Basics of Renewable Energy Forecasting

Pierre Pinson

Technical University of Denmark

DTU Electrical Engineering - Centre for Electric Power and Energy mail: ppin@dtu.dk - webpage: www.pierrepinson.com

YEQT Winter School on Energy Systems - 11 December 2017

31761 - Renewables in Electricity Markets

Learning objectives

Through this lecture and additional study material, it is aimed for the students to be able to:

Describe the different types of renewable energy forecasts, in plain words and in a more mathematical manner

Explain why using such or such forecasts for different type of decision-making problems

Solution Discuss the origins and characteristics of forecast uncertainty

Wind Energy

Wave Energy (could be)

... Also nothing on Solar Energy today, though all concepts are similar.

And for another time...!

These actually are tidal energy converters

Do you know what these are?

<u>Outline</u>

Forecast: why and in what form?

- forecasting in electricity markets
- the case of renewable energy forecasts
- forecasts as input to decision-making problems
- · benefits from considering uncertainty

② Uncertainty origins and basic characteristics

- origins of uncertainty: weather forecasts, power curves, etc.
- basic characteristics

From deterministic to probabilistic forecasts

- what a deterministic forecast really is...
- illustration of forecast types: point, quantile, intervals, densities, trajectories

• Forecast: why and in what form?

DTU

Why forecasting?

- Forecasting is a *natural first step* to decision-making
- Believing we know what will happen
 - helps making decisions
 - but mainly, makes us more confident about it!
- Key application areas include:
 - weather and climate
 - economics and finance
 - logistics
 - insurance, etc.

"But to be fair, there's a fifty percent chance of just about anything."

- market participant, supply side (e.g., conventional generator, wind farm operator)
- market participant, demand side (e.g., retailer)
- participants in neighboring markets
- market operator
- system operator
- but also, you and I

DTU

- Different actors may have different needs...
 - market participant, supply side (e.g., conventional generator, wind farm operator)
 - market participant, demand side (e.g., retailer)
 - participants in neighboring markets
 - market operator
 - system operator
 - but also, you and I
- One may want forecasts for:
 - the electric load
 - day-ahead prices
 - potential imbalance sign
 - regulation prices/penalties
 - potential congestion on interconnectors
 - etc.
 - Generation from renewable energy sources!!!
- Nearly all these quantities are driven by weather and climate!

• Forecast information is widely used as input to several decision-making problems:

- definition of reserve requirements (i.e., backup capacity for the system operator)
- unit commitment and economic dispatch (i.e., least costs usage of all available units)
- coordination of renewables with storage
- design of optimal trading strategies
- electricity market-clearing
- optimal maintenance planning (especially for offshore wind farms)
- Inputs to these methods are:
 - deterministic forecasts
 - probabilistic forecasts as quantiles, intervals, and predictive distributions
 - probabilistic forecasts in the form of trajectories (/scenarios)
 - risk indices (broad audience applications)
- For nearly all of these problems, optimal decisions can only be obtained if fully considering forecast uncertainty...

A recommended book

"Written by true experts. Informative yet so much fun to read!" Nassim Nicholas Taleb, author of The Black Swan

S. Makridakis, R. Hogarth, A. Gaba

Dance with Chance: Making Luck Work for You

MAKING LUCK WORK FOR YOU

Spyros Makridakis • Robin Hogarth • Anil Gaba

The problem with forecast uncertainty estimation

- The French National meteorological office (Meteo-France) has been communicating *"confidence indices"* (indices de confiance) along with their forecasts for quite a while...
- Example set of forecasts: (from "1 = low confidence" to "5 = high confidence")

• Do you get something out of it?

Now... the "big mouth" paradox

- It might always be difficult to trust someone providing you with forecasts
- Even more so if these are probabilistic...
- Let us consider a simple american setup (focus on **New Orleans**), with two rival forecasters:
- The two competing forecasters tell you that:
 - Forecaster A: It will rain next Monday, and the precipitation amount will be of 22mm
 - Forecaster B:

There is a probability of 38% that precipitation is more than 25mm next week Probability (%) of Precipitation > 25.0mm 8-14 day forecast, from 002 26 Feb 2012 Valid 04 Mar - 10 Mar 0 10 20 30 40 50 60 70 80 90 100

• Who would you hire?

[Extra reading: S Joslyn, L Nadav-Greenberg, RM Nichols (2009) Probability of precipitation: Assessment and enhancement of end-user understanding. Bulletin of the American Meteoreological Society 90: 185–193 (pdf)

UR Karmarkar, ZL Tormala (2010). Believe me - I have no idea what I'm talking about: The effects of source certainty on consumer involvement and persuasion. Journal of Consumer Research 36(6): 1033–1049 (pdf)]

Example use of forecasts: market participation

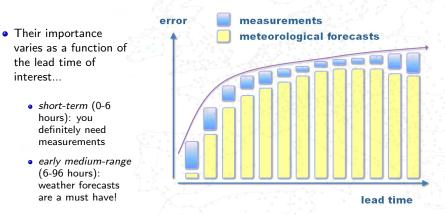
• Dutch electricity market over the year 2002:

- day-ahead market APX
- regulation mechanism managed by TenneT, the TSO for the Netherlands
- Participation of a **15 MW wind farm**, without any storage device and without any control on the power production
- **Point** and **probabilistic** predictions (full predictive distributions) generated with state-of-the-art statistical methods

• Revenue-maximization strategies

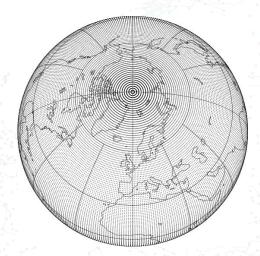
- based on point predictions only (persistence or advanced method)
- derived from probabilistic predictions and a model of the participant's sensitivity to regulation costs

Trading results


	Pers.	Adv. point pred.	Prob. pred.	Perfect pred
Contracted energy (GWh)	44.37	45.49	62.37	46.41
Surplus (GWh)	18.12	9.87	4.89	0
Shortage (GWh)	16.08	8.95	20.85	0
Down-regulation costs $(10^3 \in)$	195.72	119.99	42.61	0
Up-regulation costs $(10^3 \in)$	79.59	52.01	61.46	0
Total revenue $(10^3 \in)$	1041.38	1145.69	1212.61	1317.69
Av. down-reg. unit cost (€/MWh)	10.80	12.15	8.71	0
Av. up-reg. unit cost (€/MWh)	4.95	5.81	2.95	0
Av. reg. unit cost (€/MWh)	8.05	9.13	4.04	0
Av. energy price (€/MWh)	22.44	24.68	26.13	28.37
Part of imbalance (% prod. energy)	73.69	40.55	55.46	
Performance ratio (%)	79.1	86.99	92.1	100

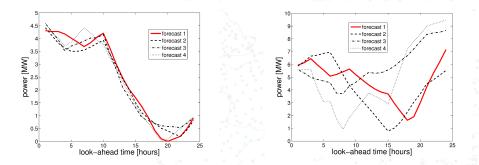
[Source: P Pinson, C Chevallier, G Kariniotakis. Trading wind generation from short-term probabilistic forecasts of wind power. IEEE Trans. on Power Systems 22(3): 1148-1156 (pdf)]

Output State St


Contribution to forecast uncertainty/error

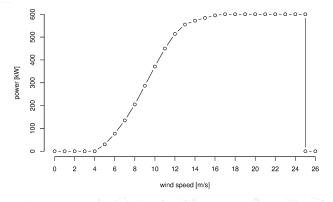
- To generate renewable energy forecasts in electricity markets, necessary inputs include:
 - recent power generation measurements
 - · weather forecasts for the coming period
 - possibly extra info (off-site measurements, radar images, etc.)

Numerical Weather Prediction


- Future values of meteorological variables (wind, temperature, etc.) on a grid
- Temporal/spatial resolution, domain, forecast update and forecast length vary depending upon the NWP system
- Large number of alernative system today (global, mesoscale, etc.) providing free or commercially available output.

• Origins of uncertainty in NWPs: initial state, model/physics, numerical aspects (filtering)

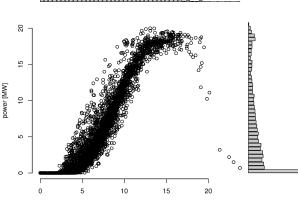
Predictability of meteorological variables


- A large part of the prediction error directly comes from prediction of weather variables
- This uncertainty in the meteorological forecast is then amplified or dampened by the power curve (model)

Typical representation of what could be more and less easily predictable situations...

The manufacturer power curve

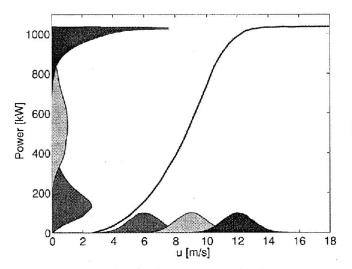
• Power curve of the Vestas V44 turbine (600 kW)

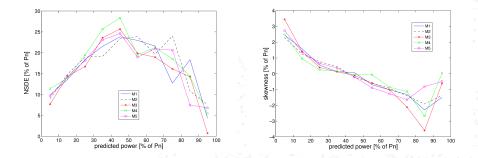


- Klim wind farm (North of Jutland, Denmark): 35 V44 turbines
- Nominal capacity: 21 MW
- Straightforward scaling of the power curve from 600kW to 21MW!

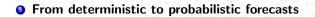
31761 - Renewables in Electricity Markets

Origins of uncertainty in the conversion process:

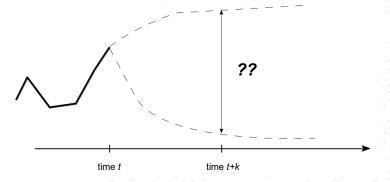

- actual meteorological conditions seen by turbines,
- aggregation of individual curves,
- non-ideal power curves,
- etc.


wind speed [m/s]

Shaping forecast uncertainty


courtesy of Matthias Lange

The power curve of a wind farm shapes the distributions of prediction errors


the above example involves 5 different approaches to point prediction, for the same site, over the same period and with the same inputs...

DTU

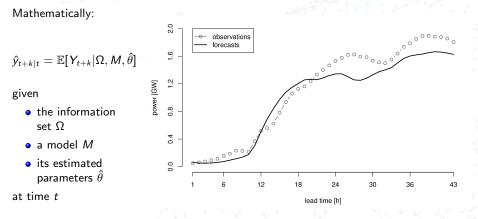
Forecast setup: Forecasting is about the future!

- The practical setup:
 - we are at time t (e.g., at 11am, placing offers in the market)
 - and interested in what will happen at time t + k (any market time unit of tomorrow, e.g., 12-13)
 - k is referred to as the lead time
 - Y_{t+k} : the random variable "power generation at time t + k"

• A forecast is an estimate for time t + k, conditional to information up to time t...

• This motivates the notation $\hat{\cdot}_{t+k|t}$

31761 - Renewables in Electricity Markets


For illustration: the Western Denmark dataset

1			
2/3/4	Agg. zone	Orig. zones	% of capacity
	1	1, 2, 3	31
	2	5, 6, 7	18
71 .	3	4, 8, 9	17
Diel :Omr 8	4	10, 11, 14, 15	23
8	5	12, 13	10
10 12 14 15 13			

Figure: The Western Denmark dataset: original locations for which measurements are available, 15 control zones defined by Energinet, as well as the 5 aggregated zones, for a nominal capacity of around 2.5 GW.

A point forecast informs of the conditional expectation of power generation

 $(\Omega, M, \hat{\theta} \text{ omitted in other definitions})$

Point forecasting

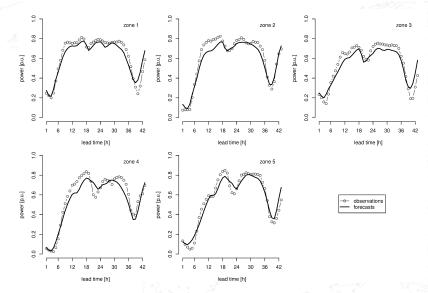
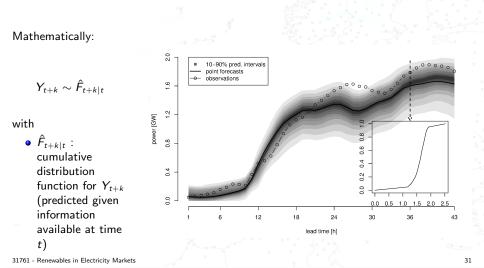



Figure: Example episode with point forecasts for the 5 aggregated zones of Western Denmark, as issued on 16 March 2007 at 06 UTC, along with corresponding power measurements, obtained a posteriori.

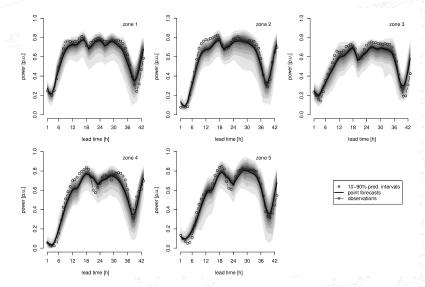
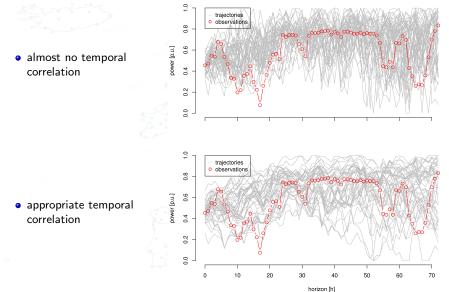
31761 - Renewables in Electricity Markets

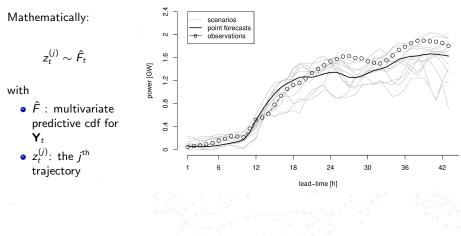

A quantile forecast is to be seen as a probabilistic threshold for power generation

A prediction interval is an interval within which power generation may lie, with a certain probability

A predictive density fully describes the probabilistic distribution of power generation for every lead time

Predictive densities


Figure: Example episode with probabilistic forecasts for the 5 aggregated zones of Western Denmark, as issued on 16 March 2007 at 06UTC. They take the form of so-called river-of-blood fan charts, represented by a set of central prediction intervals with increasing nominal coverage rates (from 10% to 90%).

31761 - Renewables in Electricity Markets

The conditional importance of correlation

Trajectories are equally-likely samples of multivariate predictive densities for power generation (in time and/or space)

Space-time trajectories (/scenarios)

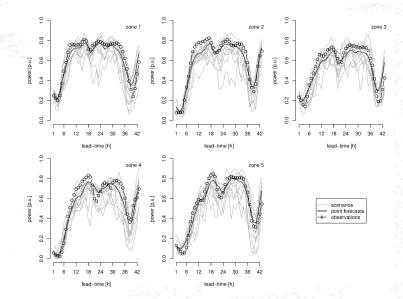
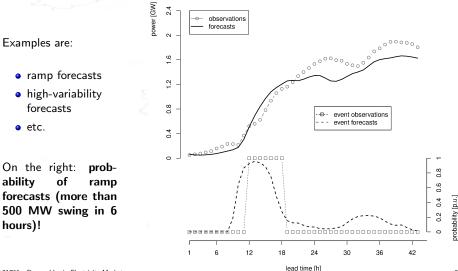



Figure: Spatio-temporal scenarios of wind power generation for the 5 aggregated zones of Western Denmark, issued on the 16 March 2007 at 06 UTC.

31761 - Renewables in Electricity Markets

Some decision-makers only want forecasts for user defined events

31761 - Renewables in Electricity Markets

36

• Uncertainty is a key feature of all renewable energy forecasts

- Lots of different types of forecasts inform of uncertainty, depending upon:
 - what they are to be used for
 - the expertise/feeling of the decision-maker
 - computing power available
- Approaches to characterizing, modelling and forecasting uncertainty in the following lectures...
- Before to generate forecasts, one should know how to verify(/evaluate) them!

31761 - Renewables in Electricity Markets