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Strategic bidding in electricity markets:

Background
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Wholesale electricity market

Real-time market
Day-ahead 
market
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Futures trading and bilateral 
contracting Intra-day market

Auction markets

See Stoft (2002) for further details. 



Supply function offers

Producers use supply functions to inform market operator of 
their marginal costs. 

Price

Quantity Quantity

Price

Typically offers are stepped or piece-wise linear



Producers can bid strategically

Producers have incentives to overstate their costs in order to 
increase their profit. 

Price

Supply

Marginal cost

Offer

How large are the mark-ups and how do they depend on 
competition, contracts, market design, network congestion etc.



Strategic bidding in electricity markets:

Uniform-price auctions and the Supply 
Function Equilibrium (SFE)
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Demand

Uniform-price: All 
accepted bids are paid the 
price of the marginal 
offer. 

p

Uniform pricing

Total supply from 
all producers

Most wholesale electricity markets use uniform-pricing.



The supply function equilibrium (SFE)

Behavioural assumption: Each producer chooses its supply curve 
to maximize its expected profit. 

Game-theoretic model. Nash equilibrium: every producer 
maximizes its expected profit given competitors’ supply curves and 
properties of the uncertain demand. Equilibrium is called Supply 
Function Equilibrium (SFE). 

Introduced by Klemperer & Meyer (1989). First application to 
electricity market by Green & Newbery (1992). 



Standard simplifying assumptions 
for SFE
• Production costs are well-known ( common knowledge)

• Few producers in the market => Market power

• Many consumers/retailers in the market => ≈Price takers

• Demand has additive demand shock ε.
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Residual demand
The residual demand curve is the individual firm's demand curve, i.e. its part of 
market demand that is not supplied by other firms in the market. 



Residual demand of producer i:

௜ ௝

௝ஷ௜

௜ ௜ ௜ ௜

Optimal profit:

௜
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ொ௨௔௡௧௜௧௬ ௘௙௙௘௖௧

At the clearing price, we have ௜ = ௜ First-order condition:
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௝ஷ௜

Optimal output



Marginal cost of producer i

Residual demand for 
large demand shock

Residual demand for small demand shock

Optimal supply function

Output is ex-post optimal (a producer would not change its mind after
the shock is observed). 

Optimal supply function
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Quantity



Supply function equilibrium

SFE is determined from system of first-order conditions
(one for each firm).

௜ ௜ ௜ ௝

௝ஷ௜

If demand is downward sloping and marginal costs are up upward-
sloping, then a set of upward sloping solutions to the system of first-
order condition is an SFE; expected profits are globally maximized for 
each firm (Holmberg and Willems, 2015).



Narrow demand range => Multiple SFE
Narrow support of demand shocks => Multiple SFE (Klemperer and Meyer, 
1989; Green and Newbery, 1992; Genc and Reynolds, 2011)
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Narrow demand
variation

Producers have freedom
when choosing shape of
offers that are not price-
setting. 

Residual demand for small demand shock
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End-point condition

Wide demand range => Unique SFE

Anderson (2013) proves uniqueness and existence for 
asymmetric duopoly market with elastic demand.  

Holmberg (2008) proves uniqueness of SFE for symmetric market with inelastic 
demand when the support of demand shocks is sufficiently wide.

Profitable to undercut flat offer sections.
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Further developed by Ruddell (2017)

Example from UK for 1999 (Anderson & Hu; 2008; Holmberg, 2009):



Strategic bidding in practice

Market data => Producers in Australia (Wolak, 2003) and large producers 
in Texas (Hortacsu and Puller, 2008; Sioshansi and Oren, 2007) bid 
roughly as predicted by theory. Example from Europe below:

Price mark-up vs availability
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Advantages with uniform-pricing
• Equilibrium bids are fairly robust to uncertainties; they are not 

sensitive to shocks in the auctioneer’s demand/supply

• Easy for small firms; it is optimal for them to simply bid their 
marginal cost.  

• Gives a well-defined spot price that can be used to settle financial 
contracts and payments of non-competitive bidders. 



Cournot NE 

In a Cournot model, offers are restricted to be independent of the price, 
i.e. ௜ =0. Thus the first-order condition simplifies as follows:

௜ ௜ ௜ .

Demand is normally assumed to be certain in Cournot models. The 
equilibrium output of each firm can be determined from a system of
first-order conditions (one condition per firm). 



Strategic bidding in electricity markets:

Contracts



Optimal supply function with contracts
In electricity markets, producers typically hedge 80-90% of their planned output. 

Let Fi be the volume of producer i, for which the price has been fixed at .

Profit of producer i:

௜ ௜ ௜ ௜ ௜ ௜

Differentiation with respect to p =>

௜
௜ ௜

௉௥௜௖௘ ௘௙௙௘௖௧

௜ ௜
௜

ொ௨௔௡௧௜௧௬ ௘௙௙௘௖௧

௜ ௜ => First-order condition:

௜ ௜ ௜ ௜ ௝

௝ஷ௜

See further details in Newbery (1998).
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Example with contracts

Forward sales make markets more competitive (Newbery, 1998). 



Strategic contracting

Contracting is useful to edge the profit, which is useful for risk-averse producers. 
Are there are also strategic reasons for selling forward contracts? 

Hedging a large volume => a producer becomes less interested in increasing the 
price => a credible/rational commitment to increased output in the spot market. 
This could influence bidding of competitors if contracting is observed by 
competitors. 

Allaz and Vila (1992) show that producers have strategic reasons to sell forward 
contracts in a Cournot model. A commitment to increased output => Reduced
output of competitors in a Cournot model. => The introduction of forward tranding
improves market performance.

Holmberg and Willems (2013) show that strategic contracting would worsen
competition if producers can trade options contracts. The reason is that producers
would find it profitable to commit to downward sloping supply functions.=> The 
introduction of options trading worsen marker performance.     
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Why do firms commit to a negative slope?

Firm sells same amount at higher price



How do firms commit to a downward sloping supply?

Make contract position a 
function of the price

– Large for low prices 
(aggressive commitment)

– Small for high price (soft 
commitment)

P

Quantity

Supply

Contract 
curve



How do firms commit to a downward sloping 
contracting curve?

Sell X0 forward contracts
Buy δX1 call options with 

strike price P1
Buy δX2 call options with 

strike price P2
δ x2

P

X0

P1
δ x1

Amount goods that firm 
commits to deliver 

P2

P3

P4

δ x3

δ x4

X(p)

How do firms commit to a downward sloping 
contracting curve?



Strategic bidding in electricity markets:

The market distribution function



Complicated/crossing residual demand curves 
Non-crossing residual demand curves are straightforward as a producer can
independently optimize its supply/price for each demand shock ε.Crossing
residual demand curves are more complicated. Equilibria will be ex-ante optimal.

Crossing residual demand curves

Price

Quantity



The market distribution function

We let y(q,p) be the market distribution function (Anderson and Philpott, 2002; 
Wilson, 1979). It is the probability that an offer (q,p) is rejected, i.e. the residual 
demand curve passes below (q,p). 

Y = 1 (Max residual demand)

Y = 0 
(Min residual 
demand)

p

q quantity

price

)p,q(



Market distribution function for crossing residual demand 
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Quantity

Iso-probability curves with constant

Anderson and Philpott (2002) show that:

௜ ௜

ௌ

 The expected profit does not depend on how ψi(p,q) 
was generated => Choose non-crossing residual demand.
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Iso-probability curves with constant can be represented by non-
crossing residual demand curves

Equivalent non-crossing residual demand

௜

FOC in uniform-price auction:

௜ ௜ ௜



Strategic bidding in electricity markets:

Discriminatory (pay-as-bid) pricing



S

Demandp

Payment to producers

Total supply

Optimal to bid 
close to 
expected 
marginal bid 
(stop-out 
price). 

Slope around expected stop-out price depends on uncertainties. 

Discrimatory pricing is often used by treasuries. Used in the real-time market of UK, 
for counter-trading in zonal markets, and in some auctions of operating reserves.  

The pay-as-bid auction



Each producer sets many prices

S

p Bid curve p(q)

q

dq

With discriminatory pricing, each production plant has its own price. Plants 
are infinitesimally small in a continuous model. In a continuous model, 
each incremental output, dq, has its own price, p(q). 

The bid function p(q) is the inverse of the supply function Si(p).



Solving for SFE for discriminatory pricing

The total expected profit is maximized by maximizing the expected profit 
density πi for each q. 

௜ ௜

The optimal p(q) can be determined from (Anderson et al., 2013):

డగ೔

డ௣ ௜
డట

డ௣ 
Symmetric pure-strategy NE with N firms, inelastic demand and additive
demand shocks with probability distribution G():

ᇱ

ூ௡௩௘௥௦௘ ௛௔௭௔௥ௗ ௥௔௧௘

௜

ODE solution is well-behaved for decreasing hazard
rates, such as Pareto distribution of the second kind. 
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Comparing pay-as-bid (PABA) and uniform-price 
auctions (UPA)



Strategic bidding in electricity markets:

Mixed-strategy NE in discriminatory 
auctions



Mixed-strategy NE in pay-as-bid auctions

A difference with discriminatory pricing is SFE are ex-ante optimal => The 
equilibrium depends on the probability distribution of demand shocks. Often
pure-strategy SFE, where producers use deterministic strategies do not 
exist, especially if demand shocks follow a probability distribution with an 
increasing hazard rate. Often producers will instead use randomized
strategies, mixed strategy NE. 

In practice, this would typically mean that small variations in a producer’s
cost, which are only observed by the producer, would have a large impact
on its offer curve. This corresponds to Harsanyi’s purification theorem
(Harsanyi, 1975).  
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Offer distribution function

p

q quantity

price

)p,q(

G(q,p)=0

G(q,p)=1

In the general case a mixed (randomized) offer strategy can be represented by 
an offer distribution function, G(q,p). It is the probability that the quantity q is 
offered at the price p (or lower).  

Most competitive offer in the mixture 

Least competitive offer in the mixture 

Anderson et al. (2013)



The market distribution function for mixed strategy NE

Assume demand has additive demand shock ε and competitor uses
mixed-strategy =>two sources of uncertainty in residual demand of 
producer.  For every price p, the residual demand is given by 
difference between D(p)+ ε and competitor’s random supply Sj(p). 

Probability distribution for difference of two independent random 
variables is cross-correlation/convolution of their individual 
distributions=> probability that an offer (qi,p) is rejected is:

       y dpqpDGfpq ijii 




 ,,

௜  

In a discriminatory auction, a Fourier transform (or similar) can be 
used to numerically solve for G(q,p) from the first-order condition:
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Mixed-strategy NE for certain demand
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Mixed-strategy NE over partly horizontal 
supply functions (binding slope constraints)

Supply functions are often restricted to be non-decreasing => There are also
mixed strategy NE over partly horizontal supply functions (with binding
slope-constraints) (Anderson et al., 2013)

Bertrand-Edgeworth NE Hockey-Stick mixture:



Advantages with pay-as-bid pricing
Advantage: 
• If market capacity is non-restrictive, flat bids improve competition.
• All accepted bids are price-setting => less flexibility for surely accepted bids 

- reduces risk of having multiple equilibria (avoids really bad equilibria)

Price

Quantity

Narrow demand
variation

Producers have freedom
when choosing shape of
offers that are not price-
setting. 

Residual demand for small demand shock



• Tight market capacity: flat bids lead to unpredictable price variations 
(price instability) (Anderson et al., 2013) => uneven and inefficient 
allocations. 

• Multiple prices is not good when calculating a spot-price and for 
hedging.

Disadvantages with pay-as-bid pricing



Strategic bidding in electricity markets:

Nodal pricing in constrained 
transmission networks 



Nodal pricing in a radial transmission network

Each node m has its local (nodal) market price and each line/arc k
between nodes has a capacity constraint ௞ ௞ ௞.  



Node-arc incidence matrix

A node-arc incidence matrix A can be used to describe a network with
rows <-> nodes and columns <-> lines.
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4

A

1

2

3

We let t be a column vector of flows in the lines, so At is net flow into each node. 



Economic dispatch problem

Producers submit supply functions to the electricity market. They are
statements of costs, which may not be entirely truthful. Let Cm(qm) be 
the total stated production cost for producing qm units of electricity at 
node m. ε is a vector with nodal demand. The market operator chooses
nodal outputs in order to minimize total production costs in the network
=> An economic dispatch problem (Chao and Peck, 1996; Bohn et al., 
1984).  

s.t. 
𝒒

௠ ௠
ெ
௠ୀଵ



Karush Kuhn Tucker conditions

Economic dispatch problem gives necessary and sufficient KKT conditions:

𝐓

where is vector of Lagrange multipliers for flows in positive direction and 
is vector of Lagrange multipliers for flows in negative direction. 



Problem: 
1) Demand shock in each node => multiple shocks
2) Slope of residual demand depends on what lines are congested.

Good news: FOC in uniform-price auction:

௜ ௜ ௜

Strategic bidding in capacity-constrained network

Crossing residual demand curves

Price

Quantity



Each line can have three states (import constrained, export constrained and 
uncongested). In a network with K lines there are in total ௄ combinations 
of states. Holmberg and Philpott (2017) denote each of these combinations 
by an integer ௄ A similar
approach is used by Wilson (2008). 

Congestion state



Congestion state

1 2

4

Congested

3

As an example, we can consider a congestion state where exports to node 3 
are congested, while all other transmission lines are uncongested.

Nodes 1,2 and 4 are integrated and can be treated as one node. Flows to
node 3 are fixed, so node 3 is isolated from marginal changes in other nodes. 

Integrated area

We use ௠ to denote all nodes that are integrated with node m in 
congestion state . Example: 

ଵ ଶ ଷ ଷ .



Slope of residual demand in congestion state

Consider a producer n with output q and price p in node m. Let ௠௡ be the 
supply of this producer. Let ௠ be the total nodal supply in node m, and let

௠,ି௡ ௠ ௠௡ . 

Demand is inelastic => The slope of the residual demand of a producer in node
m is:

= ᇱ
௠,ି௡ ௝௝∈ஆ೘ ఠ \ ௠ .

When solving for its market distribution function, , we find it convenient to
calculate one such probability function for each congestion state . Congestion
states are disjoint, so 

ఠ

-
ങഗ ೛,೜,ഘ

ങ೛

ങഗ ೛,೜,ഘ

ങ೜



It follows from the first-order condition for uniform-price auctions that:

௠௡ ௜ ௠௡

௜ ௠௡

ఠ

= ௜ ௠௡ ఠ ௠௡

where = 
ങഗ ೛,೜,ഘ

ങ೜

∑
ങഗ ೛,೜,ഘෝ

ങ೜,ഘෝ

is a conditional probability, the probability that

the system is in the congestion state conditional on that the residual
demand curve passes through the point => 

௠௡ ௜ ௠௡
ఌ

௠௡

Optimal supply function in transmission network



Two-node network with symmetric producers

Market integration factor

In a two-node network with symmetric firms and uniformly distributed demand
shocks we have (Holmberg and Philpott, 2017):

ସ௧̅ାே௤ത

ଶ௧̅ାே௤ത
,

where N is number of producers per node, is the transmission capacity and 
is the production capacity per firm.  
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SFE in two-node network 

Ruddell (2017) simulates SFE in networks with
asymmetric firms.



Strategic bidding in electricity markets:

Effect of discreteness/indivisibilities 



Discreteness/indivisibilities in electricity markets

• Some production plants have to run above a minimum level when activated

• In Colombia, electricity producers must offer the whole capacity of a plant at 
one price/unit. 

• European electricity markets have block orders that have to be entirely 
accepted or entirely rejected (fill or kill)

• How do such constraints influence bidding in electricity markets?



Auction of multiple indivisible units
Each producer has multiple indivisible units and offers each 
unit at a different price (Anderson and Holmberg, 2015).   
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Private information

Asymmetric information: A producer i is assumed to know its own cost, which
is unknown to the competitor. The private information is represented by the 
signal ௜, which is assumed to be uniformly distributed on [0,1].

The marginal cost of plant n of producer i is: ௡ ௜ . 

Producer i offers plant n at ௡.

It’s offer strategy can be represented by a discrete offer distribution function

௜ , the probability that producer i offers unit n at price p or lower. 



Discrete market distribution function

௜

Probability distribution for difference of two independent discrete random 
variables is discrete cross-correlation/convolution of their individual 
distributions => probability that an offer (qi,p) is rejected is:

௜ ௝ ௝

ே

௠ୀ଴



First-order condition (Anderson and Holmberg, 2015): 

௡
௜ ௡ ௜ ௡

௉௥௜௖௘ ௘௙௙௘௖௧

௜ ௡

௡
௡ : ௡ ௜

ொ௨௔௡௧௜௧௬ ௘௙௙௘௖௧

Increasing ௡ only matters for outcomes where this price is price-setting (last 
accepted offer). ௜ ௡ ௜ ௡ is the probability that ௡ is price-setting.

Discrete first-order condition



Step separation without gaps and 
symmetry

Unit 
1

Unit 
2

Unit 
3

Unit 
4

Price/cost

Offer price ranges for units

Marginal cost range for units

Two conditions that necessarily result in step separation without 
gaps and symmetry are (Anderson and Holmberg, 2015):

1) Marginal cost range of units do not overlap
2) Demand is sufficiently evenly distributed: 

3m|f(mh)-f((m-1)h)|< f((m-1)h)        



Convergence to continuous model
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In equilibrium, private signal ௜ influences offers, even if signal has negligible 
influence on costs. Offers are random as for mixed-strategy NE. This adds a 
noise to offers. Otherwise they are similar to continuous model. 
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Example: Price instability in electricity market

Volatility largest near price cap
Std dev: 0.1%-3% of price cap


