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outline

statistical risk bounds

theoretical comparison with other nonparametric methods
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statistical analysis

we observe n i.i.d. copies (X1,Y1), . . . , (Xn,Yn),

Yi = f (Xi ) + εi , εi ∼ N (0, 1)

Xi ∈ Rd , Yi ∈ R,
goal is to reconstruct the function f : Rd → R

has been studied extensively
(kernel smoothing, wavelets, splines, . . . )
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the estimator

choose network architecture (L,p) and sparsity s

denote by F(L,p, s) the class of all networks with

architecture (L,p)
number of active (e.g. non-zero) parameters is s

our theory applies to any estimator f̂n taking values in
F(L,p, s)

prediction error

R(f̂n, f ) := Ef

[(
f̂n(X)− f (X)

)2]
,

with X
D
= X1 being independent of the sample

study the dependence of n on R(f̂n, f )
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function class

classical idea: assume that regression function is β-smooth

optimal nonparametric estimation rate is n−2β/(2β+d)

suffers from curse of dimensionality

to understand deep learning this setting is therefore useless

 make a good structural assumption on f
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hierarchical structure

Important: Only few objects are combined on deeper
abstraction level

few letters in one word
few words in one sentence
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function class
We assume that

f = gq ◦ . . . ◦ g0
with

gi : Rdi → Rdi+1 .
each of the di+1 components of gi is βi -smooth and depends
only on ti variables
ti can be much smaller than di
effective smoothness

β∗
i := βi

q∏
`=i+1

(β` ∧ 1).

we show that the rate depends on the pairs

(ti , β
∗
i ), i = 0, . . . , q.

similar conditions have been proposed by Horowitz & Mammen
(2007), Kohler & Kryzak (2017), Bauer & Kohler (2017),
Kohler & Langer (2018)
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example

f0(x1, x2, x3) = g11
(
g01(x3), g02(x2)

)

f0 = g1 ◦ g0
d0 = 3, t0 = 1, d1 = t1 = 2, d2 = 1
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main result
Theorem: If

(i) depth � log n

(ii) width ≥ network sparsity � maxi=0,...,q n
ti

2β∗
i
+ti log n

Then, for any network reconstruction method f̂n,

prediction error � φn + ∆n

(up to log n-factors) with

∆n := E
[1

n

n∑
i=1

(Yi − f̂n(Xi ))2 − inf
f ∈F(L,p,s)

1

n

n∑
i=1

(Yi − f (Xi ))2
]

and

φn := max
i=0,...,q

n
− 2β∗i

2β∗
i
+ti .
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consequences

empirical risk minimizer is optimal in this class

problem is high-dimensional (no upper bound on the width)

network sparsity induces regularization

the assumption that depth � log n appears naturally

in particular the depth scales with the sample size

important for statistical performance is not the size of
the network but the amount of regularization
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consequences (ctd.)

paradox:

good rate for all smoothness indices

existing piecewise linear methods only give good rates up to
smoothness two

Here the non-linearity of the function class helps

 non-linearity is essential!!!
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additive models

functions are of the form

f (x1, . . . , xd) = f1(x1) + . . .+ fd(xd)

fi are β-smooth

f = g1 ◦ g0 with

g0(x) = (f1(x1), . . . , fd(xd))> and g1(y) =
d∑

j=1

yj

 d0 = d , t0 = 1, d1 = t1 = d , d2 = 1

rate achieved by a neural network

R(f̂n, f0) . n−
2β

2β+1 log3 n + ∆(f̂n, f0).
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on the proof

oracle inequality (roughly)

R(f̂ , f ) . inf
f ∗∈F(L,p,s)

∥∥f ∗ − f
∥∥2
∞ +

logNn

n
.

logNn denotes the covering entropy
shows the trade-off between approximation and model size

for networks we obtain a bound of the type

logNn . sL log(n)

 trade-off between approximation and network sparsity
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lower bounds on the network sparsity

the convergence theorem implies a deterministic lower bound on
the network sparsity required to approximate β-smooth functions

on [0, 1]d

Result:

if for ε > 0,

s .
ε−d/β

L log(1/ε)

then

sup
f0 is β−Hölder

inf
f a s−sparse network

‖f − f0‖∞ ≥ ε.

has been proved via a different technique in Bölcskei et al. ’17
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other statistical results

piecewise smooth functions, Imaizumi and Fukumizu ’18

binary classification with hinge loss, Kim, Ohn, Kim ’18
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suboptimality of wavelet estimators

f (x) = h(x1 + . . .+ xd)

for some α-smooth function h

Rate for DNNs . n−α/(2α+1) (up to logarithmic factors)

Rate for best wavelet thresholding estimator & n−α/(2α+d)

Reason: Low-dimensional structure does not affect the decay
of the wavelet coefficients
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MARS

consider products of ramp functions

hI ,t(x1, . . . , xd) =
∏
j∈I

(
± (xj − tj)

)
+

piecewise constant in each component

MARS (multivariate adaptive regression splines) fits linear
combinations of such functions to data

greedy algorithm

has depth and width type parameters
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Comparison with MARS

how does MARS compare to ReLU networks?

functions that can be represented by s parameters with
respect to the MARS function system can be represented by
s log(1/ε)-sparse DNNs up to sup-norm error ε
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Comparison with MARS (ctd.)

Figure: Reconstruction using MARS (left) and networks (right)

the opposite is not true, one counterexample is

f (x1, x2) = (x1 + x2 − 1)+

we need & ε−1/2 many parameters to get ε-close with MARS
functions

 conclusion: DNNs work better for correlated design
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energy landscape

Definition:

data (X ,Y ) ∈ (X ,Y)
class of functions Fθ : X → Y
loss function L : Y × Y → R+

the energy landscape/loss surface is the function

θ 7→ L
(
Y ,Fθ(X )

)
.

21 / 29



critical points of the energy landscape

local/global minima

saddle points

(bad) saddle points (Hessian vanishes)
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linear activation function

fit a linear regression line f (y) = abx to data (Xi ,Yi )i=1,...,n

a, b parameters

energy landscape for squared loss

(a, b) 7→
n∑

i=1

(
Yi − abXi

)2
.

saddle point for a = b = 0

global minimum whenever ab = least squares solution
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extensions

same setting as before but now we consider f (x) = abcx

a = b = c = 0 is a bad saddle point

Kawaguchi ’16:

f (x) = WLWL−1 . . .W0x

every local minimum is a global minimum

saddle points exist (if L > 1, there exist bad saddle points)

proof is based on studying local perturbations
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ReLU activation function

(ax + b)+

−b/a

possible many local minima that are not global minima

happens in practice

very dependent on initialization
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interpolation properties

consider continuous activation function that is not a
polynomial

given data (Xk ,Yk) ∈ Rd × R with distinct design vectors Xk

shallow networks: one can perfectly interpolate n data points
with n units in the hidden layer

related to the universal approximation theorem (therefore
same condition appears)
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vanishing training error

”in deep learning zero training error still generalizes well”

it always depends on the problem

many applications have little noise and interpolation is a good
idea

additive noise models are different and claim is probably false
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theory for vanishing training error

smooth activation function

Du et al. ’18 consider highly over-parametrized setting

number of units in each layer has to be of some (unspecified
?) polynomial order in the sample size

setup is regression with least-squares loss

show that gradient descent with randomly initialization
converges to zero training error

ReLU networks

Allen-Zhu et al. ’18 shows a similar result

one assumptions is that the network width scales at least with
the 30-th power of the sample size
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outlook

deep networks are an exciting field with many open
problems

classification, high-dimensional input, . . .

energy landscape

network types: CNNs, RNNs, autoencoders, . . .

Generative adversarial networks (GANs)

Thank you for your attention!
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