Statistical theory for deep neural networks
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outline

o statistical risk bounds

o theoretical comparison with other nonparametric methods
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statistical analysis

o we observe n i.i.d. copies (X1, Y1),...,(Xn, Yn),

Yi =f(Xj)+ei, e ~N(0,1)

o X; €RY Y; €R,
o goal is to reconstruct the function f : RY — R

o has been studied extensively
(kernel smoothing, wavelets, splines, ...)
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the estimator

o choose network architecture (L, p) and sparsity s
o denote by F(L,p,s) the class of all networks with

o architecture (L, p)
o number of active (e.g. non-zero) parameters is s

o our theory applies to any estimator f,, taking values in
F(L,p,s)
o prediction error

~

R(fa, £) = Er[(fa(X) — £(X))?],

with X 2 X; being independent of the sample
o study the dependence of n on R(f,,, f)
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function class

o classical idea: assume that regression function is S-smooth
o optimal nonparametric estimation rate is n—28/(26+d)

o suffers from curse of dimensionality

o to understand deep learning this setting is therefore useless

o ~» make a good structural assumption on f
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hierarchical structure

lines —» letters —» words —» sentences

/
¢ H  HELLO  HELLO WORLD

o Important: Only few objects are combined on deeper
abstraction level
o few letters in one word
o few words in one sentence
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function class

o We assume that

f=gq0...080
with
o gi:RY — R+,
o each of the djy; components of g; is Bj-smooth and depends
only on t; variables
o t; can be much smaller than dj;
o effective smoothness
q
B =8 [] (Ben1).
r=it1
o we show that the rate depends on the pairs

(t,67), i=0,...,q.

o similar conditions have been proposed by Horowitz & Mammen
(2007), Kohler & Kryzak (2017), Bauer & Kohler (2017),
Kohler & Langer (2018)
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example

fo(x1,x2,x3) = g11 <g01(X3)* goz(Xz))

o fo=g1080

ody=3, tp=1,di=t1 =2,db=1
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main result
Theorem: If

(i) depth < logn
17)
(ii) width > network sparsity < max;—g, . q n®*7*t log n

Then, for any network reconstruction method f,,

(up to log n-factors) with

A, = E[l Z(v,- CR(XK)2 - inf L znj(v,- — f(X;))?

n feF(Lp,s) N
] eF(Lps) N =
and
_
¢n:= max n *Fith,
i:07"'7q
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consequences

empirical risk minimizer is optimal in this class

problem is high-dimensional (no upper bound on the width)

Qo

o

o network sparsity induces regularization

o the assumption that depth < log n appears naturally
Qo

in particular the depth scales with the sample size

important for statistical performance is not the size of
the network but the amount of regularization

u}
o)
I
i
it
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consequences (ctd.)

paradox:
o good rate for all smoothness indices

o existing piecewise linear methods only give good rates up to
smoothness two

~> non-linearity is essential!!!

12/29



additive models

o functions are of the form
f(Xl, A ,Xd) = fl(Xl) + ...+ fd(Xd)

o f; are B-smooth

o f = g1 0gy with
d
go(x) = (fi(x1). . falxa)) T and &i(y) ="y,
j=1

o~dy=d, p=1,di=t1 =d,dr =1
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on the proof

o oracle inequality (roughly)

R(f )< f*e}mzps Hf*

log \V,
R, + o

o log \V,, denotes the covering entropy
o shows the trade-off between approximation and model size

o for networks we obtain a bound of the type

o ~~ trade-off between approximation and network sparsity
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lower bounds on the network sparsity

the convergence theorem implies a deterministic lower bound on
on [0,1]¢
Result:

the network sparsity required to approximate S-smooth functions

o if for e > 0,

gfd/ﬁ
then

s< &
~ Llog(1/e)

sup inf
fy is B—Holder f as—sparse network

Hf - fOHoo > €.
o has been proved via a different technique in Bolcskei et al. '17

Do
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other statistical results

o piecewise smooth functions, Imaizumi and Fukumizu '18

o binary classification with hinge loss, Kim, Ohn, Kim '18

Do
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suboptimality of wavelet estimators

©

f(x)=h(x1+ ...+ xq)
o for some a-smooth function h
Rate for DNNs < n=®/(22+1) (up to logarithmic factors)

Rate for best wavelet thresholding estimator > n—/(2a+d)

©

©

Reason: Low-dimensional structure does not affect the decay
of the wavelet coefficients

©

17/29



MARS

o consider products of ramp functions

(s -oxa) = [[ (£ (65— 8)),
Jjel
o piecewise constant in each component

@ MARS (multivariate adaptive regression splines) fits linear
combinations of such functions to data

o greedy algorithm
@ has depth and width type parameters

O D = = = wac
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Comparison with MARS

o how does MARS compare to ReLU networks?

o functions that can be represented by s parameters with
respect to the MARS function system can be represented by
slog(1/e)-sparse DNNs up to sup-norm error €
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Comparison with MARS (ctd.)

Figure: Reconstruction using MARS (left) and networks (right)

o the opposite is not true, one counterexample is

f(Xl,Xg) = (Xl + X0 — 1)+
o we need > ¢~ 1/2
functions

many parameters to get e-close with MARS

o ~~ conclusion: DNNs work better for correlated design
[} = =

QR
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energy landscape

Definition:

o data (X,Y) € (X,))
o class of functions Fyp : X — Y
o loss function L: Y x Y — R+t

the energy landscape/loss surface is the function

6 — L(Y, Fy(X)).
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critical points of the energy landscape

o local/global minima
o saddle points

o (bad) saddle points (Hessian vanishes)
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linear activation function

o fit a linear regression line f(y) = abx to data (Xj, Yi)i=1,....n
o a, b parameters
o energy landscape for squared loss
(a, b) — Z — abX;)?
°
o global minimum whenever ab = least squares solution
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extensions

o same setting as before but now we consider f(x) = abcx

©

a=b=c=0is a bad saddle point

©

f(X) = WL WL,1 e Wox

every local minimum is a global minimum

©

()

saddle points exist (if L > 1, there exist bad saddle points)

©

proof is based on studying local perturbations
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RelLU activation function

(ax+b),

o possible many local minima that are not global minima
o happens in practice

o very dependent on initialization
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interpolation properties

consider continuous activation function that is not a
polynomial

given data (Xg, Yx) € RY x R with distinct design vectors X

()

©

©

related to the universal approximation theorem (therefore
same condition appears)
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vanishing training error

o it always depends on the problem

o many applications have little noise and interpolation is a good
idea

o additive noise models are different and claim is probably false
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theory for vanishing training error

o Du et al. "18 consider highly over-parametrized setting

o number of units in each layer has to be of some (unspecified
?7) polynomial order in the sample size

o setup is regression with least-squares loss

o show that gradient descent with randomly initialization
converges to zero training error

o Allen-Zhu et al. '18 shows a similar result

o one assumptions is that the network width scales at least with
the 30-th power of the sample size
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outlook

deep networks are an exciting field with many open
problems

o classification, high-dimensional input, ...
o energy landscape
o network types: CNNs, RNNs, autoencoders, ...

o Generative adversarial networks (GANs)

Thank you for your attention!
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