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© From single wind farms to entire regions (1000s)
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A traditional view on wind power forecasting

i

The wind power forecasting problem is defined for a single location...

power [% of Pn]
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. or, if several locations, by considering each of them individually

(Note that, for simplicity, we will only look at very short-term forecasting in this talk, i.e., from a few mins to
1-hour ahead)
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Wind farms as a network of sensors

m

Many works showed that forecast quality could be significantly improved:

@ by using data at offsite locations (i.e., other wind farms)
@ based on spatio-temporal modelling (and the likes)

@ A Danish example...

@ Accounting for spatio-temporal effects allows
for the correction of aggregated power
forecasts for horizons up to 8 hours ahead

o Largest improvements at horizons of 2-5
hours ahead

improvement of 1-hour ahead forecast RMSE
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Scaling it up

o

Ultimately, we would like to predict all wind power generation, also solar and load, at the

scale of a continental power system, e.g. the European one
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RE-Europe dataset, available at zenodo.org, descriptor in Nature, Scientific Data
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The big picture...

m

@ The “grand forecasting challenge™: predict renewable power generation, dynamic
uncertainties and space-time dependencies at once for the whole Europe...!
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o Linkage with future electricity markets:

o Monitoring and forecasting of the complete “Energy Weather” over Europe
e Provides all necessary information for coupling of various existing markets (e.g.,
day-ahead, balancing), and deciding upon optimal cross-border exchanges



@ A proposal for general sparsity control (not online though)
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Sparsity-controlled vector autoregressive (SC-VAR) model

i

Traditional LASSO-VAR can only provide overall sparse solutions, but not allow for
fine-tuning different aspects of sparsity, e.g. :

@ overall number of nonzero coefficients of VAR (S,a), i.e. the LASSO-VAR .

@ number of explanatory wind farms used in VAR to explain target wind farm i (Sp)

@ number of past observations of each explanatory wind farm to explain target wind farm i
(Sp) ,

@ number of nonzero coefficients to explain target wind farm i (Sy).
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These aspects can be used to control the sparse structure of the solution as needed,
especially when prior knowledge on spatio-temporal characteristics of wind farms are
available for sparsity-control and expected to improve the forecasting.
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Sparsity-controlled vector autoregressive (SC-VAR) model
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How to freely control the sparse structure... [E. Carrizosa, et al. 2017]

@ Introducing binary control variables fyjf and éjk

° 'yj’.' controls whether wind farm j is used to explain target wind farm i.

° 61’.',( controls whether the coefficient aJ’:k is zero or not.

o Reformulating the VAR estimation as a constrained mixed integer non-linear

programming (MINLP) problem.

For example: N = 3 wind farms, VAR(2) with p = 2 lags
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Sparsity-controlled vector autoregressive (SC-VAR) model
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@,0,Y

subject to

N T N p
i

E E <yi,t+1*§ E QjkYj,t—k+1

i=1 t=p j=1 k=1

Sk <A, VkeEK,ijel

N
> A< SEviel

Jj=1

P

k=1

N N P
SN G < SaVkeK,ijel

i=1 j=1 k=1

N p
DD < Sy Viel

j=1 k=1

a}k‘ > 00, Yk € K i j €I
aj(l—d5) =0,Vk e K,i,j€l

Syl €{0,1},Vk €K, i,j €l

|:{17277N}
K:{17277p}

Sa- overall number of nonzero
coefficients of VAR

S;':- number of explanatory wind
farms used in VAR to explain target
wind farm i

SL,— number of past observations of
each explanatory wind farm to
explain target wind farm i

S,"V— number of nonzero coefficients
to explain target wind farm i

77}‘ a threshold requires that only
coefficients with absolute value
greater than or equal to nj’: are
effective otherwise will be zero.
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Pros and cons of SC-VAR model
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Pros
°

Cons

allows for fully controlling the sparsity from different aspects.

can be directly solved by off-the-shelf standard MINLP solvers.

SC-VAR allows for sparsity-control but doesn't tell how to control. No
information is available for setting so many parameters, which are practically
intractable when dealing with high dimensional wind power forecasting.

The constraint > %_, 'yjf'éj’-'k < Sk is nonlinear.
The constraints are redundant: Sf 4+ Sp = Sy, .o, Sy = Sa

The constraint > 3" 3" &), < Sa makes the optimization problem
non-decomposable, which slows down the computation.

Too many variables to be optimized: VAR coefficients on’:k, binary control
variables ; and &j.

(Note that, though ’aj’:k‘ > njé}k and oc}k(l - 5_;k) = 0 are also nonlinear, [E. Carrizosa, et al. 2017] provides

linearized reformulation for them.)
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Correlation-constrained SC-VAR (CCSC-VAR) model

i

Incorporate explicit spatial correlation information into the constraints!

N T N p 2
. i
mlgl g E (yi,t+1 - E E ajk}/j,t—k+1)
(e
1

i=1 t=p j=1 k=1
subject to J’:k < A},Vk cK,i,jel Notations:
p o ¢>J’: is the Pearson correlation between
Z(Sj'-k > AL Vi j el wind farms i and j.
k=1

@ M is a positive constant number
) ) (Generally M < 2).
S < Sh,Viel

@ 7 and S,iV are used to control sparsity.

M=
I

1

-
|

i Improvements: (simpler but better!)

| < M-8, Vk €K, ijel _
@ Less parameters need to be tuned while
5}{‘(’%{' c {0, 1},Vk eK,i,jel the sparsity-control ability is preserved.
) @ More capable of characterizing the true
where ; 1, (j)j >T inter-dependencies between wind farms.
A= T
’ 0,¢; <T @ Less variables to be optimized.
; ; -M< %i'k <M, 5}’:,{ =1 @ All constraints are linear.
Qi <M- 5jl< < ; ; .
oy = 0, 5jk =0 @ The model is decomposable.
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Application and case study

i

Compared Models:
o Local forecasting models

o Persistence method

o Auto-Regressive model

e Spatio-temporal models
o VAR model
o LASSO-VAR model
o SC-VAR model
o CCSC-VAR model

Performance Metrics:

@ 25 wind farms randomly chosen @ Root Mean Square Error (RMSE)
over western Denmark e Mean Absolute Error (MAE)
@ 15-minute resolution @ Sparsity for spatial models

@ 20.000 data points for each wind
farm
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Application and case study

Table: The average RMSE and MAE for all 25 wind farms for different forecasting models

Metrics Persistence AR VAR LASSO-VAR SC-VAR  CCSC-VAR

Average RMSE || 0.34843  0.34465 033156  0.33100 033080  0.33058
Average MAE 0.22158 0.22718 0.22631 0.22557 0.22490 0.22408
n/a n/a 0 0.9248 0.8100 0.7504

Model Sparsity

T ] ) ' ' From the Table and boxplot:

@ All of the spatio-temporal models significantly
outperform the local models.

Zer 1
[}
g [] ’ [] @ LASSO-VAR has highest sparsity but lowest
2 accuracy among sparse models.
£
Wal g @ CCSC-VAR model has lowest sparsity
= 1
= L b @ CCSC-VAR model has lowest average RMSE
[ error for 25 wind farms
U VARBRTAE S0 VAN ARBICCEC AR @ The minimum, maximum and average

improvements of CCSC-VAR are highest

Forecasting models
among these models.

RMSE improvement over Persistence method
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@ Online sparse and adaptive learning for VAR models
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(Lasso) vector auto regression

i

Power output depends on previous outputs at the wind farm itself and other wind farms:

L
Yn = ZA/ynfl + €n

=1
Minimize
T

L
> 1> (Aiyni) = yall3
=1

t=1
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(Lasso) vector auto regression

i

Power output depends on previous outputs at the wind farm itself and other wind farms:

L
Yn = ZA/ynfl + €n

=1
Minimize
T

L
> 1> (Aiyni) = yall3
=1

t=1
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(Lasso) vector auto regression

i

Power output depends on previous outputs at the wind farm itself and other wind farms:

L
Yn = ZA/ynfl + €n

=1
Minimize
T

L L
> 1> (Aiyni) = yall3 + 2D (A
ey =1

t=1

@ sparse coefficient matrices A,
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(Lasso) vector auto regression

i

Power output depends on previous outputs at the wind farm itself and other wind farms:

L
Yn = ZAlyn—l + €n

I=1

Minimize
T

L L
DoY) = yall2 A TA]
I=1 I=1

t=1

0.8

@ sparse coefficient matrices A,

weight
0.4

@ time-adaptive coefficients

0.0
1

past data ——>



VAR Estimation
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Cyclic coordinate descent algorithm:
cyclically update coefficients until convergence:

Kn

Ly

sign(Kn)([Kn| = A)+

Alli,j] + Ln
DT Yot ali] = 9l + A, flya—i1)

Z VN_n}/nfl[I-]2

n=1
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VAR Estimation

i

Cyclic coordinate descent algorithm:
cyclically update coefficients until convergence:

sign(Kn)([Kn| = A)+

Alli ] + Ly

Kn = zN;uN*”yn,/m(yn[f]—yn[i1+A/[fﬁflwfoD
— K v DOl — 980+ Al D)
Ly = XN:VN_"ynf/[if
_ ;_Llelerwf/Li]z

— data need not to be stored
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VAR Estimation

i

Cyclic coordinate descent algorithm:
cyclically update coefficients until convergence:

sign(Kn) (1Kl — \)-
Ly

Alli ] +

Kv = > V" "yasililalil = 9ulil + Aili, jlyn—i])

= u;(/\/,:l + nylI-j](}/N[i] - )A/N[l'] + AI[’-J]}’N#U])
Ly = Z VN_n}/nfl[I-]2

= vln-1+yna i)

— data need not to be stored
@ initialize coordinate descent with previous estimates

— fast convergence
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Simulation study

m

1st-order VAR time-series with coefficient matrix

.9 o0 0.1 0 0 0 0 0 0 0 7
0 a 0 0 0 0 0 0 0 0
0 0 0.8 0 0 0 0 0 0 0
0 0 e 09 0 0 0 02 O 0
A— 01 O 0 0 a3 O 0 0 0 0
~ 10 0 0 aa 0 09 O 0 0 -01
0 0 0 0 0 0 08 0 0 0
0 0 0 0 0 0 0 07 O 0
0 0 -01 O 0 0 0 0 09 0
LO 0 0 0 0 0 0 0 0 0.9 |

and a white multivariate Gaussian noise.

— The interesting aspect is that a1, az, a3, as are time varying...



Simulation study
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Simulation study
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Denmark data

100 wind farms (out of 349), 15-min resolution
logistic transformation

2011 (35.036 time steps)

batch VAR estimation: first 20.000 data
sorted from West to East

Transformed data

o
S _
S — -
®
3 o
c o
s S
S
=3
5]
i
o
o
IS]
=
o

-4 -2 0 2 4

transformed power
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Results

Lag-1 coefficient matrix
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Results

%2 0'15 %2

RMSE Improvement over Persistence
%05
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o the VAR model with batch learning outperformed AR models with online learning
@ online sparse learning for the VAR model yields substantial extra gains

29
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France data

172 wind farms, 10-min resolution

subset 2013 (52.561 time steps)

logistic transformation

batch VAR estimation: first 20.000 time steps
sorted from West to East

Frequency
4000 6000
1 1

2000
L

0
L
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Transformed data

transformed power
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Results

Lag-1 coefficient matrix
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Results

10 min ahead 20 min ahead

30 min ahead

40 min ahead

s

RMSE Improvement over Persistence
9,
|
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@ the results obtained on the Danish data are confirmed with the French dataset...

.
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Comparison with CCSC-VAR

e

RMSE Improvement over Persistence

%,

& & & &

& & ~ s
£ = O <
$ s &
§ $ ° &

Model

o the CCSC-VAR outperforms (slightly) the basic VAR with batch learning
@ the online sparse VAR estimator does even better
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Q Distributed learning
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Data sharing... or not!
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Data sharing... or not!

m

@ To my knowlegde, most players do not want to share their data - even though
models and forecasts would highly benefit from that!

@ one may design distributed learning algorithms that are privacy-preserving

@ Example setup, with a central and contracted agents:

[ Central agent - {y} ]

Contracted Contracted
Agent 1-{x } Agent 2 —{X,}

Contracted
Agent m_—{x_.}

@ Distributed learning, optimization, etc. is to play a key role in future energy
analytics
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Our mathematical setup

i

@ Wind power generation measurements x; ; are being collected at sites s;,
Jj=1,...,m (with t the time index)

@ Out of the overall set of wind farms Q, Wind farm operator

e a central agent is interested in a subset of
wind farms Q, (dim. mp)

e contracted agents relate to another subset of
wind farms Q, (dim. m,)

Write y; the wind power production the central

agent is interested in predicting Portfolio manager

@ 3 possible cases in practice:

e a wind farm operator contracting neighbouring
wind farms (mp = 1)

e a portfolio manager contracting other wind
farms (mp > 1)

e a system operator interested in the aggregate System operator
production of all wind farms (mp = m)
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AR models with offsite information

i

@ Since restricting ourselves to the very short term, Auto-Regressive (AR) models with
offsite information are sufficient

Such a model reads as

) I
Yt = /BO + Z Z/Bj,ij,t—r + Z Z/Bj,ij,t—r + &

SjEQp =1 SjeQa =1

where T is a lag variable (1 =1,...,/)

@ In a compact form:
Ye = Bx: +¢€¢

As the number of coefficients may be large, we use a Lasso-type estimator, i.e.,

- .1
B = argmin 7 lly — Az + |l

After estimating (3 a forecast is given by

Yi+1)t = BXe1
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Distributed learning with ADMM

o The Alternating Direction Method of Multipliers (ADMM), is a widely used
decomposition approach that allows to split a learning problem among features

@ The Lasso estimation problem is first reformulated as
. 1
min Sy~ ABJE + Azl
st. B—z=0

@ It is then split among agents by setting

:3 = [ﬁ17ﬁ27 e aﬁma+mp]
A=[AiA; ... Apim)]

@ The iterative solving approach is then defined such that, at iteration k,
(gent 1) 0= angmin (188, ~ v/ + 2211 )
j

1
k =
(I +1)(ma+mp) +p
u :puk_1 +Ag -7

N|

(central agent)

(y +ﬁkpuk_1)

(where y/~! = A;B/" — A T 4wkt and ABN = Zmﬁm”Aﬁ)
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Case studies for application =

Australia

34

o Data from Australian Electricity Market
Operator (AEMO)

o Data is public and shared by Uni. Strathclyde
(Jethro Browell) and DTU

Latitude
-36

-38

40

@ 22 wind farms over a period of 2 years 135 140 145 150
Longitude

@ 5-minute resolution coarsened to 30 minutes

‘_/4 \ France

ﬁ
o / o Data from Enedis (formerly EDF Distribution)
o Data is confidential!
o , .
@ 187 wind farms over a period of 3 years (only 85 used here)
S, O @ 10-minute resolution coarsened to 60 minutes

Only out-of-sample evaluation of genuine 1-step ahead forecasting!
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Case 1: Wind farm operator

m

@ Using Australian test case for a simple illustration at a single wind farm

o Comparison of persistence benchmark, local model (AR), and distributed learning
model (ARX)

Table: Comparative results for distributed learning (ARX model), as well as persistence and AR
benchmarks, at an Australian wind farm (wind farm no. 8) for 30-min ahead forecasting.

Persistence | AR | ARX (dist. learning)
RMSE [% nom. capacity] 3.60 3.57 3.52
Improvement [%] - 0.8 2.2

@ The improvement is modest, but significant

@ This is while the central agent (wind farm 8) never had access to data of contracted
wind farms

@ Thanks to L;-penalization, the number of contracted wind farm is very limited



Case 1: Wind farm operator (2)

RMSE improvement [%)]

10

-2

Extensive analysis based on the French dataset

Improvement of distributed learning over local model
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only, in terms of RMSE

Improvement is nearly always
there

It ranges from modest to
substantial

This obviously depends on the
wind farm location
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Case 2: Portfolio manager

m

@ Using French test case
@ We randomly pick 8 wind farms to build a portfolio

@ Comparison of persistence benchmark, local model (AR), and distributed learning
model (ARX)

Table: Comparative results for distributed learning (ARX model), as well as persistence and AR
benchmarks, for a portfolio of 8 wind farms of the French dataset (randomly chosen) for 1-hour
ahead forecasting.

Persistence | AR | ARX (dist. learning)
RMSE [% nom. capacity] 3.99 3.67 3.38
Improvement [%)] - 8.2 15.3

@ The improvement is substantial
@ Again, thanks to Li-penalization, the number of contracted wind farm is very limited

@ Simulation studies may allow to look at how improvement relates to portfolio size,
wind farm distribution, etc.
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Case 3: System operator

o Using French test case

@ The system operator aims to predict the aggregate of all wind farms, though never
accessing the wind farm data(!)

@ Comparison of persistence benchmark, local model (AR), and distributed learning
model (ARX)

Table: Comparative results for distributed learning (ARX model), as well as persistence and AR
benchmarks, for the aggregate of all 85 French wind farms for 1-hour ahead forecasting.

Persistence | AR | ARX (dist. learning)
RMSE [% nom. capacity] 2.88 2.10 2.05
Improvement [%)] - 27.1 28.8

@ The improvement is modest, since an AR model obviously does very well for
aggregated wind power production

@ Though, the practical interest is huge, since data does not need to eb exchanged

@ More complex models (e.g., regime-switching) may yield higher improvements
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Concluding thoughts

m

o High-dimensional and distributed learning have a bright future in energy
analytics, since

e high quantity of distributed data is being collected
e data-driven and expert input to reveal and maintain sparsity

e most actors do not want to share their data (unless forced to do so)

@ Some interesting future developments:

online distributed learning (i.e., merger of ideas persented), to lighten computational
costs and exchange/communication needs

broaden the applicability to a wide class of models, e.g., with regime switching and
regression on input weather forecasts

o design distributed computation and data sharing markets!



Thanks for your attention!
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