together with optimal stopping
formulations):

Providing real-time balancing services (multiple optimal
stopping, see next tutorial)

Charging a battery in a real-time electricity market (singular
stochastic control)

Upgrading (reinforcing) electricity networks (real options
analysis)

Quickest corrective control of power systems (Bayesian
quickest detection)
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Real Options study of reinforcing electricity networks

In so-called real options problems, OS theory is used to value
real-world projects having an element of timing flexibility (eg. when
to expand or abandon a project) and derive the optimal strategy.

Figure: Left: the (multiple) optimal stopping problem
Right: flowchart of methodology
[from Schachter, Mancarella, M. and Shaw, Energy Policy (2016)]
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Bayesian quickest detection problem for corrective control
of power systems

This was a study of online decision making at the operational
timescale:

Figure: Left: IEEE 68 bus test network. Right: Simulated post-fault
responses of voltages (top panel) and rotor angles (bottom panel) [from
Gonzalez, Kitapbayev, Guo, Milanovic, Peskir & M., CDC 2016]
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OS theory suggests the structure of the solution, which can
then be calibrated using machine learning:

Figure: Top: Training data and probabilistic neural network output
Bottom left: Stylised illustration of the optimal boundaries
Bottom right: Computed optimal boundaries
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Singular stochastic control problem of charging a battery
in a real-time electricity market with ± prices

OS theory also connects to several other stochastic optimisation
problems. An example is singular stochastic control:

Optimal stopping problem is the ‘derivative’ of the singular
stochastic control problem ‘in the direction of the control’

Connection first used heuristically by Bather and Chernoff
(1963) but not proved rigorously until work of Karatzas and
Shreve in 1984

τ represents the first time at which any control is exercised

In energy trading context, possibly negative prices make this
relationship more complex. . .
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Figure: Stylised illustrations of the optimal singular stochastic control
boundaries in three different parameter regimes. [From De Angelis,
Ferrari & M. SICON (2015)]



Prologue: Some recent energy research using optimal stopping

Figure: Example members of the underlying family of optimal stopping
problems
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Negative prices can also lead to strange, non-smooth optimal
stopping boundaries:

Figure: ‘Kinked’ optimal boundary for a problem of optimal entry into a
charging contract. [From De Angelis, Ferrari, Martyr & M. MAFE (2017)]
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Note the hiring problem was

purely combinatorial (no statistical model)
binary (win / lose)

In contrast, in energy applications we often

have relevant historic datasets
seek to minimise costs (subject to operational constraints)

Data series can often be modelled as diffusion processes, eg:
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System	is	‘short’
->	Incremental	reserve	needed
Higher	imbalance	price,	X(t)

System	is	‘long’
->	Decremental reserve	needed
Lower	imbalance	price,	X(t)

Can then perform model-based optimisations.
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