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Recall that the hiring problem was purely combinatorial.
Suppose instead that we wish to stop a Brownian motion
optimally.

Figure: Some simulated hitting times for Brownian motion
(source: Thomas Steiner)
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[The following formulation is modified from Pedersen (2005)
and Dayanik and Karatzas (2003).]

Let X = (Xt)t≥0 be

a standard Brownian motion (ie dXt = dWt),

taking values in an interval I with endpoints a and b,

with initial value x ,

defined on a stochastic basis (Ω,F ,(Ft)t≥0,P).
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Let S be the set of all stopping times. That is, each τ is

a nonnegative random variable,

non-ancitipative: that is, for each t ≥ 0 we have

{ω ∈ Ω : τ(ω)≤ t} ∈Ft .

A stopping time can be interpreted as the time at which X exhibits
a given behaviour of interest.
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A basic optimal stopping problem

Find
v(x) := sup

τ∈S
Ex [h(Xτ )], x ∈I (1)

and, if it exists, an optimal stopping time τ∗ satisfying

v(x) = Ex [h(Xτ∗)].

Here

v is called the value function

h is the real-valued gain function

and for simplicity, we will take

h continuous on R, and

define h(Xτ ) = 0 on {τ = +∞}: never stopping ⇒ zero gain.
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The function f : R→ R is said to be excessive for X if

f (x)≥ Ex [f (xt)], ∀ t ≥ 0,∀ x ∈I , (2)

and superharmonic for X if

f (x)≥ Ex [f (xτ )], ∀ τ ∈S ,∀ x ∈I . (3)

Clearly, if f is superharmonic for X then it is also excessive for
X (take τ = t a.s.)

Let L (X ) be the class of all lower semicontinuous real
functions f such that either Ex [supt≥0 f (Xt)] < ∞ or
Ex [inft≥0 f (Xt)] >−∞. Then excessivity and superharmonicity
for X are equivalent on L (X ).
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Recall the optimal stopping problem:

v(x) = sup
τ∈S

Ex [h(Xτ )], x ∈I . (4)

By the strong Markov property, v is superharmonic

Trivially: v majorises h (that is, v ≥ h; just take τ = 0)

If a superharmonic function f majorises h then it majorises v

This actually characterises v ...
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First define the continuation region

C = {x ∈I : h(x) < v(x)}

and let τ∗ be the first exit time of X from C :

τ∗ = inf{t > 0 : Xt /∈ C}.

Theorem (Dynkin 1963)

Suppose that h ∈L (Z ). Then:

1 The value function v is the smallest nonnegative superharmonic
majorant of the gain function h with respect to the process X .

2 τ∗ is an optimal stopping time

3 If an optimal stopping time σ exists then τ∗ ≤ σ Px–a.s. for all x
and τ∗ is also an optimal stopping time.
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Figure: An example to fix ideas. The continuation region
C = {x ∈ [a,b] : h(x) < v(x)}.
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Solutions can be obtained by a geometric method:

Theorem (Dynkin and Yushkevich, 1969)

Every excessive function for one-dimensional Brownian motion X is
concave, and vice-versa.

Corollary

Let X be a standard Brownian motion in a closed bounded interval
I = [a,b] and absorbed at its boundaries. Then the value function
v is the smallest nonnegative concave majorant of h.
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Remarks:

The value function v resembles a rope stretched over the gain
function h

The continuation region C has two boundary points in this example,
but there can be many

These are referred to as free boundaries since their position is not
specified a priori

The value function v is linear (that is, harmonic for the Brownian
motion X ) on the open set C

v is concave (that is, superharmonic for X ) on its complement C ,
which is the closed stopping set
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The principle of smooth fit

This famous principle (also called ‘smooth pasting’ or the ‘high
contact principle’) was first applied in Mikhalevich (1958) and later
independently in Chernoff (1961) and Lindley (1961). It asserts
that the value function v should be continuously differentiable
across the free boundaries.

This principle is:

often used in analytic solution methods:

a candidate solution is constructed
this candidate is verified analytically

not necessary, but typically holds in ‘nice’ problems. . .
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Figure: Example optimal stopping problems (NB of minimisation, not of
maximisation). Left: Smooth fit holds at both boundaries. Right:
Smooth fit holds only at the right boundary.
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This method can be extended to more general optimal
stopping problems, with

time discounting of the gain function:

V (x) = sup
τ∈S

Ex [e−rτh(Xτ )], x ∈I , (5)

where r ≥ 0 is a discount rate (which may be state-dependent
x 7→ r(x))

taking X as any time-homogeneous regular diffusion: that is,

dXt = µ(Xt)dt + σ(Xt)dWt

This is achieved by:

Applying a nonlinear scaling to the previous picture

Equivalently, using a generalised concept of concavity.
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Let

the infinitesimal generator of X be A u = 1
2 σ(x)2 ∂ 2u

∂x2 + µ(x) ∂u
∂x

the equation A u = ru have fundamental solutions ψ and φ

(linearly independent, positive, φ decreasing, ψ increasing; eg.
for Brownian motion and r = 0 we have φ(x) = 1, ψ(x) = x).

The generalised method is:

Proposition

Let F = ψ

φ
and let W be the smallest nonnegative concave

majorant of H := h
φ
◦F−1 on [F (a),F (b)]. Then

V (x) = φ(x)W (F (x)), for every x ∈ [a,b].
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Too good to be true?

We need to perform the previous procedure of finding the smallest
nonnegative concave majorant, taking the gain function
H := h

φ
◦F−1 (where F = ψ

φ
).

For Brownian motion (BM) and r = 0 we have φ(x) = 1,
ψ(x) = x

For geometric Brownian motion (GBM) we have

φ(x) = e−
√

2rx , ψ(x) = e
√

2rx

However in general, and eg. for the Ornstein-Uhlenbeck
process, no explicit forms for φ(x) or ψ(x) - so don’t know
the geometry of H precisely
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In M. & Palczewski (EJOR 2016) we solve an optimal stopping
problem for a battery operator providing grid support services
under option-type contracts. There, X is Brownian motion with
constant discounting and the gain function is non-smooth:

−f (x) +pc +hc(x),

where

hc(x) =

K , x < x∗,

Ke−a(x−x∗), x ≥ x∗.
(6)

This produces a surprising variety of solutions!
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Figure: An example with a bounded interval stopping region (thick black
line) with one smooth fit point
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Figure: An unbounded interval stopping region and smooth fit
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Figure: Stopping region given by union of isolated point and unbounded
interval
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Figure: Stopping region given by unbounded interval, no smooth fit
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Figure: Stopping region given by an isolated point
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Figure: Now to the spaceship
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Too simple to be useful?

Figure: A new control solution found in M. (2015) to a problem of
singular stochastic control with stopping (Karatzas, Ocone, Wang and
Zervos, 2000)
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Figure: A related optimal stopping problem from M. (2015)
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When X takes values in Rd for d≥ 1 (and h is still assumed
real-valued and continuous) there are iterative methods:

Iterative solution method 1

Let h satisfy Ex [supt≥0 h(Xs)] < ∞. Define the operator

Qj (h)(x) = h(x)∨Ex [h(X2−j )]

and, writing Qn
j for its nth power, set

hj ,n(x) = Qn
j [h](x).

Then the least superharmonic majorant of h is

ĥ(x) := lim
j→∞

lim
n→∞

hj ,n(x)
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Iterative solution method 2

Let X be a Feller process and let h be bounded from below. Set

hj(x) = sup
t≥0

Ex(hj−1(Xt))

for j ≥ 1 and h0 = h. Then

ĥ(x) = lim
j→∞

hj(x)

is the least superharmonic majorant of h.
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