High-dimensional modeling and forecasting for wind power generation

Jakob Messner*, Pierre Pinson*, Yongning Zhao†,*

*Technical University of Denmark, [†]China Agricultural University (authors in alphabetical order)

Contact - email: ppin@elektro.dtu.dk - webpage: www.pierrepinson.com

YEQT Winter School on Energy Systems - 13 December 2017

Outline

- Motivations for high-dimension learning and forecasting
- General sparsity control for VAR models
- Online sparse and adaptive learning for VAR models
- Distributed learning
- Outlook

 $oldsymbol{0}$ From single wind farms to entire regions (1000s)

A traditional view on wind power forecasting

The wind power forecasting problem is defined for a single location...

... or, if several locations, by considering each of them individually

(Note that, for simplicity, we will only look at very short-term forecasting in this talk, i.e., from a few mins to

1-hour ahead)

Wind farms as a network of sensors

Many works showed that forecast quality could be significantly improved:

- by using data at offsite locations (i.e., other wind farms)
- based on spatio-temporal modelling (and the likes)

- A Danish example...
- Accounting for spatio-temporal effects allows for the correction of aggregated power forecasts for horizons up to 8 hours ahead
- Largest improvements at horizons of 2-5 hours ahead

Scaling it up

Ultimately, we would like to predict all wind power generation, also solar and load, at the scale of a continental power system, e.g. the European one

RE-Europe dataset, available at zenodo.org, descriptor in Nature, Scientific Data

The big picture...

• The "grand forecasting challenge": predict renewable power generation, dynamic uncertainties and space-time dependencies at once for the whole Europe...!

- Linkage with future electricity markets:
 - Monitoring and forecasting of the complete "Energy Weather" over Europe
 - Provides all necessary information for coupling of various existing markets (e.g., day-ahead, balancing), and deciding upon optimal cross-border exchanges

A proposal for general sparsity control (not online though)

Sparsity-controlled vector autoregressive (SC-VAR) model

Traditional LASSO-VAR can only provide overall sparse solutions, but not allow for fine-tuning different aspects of sparsity, e.g.:

- overall number of nonzero coefficients of VAR (S_A) , i.e. the LASSO-VAR
- ullet number of explanatory wind farms used in VAR to explain target wind farm $i(S_F^i)$
- number of past observations of each explanatory wind farm to explain target wind farm i (S_P^i)
- number of nonzero coefficients to explain target wind farm $i(S_N^i)$.

These aspects can be used to control the sparse structure of the solution as needed, especially when prior knowledge on spatio-temporal characteristics of wind farms are available for sparsity-control and expected to improve the forecasting.

Sparsity-controlled vector autoregressive (SC-VAR) model

How to freely control the sparse structure... [E. Carrizosa, et al. 2017]

- Introducing binary control variables γ^i_i and δ^i_{jk}
 - γ_i^i controls whether wind farm j is used to explain target wind farm i.
 - δ^i_{ik} controls whether the coefficient α^i_{ik} is zero or not.
- Reformulating the VAR estimation as a constrained mixed integer non-linear programming (MINLP) problem.

For example: N = 3 wind farms, VAR(2) with p = 2 lags

$$\begin{bmatrix} \gamma_1^1 & \gamma_2^1 & \gamma_3^1 \\ \gamma_1^2 & \gamma_2^2 & \gamma_3^2 \\ \gamma_1^3 & \gamma_2^3 & \gamma_3^3 \end{bmatrix} = \begin{bmatrix} 1 & \mathbf{0} & \mathbf{1} \\ \mathbf{0} & \mathbf{1} & \mathbf{0} \\ \mathbf{1} & \mathbf{0} & \mathbf{1} \end{bmatrix} \Longleftrightarrow \mathbf{A} = \begin{bmatrix} \alpha_{11}^1 & \mathbf{0} & \alpha_{31}^1 & \alpha_{12}^1 & \mathbf{0} & \alpha_{32}^1 \\ \mathbf{0} & \alpha_{21}^2 & \mathbf{0} & \mathbf{0} & \alpha_{22}^2 & \mathbf{0} \\ \alpha_{11}^3 & \mathbf{0} & \alpha_{31}^3 & \alpha_{12}^3 & \mathbf{0} & \alpha_{32}^3 \end{bmatrix}$$

If additionally with control variable $\delta_{11}^3=0$, then

$$\mathbf{A} = \begin{bmatrix} \alpha_{11}^1 & \mathbf{0} & \alpha_{31}^1 & \alpha_{12}^1 & \mathbf{0} & \alpha_{32}^1 \\ \mathbf{0} & \alpha_{21}^2 & \mathbf{0} & \mathbf{0} & \alpha_{22}^2 & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \alpha_{31}^3 & \alpha_{12}^3 & \mathbf{0} & \alpha_{32}^3 \end{bmatrix}$$

That is:

$$\gamma_j^i = 0 \Leftrightarrow \sum_{k=1}^p \delta_{jk}^i = 0$$
 $\delta_{jk}^i = 0 \Leftrightarrow \alpha_{jk}^i = 0$

Sparsity-controlled vector autoregressive (SC-VAR) model

$$\min_{lpha,\delta,\gamma}$$

$$\sum_{i=1}^{N} \sum_{t=p}^{T} \left(y_{i,t+1} - \sum_{j=1}^{N} \sum_{k=1}^{p} \alpha_{jk}^{i} y_{j,t-k+1} \right)^{2}$$

subject to
$$\delta^i_{jk} \leq \gamma^i_j, \forall k \in \mathbf{K}, i,j \in \mathbf{I}$$

$$\sum_{j=1}^{N} \gamma_{j}^{i} \leq \textcolor{red}{\mathcal{S}_{F}^{i}}, \forall i \in \mathbf{I}$$

$$\sum_{k=1}^p \gamma^i_j \delta^i_{jk} \leq {\color{red} S_P^i}, orall i,j \in {\color{black} I}$$

$$\sum_{i=1}^{N}\sum_{j=1}^{N}\sum_{k=1}^{p}\delta_{jk}^{i}\leq extbf{S}_{\!A}, orall k\in extbf{K}, i,j\in extbf{I}$$

$$\sum_{j=1}^{N} \sum_{k=1}^{p} \delta_{jk}^{i} \leq S_{N}^{i}, \forall i \in \mathbf{I}$$

$$\begin{vmatrix} \alpha^i_{jk} \end{vmatrix} \ge \frac{\eta^i_j}{\delta^i_{jk}}, \forall k \in \mathbf{K}, i, j \in \mathbf{I}$$

$$\alpha^i_{jk} (1 - \delta^i_{jk}) = 0, \forall k \in \mathbf{K}, i, j \in \mathbf{I}$$

$$\delta^i_{jk}, \gamma^i_j \in \{0, 1\}, \forall k \in \mathbf{K}, i, j \in \mathbf{I}$$

- $I = \{1, 2, \dots, N\}$
- $K = \{1, 2, \dots, p\}$
- S_A overall number of nonzero coefficients of VAR
- S_{F}^{i} number of explanatory wind farms used in VAR to explain target wind farm i
- S_{P}^{i} number of past observations of each explanatory wind farm to explain target wind farm i
- S_N^i number of nonzero coefficients to explain target wind farm i
- η'_{i} a threshold requires that only coefficients with absolute value greater than or equal to η_i^i are effective otherwise will be zero

Pros and cons of SC-VAR model

Pros

- allows for fully controlling the sparsity from different aspects.
- can be directly solved by off-the-shelf standard MINLP solvers.

Cons

- SC-VAR allows for sparsity-control but doesn't tell how to control. No
 information is available for setting so many parameters, which are practically
 intractable when dealing with high dimensional wind power forecasting.
- The constraint $\sum_{k=1}^{p} \gamma_{j}^{i} \delta_{jk}^{i} \leq S_{P}^{i}$ is nonlinear.
- \bullet The constraints are redundant: $S_F^i + S_P^i = S_N^i, \; \sum_{i \in \mathbf{I}} S_N^i = S_A$
- The constraint $\sum \sum \sum \delta^i_{jk} \leq S_A$ makes the optimization problem non-decomposable, which slows down the computation.
- Too many variables to be optimized: VAR coefficients α'_{jk} , binary control variables γ^i_j and δ^i_{jk} .

(Note that, though $\left|\alpha_{jk}^i\right| \geq \eta_j^i \delta_{jk}^i$ and $\alpha_{jk}^i (1 - \delta_{jk}^i) = 0$ are also nonlinear, [E. Carrizosa, et al. 2017] provides linearized reformulation for them.)

Correlation-constrained SC-VAR (CCSC-VAR) model

Incorporate explicit spatial correlation information into the constraints!

$$\min_{lpha,\delta}$$

$$\sum_{i=1}^{N} \sum_{t=p}^{T} \left(y_{i,t+1} - \sum_{j=1}^{N} \sum_{k=1}^{p} \alpha_{jk}^{i} y_{j,t-k+1} \right)^{2}$$

subject to
$$\delta^{i}_{jk} \leq \lambda^{i}_{j}, \forall k \in \mathbf{K}, i, j \in \mathbf{I}$$

$$\sum_{k=1}^{p} \delta^{i}_{jk} \geq \lambda^{i}_{j}, orall i, j \in \mathbf{I}$$

$$\sum_{j=1}^{N}\sum_{k=1}^{p}\delta_{jk}^{i}\leq S_{N}^{i}, orall i\in \mathbf{I}$$

$$\left| \alpha_{jk}^{i} \right| \leq M \cdot \delta_{jk}^{i}, \forall k \in \mathbf{K}, i, j \in \mathbf{I}$$

$$\delta_{ik}^{i}, \gamma_{i}^{i} \in \{0, 1\}, \forall k \in \mathbf{K}, i, i \in \mathbf{I}$$

where

$$\lambda_j^i = \left\{egin{array}{l} 1, \phi_j^i \geq au \ 0, \phi_i^i < au \end{array}
ight.$$

$$\left|\alpha_{jk}^{i}\right| \leq M \cdot \delta_{jk}^{i} \Leftrightarrow \left\{ \begin{array}{c} -M \leq \alpha_{jk}^{i} \leq M, \delta_{jk}^{i} = 1 \\ \alpha_{jk}^{i} = 0, \delta_{jk}^{i} = 0 \end{array} \right.$$

Notations:

- ullet ϕ_i^i is the Pearson correlation between wind farms i and j.
- M is a positive constant number (Generally M < 2).
- τ and S_N^i are used to control sparsity.

Improvements: (simpler but better!)

- Less parameters need to be tuned while the sparsity-control ability is preserved.
- More capable of characterizing the true inter-dependencies between wind farms.
- Less variables to be optimized.
- All constraints are linear.
- The model is decomposable.

Application and case study

- 25 wind farms randomly chosen over western Denmark
- 15-minute resolution
- 20.000 data points for each wind farm

Compared Models:

- Local forecasting models
 - Persistence method
 - Auto-Regressive model
- Spatio-temporal models
 - VAR model
 - LASSO-VAR model
 - SC-VAR model
 - CCSC-VAR model

Performance Metrics:

- Root Mean Square Error (RMSE)
- Mean Absolute Error (MAE)
- Sparsity for spatial models

Application and case study

Table: The average RMSE and MAE for all 25 wind farms for different forecasting models

Metrics	Persistence	AR	VAR	LASSO-VAR	SC-VAR	CCSC-VAR
Average RMSE	0.34843	0.34465	0.33156	0.33100	0.33080	0.33058
Average MAE	0.22158	0.22718	0.22631	0.22557	0.22490	0.22408
Model Sparsity	n/a	n/a	0	0.9248	0.8100	0.7504

RMSE improvement over Persistence method

From the Table and boxplot:

- All of the spatio-temporal models significantly outperform the local models.
- LASSO-VAR has highest sparsity but lowest accuracy among sparse models.
- CCSC-VAR model has lowest sparsity
- CCSC-VAR model has lowest average RMSE error for 25 wind farms
- The minimum, maximum and average improvements of CCSC-VAR are highest among these models.

 $\hbox{\Large \o } \hbox{ Online sparse and adaptive learning for VAR models }$

Power output depends on previous outputs at the wind farm itself and other wind farms:

$$\mathbf{y}_n = \sum_{l=1}^L \mathbf{A}_l \mathbf{y}_{n-l} + \boldsymbol{\epsilon}_n$$

Minimize

$$\sum_{t=1}^{T} ||\sum_{l=1}^{L} (\mathbf{A}_{l} \mathbf{y}_{n-l}) - \mathbf{y}_{n}||_{2}^{2}$$

Power output depends on previous outputs at the wind farm itself and other wind farms:

$$\mathbf{y}_n = \sum_{l=1}^L \mathbf{A}_l \mathbf{y}_{n-l} + \boldsymbol{\epsilon}_n$$

Minimize

$$\sum_{t=1}^{T} ||\sum_{l=1}^{L} (\mathbf{A}_{l} \mathbf{y}_{n-l}) - \mathbf{y}_{n}||_{2}^{2}$$

Power output depends on previous outputs at the wind farm itself and other wind farms:

$$\mathbf{y}_n = \sum_{l=1}^L \mathbf{A}_l \mathbf{y}_{n-l} + \boldsymbol{\epsilon}_n$$

Minimize

$$\sum_{t=1}^{T} ||\sum_{l=1}^{L} (\mathbf{A}_{l} \mathbf{y}_{n-l}) - \mathbf{y}_{n}||_{2}^{2} + \lambda \sum_{l=1}^{L} ||\mathbf{A}_{l}||$$

• sparse coefficient matrices A_I

Power output depends on previous outputs at the wind farm itself and other wind farms:

$$\mathbf{y}_n = \sum_{l=1}^L \mathbf{A}_l \mathbf{y}_{n-l} + \boldsymbol{\epsilon}_n$$

Minimize

$$\sum_{t=1}^{T} \nu^{N-n} || \sum_{l=1}^{L} (\mathbf{A}_{l} \mathbf{y}_{n-l}) - \mathbf{y}_{n} ||_{2}^{2} + \lambda \sum_{l=1}^{L} ||\mathbf{A}_{l}||$$

- sparse coefficient matrices A_{l}
- time-adaptive coefficients

VAR Estimation

Cyclic coordinate descent algorithm:

cyclically update coefficients until convergence:

$$A_{I}[i,j] \leftarrow \frac{\operatorname{sign}(K_{N})(|K_{N}|-\lambda)_{+}}{L_{N}}$$

$$K_N = \sum_{n=1}^N \nu^{N-n} y_{n-1}[j] (y_n[i] - \hat{y}_n[i] + A_l[i,j] y_{n-1}[j])$$

$$L_N = \sum_{n=1}^N \nu^{N-n} y_{n-1}[j]^2$$

VAR Estimation

Cyclic coordinate descent algorithm:

cyclically update coefficients until convergence:

$$A_{I}[i,j] \leftarrow \frac{\operatorname{sign}(K_{N})(|K_{N}|-\lambda)_{+}}{L_{N}}$$

$$K_{N} = \sum_{n=1}^{N} \nu^{N-n} y_{n-l}[j] (y_{n}[i] - \hat{y}_{n}[i] + A_{l}[i,j] y_{n-l}[j])$$

$$= \nu K_{N-1} + y_{N-l}[j] (y_{N}[i] - \hat{y}_{N}[i] + A_{l}[i,j] y_{N-l}[j])$$

$$L_{N} = \sum_{n=1}^{N} \nu^{N-n} y_{n-l}[j]^{2}$$

$$= \nu L_{N-1} + y_{N-l}[j]^{2}$$

→ data need not to be stored

VAR Estimation

Cyclic coordinate descent algorithm:

cyclically update coefficients until convergence:

$$A_I[i,j] \leftarrow \frac{\operatorname{sign}(K_N)(|K_N|-\lambda)_+}{L_N}$$

$$K_{N} = \sum_{n=1}^{N} \nu^{N-n} y_{n-l}[j] (y_{n}[i] - \hat{y}_{n}[i] + A_{l}[i,j] y_{n-l}[j])$$

$$= \nu K_{N-1} + y_{N-l}[j] (y_{N}[i] - \hat{y}_{N}[i] + A_{l}[i,j] y_{N-l}[j])$$

$$L_{N} = \sum_{n=1}^{N} \nu^{N-n} y_{n-l}[j]^{2}$$

$$= \nu L_{N-1} + y_{N-l}[j]^{2}$$

- → data need not to be stored
- initialize coordinate descent with previous estimates
- → fast convergence

1st-order VAR time-series with coefficient matrix

and a white multivariate Gaussian noise.

 \rightarrow The interesting aspect is that a_1 , a_2 , a_3 , a_4 are time varying...

Simulation study

Simulation study

Sparsity: 49% (true: 83%)

Denmark data

DTU

- 100 wind farms (out of 349), 15-min resolution
- logistic transformation
- 2011 (35.036 time steps)
- batch VAR estimation: first 20.000 data
- sorted from West to East

Transformed data

- the VAR model with batch learning outperformed AR models with online learning
- online sparse learning for the VAR model yields substantial extra gains

France data

DTU

- 172 wind farms, 10-min resolution
- subset 2013 (52.561 time steps)
- logistic transformation
- batch VAR estimation: first 20.000 time steps
- sorted from West to East

site

• the results obtained on the Danish data are confirmed with the French dataset...

Comparison with CCSC-VAR

- the CCSC-VAR outperforms (slightly) the basic VAR with batch learning
- the online sparse VAR estimator does even better

Distributed learning

Data sharing... or not!

Data sharing... or not!

- To my knowlegde, most players do not want to share their data even though models and forecasts would highly benefit from that!
- one may design distributed learning algorithms that are privacy-preserving
- Example setup, with a central and contracted agents:

 Distributed learning, optimization, etc. is to play a key role in future energy analytics

Our mathematical setup

• Wind power generation measurements $x_{j,t}$ are being collected at sites s_j , $j=1,\ldots,m$ (with t the time index)

- Out of the overall set of wind farms Ω ,
 - a **central agent** is interested in a subset of wind farms Ω_p (dim. m_p)
 - contracted agents relate to another subset of wind farms Ω_a (dim. m_a)

Write y_t the wind power production the central agent is interested in predicting

- 3 possible cases in practice:
 - a wind farm operator contracting neighbouring wind farms $(m_p = 1)$
 - a portfolio manager contracting other wind farms $(m_p > 1)$
 - a system operator interested in the aggregate production of all wind farms $(m_p = m)$

AR models with offsite information

- Since restricting ourselves to the very short term, Auto-Regressive (AR) models with offsite information are sufficient
- Such a model reads as

$$y_t = \beta_0 + \sum_{s_j \in \Omega_p} \sum_{\tau=1}^l \beta_{j,\tau} x_{j,t-\tau} + \sum_{s_j \in \Omega_a} \sum_{\tau=1}^l \beta_{j,\tau} x_{j,t-\tau} + \varepsilon_t$$

where au is a lag variable $(au = 1, \dots, I)$

• In a compact form:

$$y_t = \beta \mathbf{x}_t + \varepsilon_t$$

• As the number of coefficients may be large, we use a Lasso-type estimator, i.e.,

$$\hat{oldsymbol{eta}} = \mathop{\mathsf{argmin}}_{oldsymbol{eta}} rac{1}{2} \| \mathbf{y} - \mathbf{A} oldsymbol{eta} \|_2^2 + \lambda \| oldsymbol{eta} \|_1$$

• After estimating β a forecast is given by

$$\hat{y}_{t+1|t} = \hat{\boldsymbol{\beta}} \mathbf{x}_{t+1}$$

Distributed learning with ADMM

- The Alternating Direction Method of Multipliers (ADMM), is a widely used decomposition approach that allows to split a learning problem among features
- The Lasso estimation problem is first reformulated as

min
$$\frac{1}{2} \|\mathbf{y} - \mathbf{A}\boldsymbol{\beta}\|_2^2 + \lambda \|\mathbf{z}\|_1$$

s.t. $\boldsymbol{\beta} - \mathbf{z} = 0$

• It is then split among agents by setting

$$\boldsymbol{\beta} = [\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \dots, \boldsymbol{\beta}_{m_a + m_p}]$$
$$\boldsymbol{A} = [\boldsymbol{A}_1 \ \boldsymbol{A}_2 \dots \ \boldsymbol{A}_{m_a + m_p}]$$

• The iterative solving approach is then defined such that, at iteration k,

Case studies for application

DTU

Australia

- Data from Australian Electricity Market Operator (AEMO)
- Data is public and shared by Uni. Strathclyde (Jethro Browell) and DTU
- 22 wind farms over a period of 2 years
- 5-minute resolution coarsened to 30 minutes

??

France

- Data from Enedis (formerly EDF Distribution)
- Data is confidential!
- 187 wind farms over a period of 3 years (only 85 used here)
- 10-minute resolution coarsened to 60 minutes

Only out-of-sample evaluation of genuine 1-step ahead forecasting!

Case 1: Wind farm operator

- Using Australian test case for a simple illustration at a single wind farm
- Comparison of persistence benchmark, local model (AR), and distributed learning model (ARX)

Table: Comparative results for distributed learning (ARX model), as well as persistence and AR benchmarks, at an Australian wind farm (wind farm no. 8) for 30-min ahead forecasting.

	Persistence	AR	ARX (dist. learning)
RMSE [% nom. capacity]	3.60	3.57	3.52
Improvement [%]	-	0.8	2.2

- The improvement is modest, but significant
- This is while the central agent (wind farm 8) never had access to data of contracted wind farms
- \bullet Thanks to L_1 -penalization, the number of contracted wind farm is very limited

Case 1: Wind farm operator (2)

DTU

- Extensive analysis based on the French dataset
- Improvement of distributed learning over local model only, in terms of RMSE

- Improvement is nearly always there
- It ranges from modest to substantial
- This obviously depends on the wind farm location

Case 2: Portfolio manager

- Using French test case
- We randomly pick 8 wind farms to build a portfolio
- Comparison of persistence benchmark, local model (AR), and distributed learning model (ARX)

Table: Comparative results for distributed learning (ARX model), as well as persistence and AR benchmarks, for a portfolio of 8 wind farms of the French dataset (randomly chosen) for 1-hour ahead forecasting.

	Persistence	AR	ARX (dist. learning)
RMSE [% nom. capacity]	3.99	3.67	3.38
Improvement [%]	-	8.2	15.3

- The improvement is substantial
- ullet Again, thanks to L_1 -penalization, the number of contracted wind farm is very limited
- Simulation studies may allow to look at how improvement relates to portfolio size, wind farm distribution, etc.

Case 3: System operator

- Using French test case
- The system operator aims to predict the aggregate of all wind farms, though never accessing the wind farm data(!)
- Comparison of persistence benchmark, local model (AR), and distributed learning model (ARX)

Table: Comparative results for distributed learning (ARX model), as well as persistence and AR benchmarks, for the aggregate of all 85 French wind farms for 1-hour ahead forecasting.

	Persistence	AR	ARX (dist. learning)
RMSE [% nom. capacity]	2.88	2.10	2.05
Improvement [%]	-	27.1	28.8

- The improvement is modest, since an AR model obviously does very well for aggregated wind power production
- Though, the practical interest is huge, since data does not need to eb exchanged
- More complex models (e.g., regime-switching) may yield higher improvements

Concluding thoughts

- High-dimensional and distributed learning have a bright future in energy analytics, since
 - high quantity of distributed data is being collected
 - data-driven and expert input to reveal and maintain sparsity
 - most actors do not want to share their data (unless forced to do so)

- Some interesting future developments:
 - online distributed learning (i.e., merger of ideas persented), to lighten computational costs and exchange/communication needs
 - broaden the applicability to a wide class of models, e.g., with regime switching and regression on input weather forecasts
 - design distributed computation and data sharing markets!

