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1 From single wind farms to entire regions (1000s)
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A traditional view on wind power forecasting

The wind power forecasting problem is defined for a single location...

... or, if several locations, by considering each of them individually

(Note that, for simplicity, we will only look at very short-term forecasting in this talk, i.e., from a few mins to

1-hour ahead)
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Wind farms as a network of sensors

Many works showed that forecast quality could be significantly improved:

by using data at offsite locations (i.e., other wind farms)
based on spatio-temporal modelling (and the likes)

improvement of 1-hour ahead forecast RMSE

A Danish example...

Accounting for spatio-temporal effects allows
for the correction of aggregated power
forecasts for horizons up to 8 hours ahead

Largest improvements at horizons of 2-5
hours ahead
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Scaling it up

Ultimately, we would like to predict all wind power generation, also solar and load, at the
scale of a continental power system, e.g. the European one
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Fuel Oil
Hydro
Lignite

Natural Gas
Nuclear
Unknown

RE-Europe dataset, available at zenodo.org, descriptor in Nature, Scientific Data 6 / 46

zenodo.org


The big picture...

The “grand forecasting challenge”: predict renewable power generation, dynamic
uncertainties and space-time dependencies at once for the whole Europe...!

Linkage with future electricity markets:

Monitoring and forecasting of the complete “Energy Weather” over Europe
Provides all necessary information for coupling of various existing markets (e.g.,
day-ahead, balancing), and deciding upon optimal cross-border exchanges
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2 A proposal for general sparsity control (not online though)
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Sparsity-controlled vector autoregressive (SC-VAR) model

Traditional LASSO-VAR can only provide overall sparse solutions, but not allow for
fine-tuning different aspects of sparsity, e.g. :

overall number of nonzero coefficients of VAR (SA), i.e. the LASSO-VAR
number of explanatory wind farms used in VAR to explain target wind farm i (S i

F )
number of past observations of each explanatory wind farm to explain target wind farm i
(S i

P )

number of nonzero coefficients to explain target wind farm i (S i
N ).

k = 1 k = 2

These aspects can be used to control the sparse structure of the solution as needed,
especially when prior knowledge on spatio-temporal characteristics of wind farms are
available for sparsity-control and expected to improve the forecasting.
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Sparsity-controlled vector autoregressive (SC-VAR) model

How to freely control the sparse structure... [E. Carrizosa, et al. 2017]

Introducing binary control variables γ i
j and δi

jk

γ i
j controls whether wind farm j is used to explain target wind farm i .

δi
jk controls whether the coefficient αi

jk is zero or not.

Reformulating the VAR estimation as a constrained mixed integer non-linear
programming (MINLP) problem.

For example: N = 3 wind farms, VAR(2) with p = 2 lagsγ1
1 γ1

2 γ1
3

γ2
1 γ2

2 γ2
3

γ3
1 γ3

2 γ3
3

 =

1 0 1
0 1 0
1 0 1

⇐⇒ A =

α1
11 0 α1

31 α1
12 0 α1

32

0 α2
21 0 0 α2

22 0
α3

11 0 α3
31 α3

12 0 α3
32


If additionally with control variable δ3

11 = 0, then

A =

α1
11 0 α1

31 α1
12 0 α1

32

0 α2
21 0 0 α2

22 0
0 0 α3

31 α3
12 0 α3

32


That is:

γ i
j = 0⇔

p∑
k=1

δi
jk = 0 δi

jk = 0⇔ αi
jk = 0
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Sparsity-controlled vector autoregressive (SC-VAR) model

min
α,δ,γ

N∑
i=1

T∑
t=p

(
yi,t+1 −

N∑
j=1

p∑
k=1

αi
jkyj,t−k+1

)2

subject to δi
jk ≤ γ i

j ,∀k ∈ K, i , j ∈ I

N∑
j=1

γ i
j ≤ S i

F , ∀i ∈ I

p∑
k=1

γ i
j δ

i
jk ≤ S i

P , ∀i , j ∈ I

N∑
i=1

N∑
j=1

p∑
k=1

δi
jk ≤ SA,∀k ∈ K, i , j ∈ I

N∑
j=1

p∑
k=1

δi
jk ≤ S i

N , ∀i ∈ I∣∣∣αi
jk

∣∣∣ ≥ ηi
j δ

i
jk , ∀k ∈ K, i , j ∈ I

αi
jk (1− δi

jk ) = 0, ∀k ∈ K, i , j ∈ I

δi
jk , γ

i
j ∈ {0, 1}, ∀k ∈ K, i , j ∈ I

I = {1, 2, · · · ,N}

K = {1, 2, · · · , p}

SA- overall number of nonzero
coefficients of VAR

S i
F - number of explanatory wind

farms used in VAR to explain target
wind farm i

S i
P - number of past observations of

each explanatory wind farm to
explain target wind farm i

S i
N - number of nonzero coefficients

to explain target wind farm i

ηi
j - a threshold requires that only

coefficients with absolute value
greater than or equal to ηi

j are

effective otherwise will be zero.
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Pros and cons of SC-VAR model

Pros

allows for fully controlling the sparsity from different aspects.

can be directly solved by off-the-shelf standard MINLP solvers.

Cons

SC-VAR allows for sparsity-control but doesn’t tell how to control. No
information is available for setting so many parameters, which are practically
intractable when dealing with high dimensional wind power forecasting.

The constraint
∑p

k=1 γ
i
j δ

i
jk ≤ S i

P is nonlinear.

The constraints are redundant: S i
F + S i

P = S i
N ,
∑

i∈I S
i
N = SA

The constraint
∑∑∑

δi
jk ≤ SA makes the optimization problem

non-decomposable, which slows down the computation.

Too many variables to be optimized: VAR coefficients αi
jk , binary control

variables γ i
j and δi

jk .

(Note that, though
∣∣∣αi

jk

∣∣∣ ≥ ηi
j δ

i
jk and αi

jk (1− δi
jk ) = 0 are also nonlinear, [E. Carrizosa, et al. 2017] provides

linearized reformulation for them.)
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Correlation-constrained SC-VAR (CCSC-VAR) model

Incorporate explicit spatial correlation information into the constraints!

min
α,δ

N∑
i=1

T∑
t=p

(
yi,t+1 −

N∑
j=1

p∑
k=1

αi
jkyj,t−k+1

)2

subject to δi
jk ≤ λi

j , ∀k ∈ K, i , j ∈ I
p∑

k=1

δi
jk ≥ λi

j , ∀i , j ∈ I

N∑
j=1

p∑
k=1

δi
jk ≤ S i

N , ∀i ∈ I∣∣∣αi
jk

∣∣∣ ≤ M · δi
jk , ∀k ∈ K, i , j ∈ I

δi
jk , γ

i
j ∈ {0, 1}, ∀k ∈ K, i , j ∈ I

where
λi

j =

{
1, φi

j ≥ τ

0, φi
j < τ∣∣∣αi

jk

∣∣∣ ≤ M · δi
jk ⇔

{
−M ≤ αi

jk ≤ M, δi
jk = 1

αi
jk = 0, δi

jk = 0

Notations:

φi
j is the Pearson correlation between

wind farms i and j .

M is a positive constant number
(Generally M < 2).

τ and S i
N are used to control sparsity.

Improvements: (simpler but better!)

Less parameters need to be tuned while
the sparsity-control ability is preserved.

More capable of characterizing the true
inter-dependencies between wind farms.

Less variables to be optimized.

All constraints are linear.

The model is decomposable.
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Application and case study

25 wind farms randomly chosen
over western Denmark

15-minute resolution

20.000 data points for each wind
farm

Compared Models:
Local forecasting models

Persistence method

Auto-Regressive model

Spatio-temporal models

VAR model

LASSO-VAR model

SC-VAR model

CCSC-VAR model

Performance Metrics:
Root Mean Square Error (RMSE)

Mean Absolute Error (MAE)

Sparsity for spatial models
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Application and case study

Table: The average RMSE and MAE for all 25 wind farms for different forecasting models

Metrics Persistence AR VAR LASSO-VAR SC-VAR CCSC-VAR

Average RMSE 0.34843 0.34465 0.33156 0.33100 0.33080 0.33058

Average MAE 0.22158 0.22718 0.22631 0.22557 0.22490 0.22408

Model Sparsity n/a n/a 0 0.9248 0.8100 0.7504

RMSE improvement over Persistence method

From the Table and boxplot:

All of the spatio-temporal models significantly
outperform the local models.

LASSO-VAR has highest sparsity but lowest
accuracy among sparse models.

CCSC-VAR model has lowest sparsity

CCSC-VAR model has lowest average RMSE
error for 25 wind farms

The minimum, maximum and average
improvements of CCSC-VAR are highest
among these models.
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3 Online sparse and adaptive learning for VAR models
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(Lasso) vector auto regression

Power output depends on previous outputs at the wind farm itself and other wind farms:

yn =
L∑

l=1

Al yn−l + εn

Minimize
T∑

t=1

νN−n

||
L∑

l=1

(Al yn−l )− yn||22

+ λ

L∑
l=1

||Al ||

sparse coefficient matrices Al

time-adaptive coefficients
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VAR Estimation

Cyclic coordinate descent algorithm:
cyclically update coefficients until convergence:

Al [i , j ]←
sign(KN )(|KN | − λ)+

LN

KN =
N∑

n=1

νN−nyn−l [j ](yn[i ]− ŷn[i ] + Al [i , j ]yn−l [j ])

= νKN−1 + yN−l [j ](yN [i ]− ŷN [i ] + Al [i , j ]yN−l [j ])

LN =
N∑

n=1

νN−nyn−l [j ]
2

= νLN−1 + yN−l [j ]
2

→ data need not to be stored

initialize coordinate descent with previous estimates

→ fast convergence
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Simulation study

1st-order VAR time-series with coefficient matrix

A =



0.9 0 0.1 0 0 0 0 0 0 0
0 a1 0 0 0 0 0 0 0 0
0 0 0.8 0 0 0 0 0 0 0
0 0 a2 0.9 0 0 0 0.2 0 0

0.1 0 0 0 a3 0 0 0 0 0
0 0 0 a4 0 0.9 0 0 0 −0.1
0 0 0 0 0 0 0.8 0 0 0
0 0 0 0 0 0 0 0.7 0 0
0 0 −0.1 0 0 0 0 0 0.9 0
0 0 0 0 0 0 0 0 0 0.9



and a white multivariate Gaussian noise.

→ The interesting aspect is that a1, a2, a3, a4 are time varying...

24 / 46



Simulation study
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Simulation study
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Sparsity: 49% (true: 83%)
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Denmark data

100 wind farms (out of 349), 15-min resolution
logistic transformation
2011 (35.036 time steps)
batch VAR estimation: first 20.000 data
sorted from West to East

Transformed data

transformed power
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Results
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the VAR model with batch learning outperformed AR models with online learning
online sparse learning for the VAR model yields substantial extra gains
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France data

172 wind farms, 10-min resolution

subset 2013 (52.561 time steps)

logistic transformation

batch VAR estimation: first 20.000 time steps

sorted from West to East

Transformed data

transformed power
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Results
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the results obtained on the Danish data are confirmed with the French dataset...
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Comparison with CCSC-VAR
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the CCSC-VAR outperforms (slightly) the basic VAR with batch learning

the online sparse VAR estimator does even better
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4 Distributed learning
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Data sharing... or not!

To my knowlegde, most players do not want to share their data - even though
models and forecasts would highly benefit from that!

one may design distributed learning algorithms that are privacy-preserving

Example setup, with a central and contracted agents:

Distributed learning, optimization, etc. is to play a key role in future energy
analytics
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Our mathematical setup

Wind power generation measurements xj,t are being collected at sites sj ,
j = 1, . . . ,m (with t the time index)

Out of the overall set of wind farms Ω,
a central agent is interested in a subset of
wind farms Ωp (dim. mp)
contracted agents relate to another subset of
wind farms Ωa (dim. ma)

Write yt the wind power production the central
agent is interested in predicting

3 possible cases in practice:

a wind farm operator contracting neighbouring
wind farms (mp = 1)
a portfolio manager contracting other wind
farms (mp > 1)
a system operator interested in the aggregate
production of all wind farms (mp = m)
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AR models with offsite information

Since restricting ourselves to the very short term, Auto-Regressive (AR) models with
offsite information are sufficient

Such a model reads as

yt = β0 +
∑

sj∈Ωp

l∑
τ=1

βj,τxj,t−τ +
∑

sj∈Ωa

l∑
τ=1

βj,τxj,t−τ + εt

where τ is a lag variable (τ = 1, . . . , l)

In a compact form:
yt = βxt + εt

As the number of coefficients may be large, we use a Lasso-type estimator, i.e.,

β̂ = argmin
β

1

2
‖y − Aβ‖2

2 + λ‖β‖1

After estimating β a forecast is given by

ŷt+1|t = β̂xt+1
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Distributed learning with ADMM

The Alternating Direction Method of Multipliers (ADMM), is a widely used
decomposition approach that allows to split a learning problem among features

The Lasso estimation problem is first reformulated as

min
1

2
‖y − Aβ‖2

2 + λ‖z‖1

s.t. β − z = 0

It is then split among agents by setting

β = [β1,β2, . . . ,βma+mp
]

A = [A1 A2 . . . Ama+mp ]

The iterative solving approach is then defined such that, at iteration k,

(agent j) βk
j = argmin

βj

(
‖Ajβj − yk−1

j ‖2
2 +

2λ

ρ
‖βj‖1

)
(central agent) zk =

1

(l + 1)(ma + mp) + ρ

(
y + Aβ

k
ρuk−1

)
uk = ρuk−1 + Aβ

k − zk

(where yk−1
j = Ajβ

k−1
j − Aβ

k−1
+ zk−1 − uk−1, and Aβ

k
=
∑ma+mp

j=1 Ajβj )
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Case studies for application

Australia

Data from Australian Electricity Market
Operator (AEMO)

Data is public and shared by Uni. Strathclyde
(Jethro Browell) and DTU

22 wind farms over a period of 2 years

5-minute resolution coarsened to 30 minutes

France

Data from Enedis (formerly EDF Distribution)

Data is confidential!

187 wind farms over a period of 3 years (only 85 used here)

10-minute resolution coarsened to 60 minutes

Only out-of-sample evaluation of genuine 1-step ahead forecasting!
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Case 1: Wind farm operator

Using Australian test case for a simple illustration at a single wind farm

Comparison of persistence benchmark, local model (AR), and distributed learning
model (ARX)

Table: Comparative results for distributed learning (ARX model), as well as persistence and AR
benchmarks, at an Australian wind farm (wind farm no. 8) for 30-min ahead forecasting.

Persistence AR ARX (dist. learning)
RMSE [% nom. capacity] 3.60 3.57 3.52

Improvement [%] - 0.8 2.2

The improvement is modest, but significant

This is while the central agent (wind farm 8) never had access to data of contracted
wind farms

Thanks to L1-penalization, the number of contracted wind farm is very limited
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Case 1: Wind farm operator (2)

Extensive analysis based on the French dataset

Improvement of distributed learning over local model only, in terms of RMSE
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there

It ranges from modest to
substantial

This obviously depends on the
wind farm location
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Case 2: Portfolio manager

Using French test case

We randomly pick 8 wind farms to build a portfolio

Comparison of persistence benchmark, local model (AR), and distributed learning
model (ARX)

Table: Comparative results for distributed learning (ARX model), as well as persistence and AR
benchmarks, for a portfolio of 8 wind farms of the French dataset (randomly chosen) for 1-hour
ahead forecasting.

Persistence AR ARX (dist. learning)
RMSE [% nom. capacity] 3.99 3.67 3.38

Improvement [%] - 8.2 15.3

The improvement is substantial

Again, thanks to L1-penalization, the number of contracted wind farm is very limited

Simulation studies may allow to look at how improvement relates to portfolio size,
wind farm distribution, etc.
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Case 3: System operator

Using French test case

The system operator aims to predict the aggregate of all wind farms, though never
accessing the wind farm data(!)

Comparison of persistence benchmark, local model (AR), and distributed learning
model (ARX)

Table: Comparative results for distributed learning (ARX model), as well as persistence and AR
benchmarks, for the aggregate of all 85 French wind farms for 1-hour ahead forecasting.

Persistence AR ARX (dist. learning)
RMSE [% nom. capacity] 2.88 2.10 2.05

Improvement [%] - 27.1 28.8

The improvement is modest, since an AR model obviously does very well for
aggregated wind power production

Though, the practical interest is huge, since data does not need to eb exchanged

More complex models (e.g., regime-switching) may yield higher improvements
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Concluding thoughts

High-dimensional and distributed learning have a bright future in energy
analytics, since

high quantity of distributed data is being collected

data-driven and expert input to reveal and maintain sparsity

most actors do not want to share their data (unless forced to do so)

Some interesting future developments:

online distributed learning (i.e., merger of ideas persented), to lighten computational
costs and exchange/communication needs

broaden the applicability to a wide class of models, e.g., with regime switching and
regression on input weather forecasts

design distributed computation and data sharing markets!
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Thanks for your attention!
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