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• Supervised Learning: find ℎ:𝒳 → 𝒴 with small generalization error
𝐿 ℎ = 𝔼 𝑥,𝑦 ~𝒟 𝑙𝑜𝑠𝑠 ℎ 𝑥 ; 𝑦

based on samples 𝑆 (hopefully 𝑆 ∼ 𝒟𝑚) using learning rule:

𝐴: 𝑆 ↦ ℎ (i.e. 𝐴: 𝒳 × 𝒴 ∗ → 𝒴𝒳 )

• No Free Lunch: For any learning rule, there exists a source 𝒟 (i.e. reality), 
for which the learning rule yields expected error ½

• More formally for any 𝐴, 𝑚 there exists 𝒟 s.t. ∃ℎ∗𝐿 ℎ∗ = 0 but

𝔼𝑆∼𝒟𝑚 𝐿 𝐴 𝑆 ≥
1

2
−

𝑚

2 𝒳

• Inductive Bias:

• Some realities (sources 𝒟) are less likely; design 𝐴 to work well on 
more likely realities

e.g., by preferring certain 𝑦|𝑥 (i.e. ℎ(𝑥)) over others

• Assumption or property of reality 𝒟 under which 𝐴 ensures good 
generalization error

e.g., ∃ℎ ∈ ℋ with low 𝐿(ℎ)

e.g., ∃ℎ with low “complexity” 𝑐(ℎ) and low 𝐿(ℎ)



• “Flat” inductive bias: ∃ℎ∗ ∈ ℋ with low 𝐿(ℎ∗)

• (Almost) optimal learning rule: 
𝐸𝑅𝑀ℋ 𝑆 = ෠ℎ = argmin

ℎ∈ℋ
𝐿𝑆(ℎ)

• Guarantee (in expectation over 𝑆 ∼ 𝒟𝑚): 

𝐿 𝐸𝑅𝑀ℋ 𝑆 ≤ 𝐿 ℎ∗ +ℛ𝑚 ℋ ≈ 𝐿 ℎ∗ +
𝑂 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ℋ

𝑚

➔ can learn with 𝑂(𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ℋ )

• E.g.

• For binary classification, 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ℋ = 𝑉𝐶𝑑𝑖𝑚(ℋ)

Vapnik-Chrvonenkis (VC) dimension: largest number of points 𝐷 that 
can be labeled (by some ℎ ∈ ℋ) in every possible way (i.e. for which 
the inductive bias is uninformative) 

• For linear classifiers over 𝑑 features, 𝑉𝐶𝑑𝑖𝑚 ℋ = 𝑑

• Usually with 𝑑 parameters, 𝑉𝐶𝑑𝑖𝑚 ℋ ≈ ෨𝑂(#𝑝𝑎𝑟𝑎𝑚𝑠)

• Always: 𝑉𝐶𝑑𝑖𝑚 ℋ ≤ log ℋ = #𝑏𝑖𝑡𝑠

Flat Inductive Bias



• “Flat” inductive bias: ∃ℎ∗ ∈ ℋ with low 𝐿(ℎ∗)

• (Almost) optimal learning rule: 
𝐸𝑅𝑀ℋ 𝑆 = ෠ℎ = argmin

ℎ∈ℋ
𝐿𝑆(ℎ)

• Guarantee (in expectation over 𝑆 ∼ 𝒟𝑚): 

𝐿 𝐸𝑅𝑀ℋ 𝑆 ≤ 𝐿 ℎ∗ +ℛ𝑚 ℋ ≈ 𝐿 ℎ∗ +
𝑂 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ℋ

𝑚

➔ can learn with 𝑂(𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ℋ )

• E.g.

• For binary prediction, 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ℋ = 𝑉𝐶𝑑𝑖𝑚(ℋ)

• For linear predictors over 𝑑 features, 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ℋ = 𝑑

• Usually with 𝑑 parameters, 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ℋ ≈ ෨𝑂(#𝑝𝑎𝑟𝑎𝑚𝑠)

• Always: 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ℋ ≤ #𝑏𝑖𝑡𝑠

• For linear predictors with 𝑤 2 ≤ 𝐵, with logistic loss and 
normalized data: 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ℋ = 𝐵2

Flat Inductive Bias



Machine Learning

• We want model classes (hypothesis classes) that:
• Are expressive enough to capture reality well

• Have small enough capacity to allow generalization

reality



Complexity Measure as Inductive Bias
• Complexity measure: mapping 𝑐: 𝒴𝒳 → [0,∞]

• Associated inductive bias: ∃ℎ with small 𝑐(ℎ) and small 𝐿(ℎ)

• Learning rule:   𝑆𝑅𝑀ℋ 𝑆 = argmin 𝐿 ℎ , 𝑐(ℎ)

e.g.    argmin 𝐿 ℎ + 𝜆 𝑐(ℎ) or     argmin 𝐿 ℎ s.t. 𝑐 ℎ ≤ 𝐵

and choose 𝜆 or 𝐵 using cross-validation

• Guarantee: 

𝐿 𝑆𝑅𝑀ℋ 𝑆 ≤≈ 𝐿 ℎ∗ +
𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ℋ𝑐 ℎ∗

𝑚

• E.g.:

• Degree of poly

• Sparsity

• ‖𝑤‖

ℋ𝐵 = ℎ 𝑐 ℎ ≤ 𝐵



reality



Beyond ERM: Implicit Inductive Bias
• The one-pass-SGD learning rule for linear predictors ℎ𝑤 𝑥 = ⟨𝑤, 𝑥⟩

𝑆𝐺𝐷 𝑆 =
1

𝑚
σ𝑖=1
𝑚 𝑤𝑖 where 𝑤𝑖+1 = 𝑤𝑖 − 𝜂∇𝑙𝑜𝑠𝑠 𝑤, 𝑥𝑖 ; 𝑦𝑖

• Theorem: If 𝑙𝑜𝑠𝑠′ ≤ 1 and 𝑥 ≤ 1, then with 𝑤0 = 0 and appropriate 𝜂

𝐿 𝑆𝐺𝐷 𝑆 ≤ 𝐿 𝑤∗ +
𝑤 2

𝑚

• Inductive bias: 𝑐 ℎ𝑤 = 𝑤 2

𝑤 0

ഥ𝑤 𝑚

ෝ𝑤
𝑤∗

𝑂
‖𝑤∗‖2

𝑚

ෝ𝑤 = arg min
𝑤 ≤𝐵

𝐿𝑆(𝑤)



ℋ or 𝑐(ℎ) ERM or SRM

𝑤 2 SGD

𝑃(𝑦|𝑥) smooth w.r.t 𝑑(𝑥, 𝑥’) Nearest Neighbor

sparsity or 𝑤 1 Exp GD (Mult Weights)

𝑐 ℎ Mirror Descent with potential ≈ 𝑐(ℎ)

Inductive 
Bias Learning 

Rule

Explicit and Implicit Inductive Bias



Feed-Forward Neural Networks
(The Multilayer Perceptron)

𝑣1

𝑣2

𝑣3

𝑣𝑑
𝑢

𝑣

𝑣𝑜𝑢𝑡

Architecture:

• Directed Acyclic Graph G(V,E). Units (neurons) indexed by vertices in V.

• “Input Units” 𝑣1…𝑣𝑑 ∈ 𝑉, with no incoming edges and 𝑜 𝑣𝑖 = 𝑥[𝑖]

• “Output Unit” 𝑣𝑜𝑢𝑡 ∈ 𝑉, ℎ𝑤 𝑥 = 𝑜 𝑣𝑜𝑢𝑡

• “Activation Function” 𝜎:ℝ → ℝ. E.g. 𝜎 𝑧 = 𝑠𝑖𝑔𝑛 𝑧 or 𝜎 𝑧 =

Parameters:

• Weight 𝑤[𝑢 → 𝑣] for each edge 𝑢 → 𝑣 ∈ 𝐸

𝑎[𝑣] = ෍

𝑢→𝑣∈𝐸

𝑤[𝑢 → 𝑣] 𝑜[𝑢]

𝑜 𝑣 = 𝜎( 𝑎 𝑣 )

𝑥[1]

𝑥[2]

𝑥[3]

𝑥[𝑑]

⋯

ℎ𝐺 𝑉,𝐸 ,𝜎,𝑤 𝑥



Feed-Forward Neural Networks
as a Hypothesis Class
ℋ𝐺 𝑉,𝐸 ,𝜎 = ℎ𝐺 𝑉,𝐸 ,𝜎,𝑤 | 𝑤: 𝐸 → ℝ

or ℋ𝐺 𝑉,𝐸 ,𝜎
𝑠𝑖𝑔𝑛

= 𝑠𝑖𝑔𝑛 ℎ𝐺 𝑉,𝐸 ,𝜎,𝑤 | 𝑤: 𝐸 → ℝ

• Hypothesis class specified by: (ie we decide on this in advance)
• Graph G(V,E)

• V includes input, output and “hidden” nodes
• Activation function 𝜎

e.g. sign 𝑧 ,

tanh(𝑧), sigmoid 𝑧 =
1

1+𝑒−𝑧
,

relu 𝑧 = max 0, 𝑧 ,

ramp 𝑧 = 𝑐𝑙𝑖𝑝 −1,1 𝑧

• Hypothesis specified by: (ie we need to learn)
• Weights 𝑤, with weight 𝑤[𝑢 → 𝑣] for each edge 𝑢 → 𝑣 ∈ 𝐸



Feed Forward Neural Networks
• Fix architecture (connection graph 𝐺(𝑉, 𝐸), transfer 𝜎)

ℋ𝐺 𝑉,𝐸 ,𝜎 = 𝑓𝑤 𝑥 = 𝑜𝑢𝑡𝑝𝑢𝑡 𝑜𝑓 𝑛𝑒𝑡 𝑤𝑖𝑡ℎ 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑤

• Capacity / Generalization ability / Sample Complexity

• Expressive Power / Approximation



Capacity (Sample Complexity) of NN

• #params = |𝐸| (number of weights we need to learn)

• More formally: 𝑉𝐶𝑑𝑖𝑚 ℋ𝐺 𝑉,𝐸 ,𝑠𝑖𝑔𝑛 = 𝑂( 𝐸 log 𝐸 )

• Other activation functions?

• 𝑉𝐶𝑑𝑖𝑚 ℋ𝐺(𝑉,𝐸),sin = ∞ even with single unit and single real-valued input

• For 𝜎 𝑧 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑧 =
1

1+𝑒−𝑧
: 

Ω 𝐸 2 ≤ 𝑉𝐶𝑑𝑖𝑚(ℋ𝐺 𝑉,𝐸 ,sigmoid) ≤ 𝑂( 𝐸 4)

• For piecewise linear, e.g. 𝑟𝑎𝑚𝑝 𝑧 = 𝑐𝑙𝑖𝑝 −1,1 (𝑧) or 𝑅𝑒𝐿𝑈 𝑧 = max 0, 𝑧 :

Ω 𝐸 𝐿 log ൗ𝐸 𝐿 ≤ 𝑉𝐶𝑑𝑖𝑚(ℋ𝐺,𝜎) ≤ 𝑂( 𝐸 𝐿 log 𝐸 )

• With integer weights ∈ [−𝐵, . . , 𝐵]:

𝑉𝐶𝑑𝑖𝑚 ℋ𝐺 𝑉,𝐸 ,𝜎 ≤ log ℋ𝐺 𝑉,𝐸 ,𝜎 ≤ 2 𝐸 log𝐵

L=depth



Feed Forward Neural Networks
• Fix architecture (connection graph 𝐺(𝑉, 𝐸), transfer 𝜎)

ℋ𝐺 𝑉,𝐸 ,𝜎 = 𝑓𝑤 𝑥 = 𝑜𝑢𝑡𝑝𝑢𝑡 𝑜𝑓 𝑛𝑒𝑡 𝑤𝑖𝑡ℎ 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑤

• Capacity / Generalization ability / Sample Complexity

• ෩𝑶( 𝑬 ) (number of edges, i.e. number of weights)
(with threshold 𝜎, or with RELU and finite precision; RELU with inf precision: ෩Θ 𝐸 ⋅ 𝑑𝑒𝑝𝑡ℎ )

• Expressive Power / Approximation



What can Feed-Forward Networks Represent?

• Any function over 𝒳 = ±1 𝑛

• With a single hidden layer, using DNF (hidden layer does AND, output does OR)

• 𝑉 = 2𝑛, 𝐸 = 𝑛2𝑛

• Like representing the truth table directly…

• Universal Representation Theorem: Any continuous functions 
𝑓: 0,1 𝑛 → ℝ can be approximated to within any 𝜖 by a feed-forward 
network with sigmoidal (or almost any other) activation and a single 
hidden layer.
• Size of layer exponential in n



What can SMALL Networks Represent?

• Intersection of halfspaces
• Using single hidden layer

• Union of intersection of halfspaces (and also sorting, more fun 
stuff, …)
• Using two hidden layers



What can SMALL Networks Represent?

• Intersection of halfspaces
• Using single hidden layer

• Union of intersection of halfspaces (and also sorting, more fun 
stuff, …)
• Using two hidden layers

• Functions representable by a small logical circuit
• Implement AND using single unit, negation by reversing weight

• Functions that depend on lower level features



Multi-Layer Feature Learning



Feed Forward Neural Networks
• Fix architecture (connection graph 𝐺(𝑉, 𝐸), transfer 𝜎)

ℋ𝐺 𝑉,𝐸 ,𝜎 = 𝑓𝑤 𝑥 = 𝑜𝑢𝑡𝑝𝑢𝑡 𝑜𝑓 𝑛𝑒𝑡 𝑤𝑖𝑡ℎ 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑤

• Capacity / Generalization ability / Sample Complexity

• ෩𝑶( 𝑬 ) (number of edges, i.e. number of weights)
(with threshold 𝜎, or with RELU and finite precision; RELU with inf precision: ෩Θ 𝐸 ⋅ 𝑑𝑒𝑝𝑡ℎ )

• Expressive Power / Approximation

• Any continuous function with huge network

• Lots of interesting things naturally with small networks

• Any time T computable function with network of size ෩𝑶(𝑻)



Free Lunches
• ML as an Engineering Paradigm: Use data and examples, instead of expert 

knowledge and tedious programming, to automatically create efficient 
systems that perform complex tasks

• We only care about ℎ ℎ is an efficient system

• Free Lunch: 𝑻𝑰𝑴𝑬𝑻 = ℎ ℎ comp. in time 𝑇 has capacity 𝑂(𝑇) and 
hence learnable with 𝑂(𝑇) samples, e.g. using ERM

• Even better: 𝑷𝑹𝑶𝑮𝑻 = program of length T has capacity 𝑂(𝑇)
• 𝑃𝑅𝑂𝐺𝑇 = 128𝑇 ➔ capacity ≤ log 𝑃𝑅𝑂𝐺𝑇 = 𝑂(𝑇)

• Problem: ERM for above is not computable!

• Modified ERM for 𝑻𝑰𝑴𝑬𝑻 (truncating exec. time) is NP-complete

• P=NP  ➔ Universal Learning is possible! (Free Lunch)

• Crypto is possible (one-way functions exist) 
➔ No poly-time learning algorithm for 𝑻𝑰𝑴𝑬𝑻
(that is: no poly-time 𝐴 and uses 𝑝𝑜𝑙𝑦(𝑇) samples s.t. if ∃ℎ∗ ∈ 𝑇𝐼𝑀𝐸𝑇
with 𝐿 ℎ∗ = 0 then 𝔼 𝐿 𝐴 𝑆 ≤ 0.499)



No Free (Computational) Lunch
• Statistical No-Free Lunch: For any learning rule A, there exists a source 𝒟

(i.e. reality), s.t. ∃ℎ∗ with 𝐿 ℎ∗ = 0 but 𝔼 𝐿 𝐴 𝑆 ≈
1

2
.

• Cheating Free Lunch: There exists A, s.t. for any reality 𝒟 and any 
efficiently computable 𝒉∗, 𝐴 learns a predictor almost as good as ℎ∗

(with #samples=O(runtime of ℎ∗)).

• Computational No-Free Lunch: For every computationally efficient 
learning algorithm 𝑨, there is a reality 𝒟 s.t. there is some comp. efficient 

(poly-time) ℎ∗ with 𝐿 ℎ∗ = 0 but 𝔼 𝐿 𝐴 𝑆 ≈
1

2
.

• Inductive Bias: Assumption or property of reality 𝒟 under which a learning 
algorithm 𝐴 runs efficiently and ensures good generalization error.

• ℋ or 𝑐(ℎ) are not sufficient inductive bias if ERM/SRM not efficiently 
implementable, or implementation doesn’t always work (runs quickly and 
returns actual ERM/SRM).



Feed Forward Neural Networks
• Capacity / Generalization ability / Sample Complexity

• ෩𝑶( 𝑬 ) (number of edges, i.e. number of weights)
(with threshold 𝜎, or with RELU and finite precision; RELU with inf precision: ෩Θ 𝐸 ⋅ 𝑑𝑒𝑝𝑡ℎ )

• Expressive Power / Approximation

• Any continuous function with huge network

• Lots of interesting things naturally with small networks

• Any time T computable function with network of size ෩𝑶(𝑻)

• Computation / Optimization

• Non-convex

• No known algorithm guaranteed to work

• NP-hard to find weights even with 2 hidden units

• Even if function exactly representable with single hidden layer with 
Θ log𝑑 units, even with no noise, and even if we train a much larger 
network or use any other method when learning: no poly-time algorithm 
can ensure better-than-chance prediction
[Kearns Valiant 94;  Klivans Sherstov 06; Daniely Linial Shalev-Shwartz ’14]



Choose your universal learner:

Short Programs

• Universal
• Captures anything we want 

with reasonable sample 
complexity

• Provably (worst case) hard 
to optimize

• Hard to optimize in practice

Deep Networks

• Universal
• Captures anything we want 

with reasonable sample 
complexity

• Provably (worst case) hard 
to optimize

• Often easy to optimize
• Continuous
• Amenable to local search, 

stochastic local search
• Lots of empirical success



Feed Forward Neural Networks
• Capacity / Generalization ability / Sample Complexity

• ෩𝑶( 𝑬 ) (number of edges, i.e. number of weights)
(with threshold 𝜎, or with RELU and finite precision; RELU with inf precision: ෩Θ 𝐸 ⋅ 𝑑𝑒𝑝𝑡ℎ )

• Expressive Power / Approximation

• Any continuous function with huge network

• Lots of interesting things naturally with small networks

• Any time T computable function with network of size ෩𝑶(𝑻)

• Computation / Optimization

• Even if function exactly representable with single hidden layer with 
Θ log𝑑 units, even with no noise, and even if we allow a much larger 
network when learning: no poly-time algorithm always works
[Kearns Valiant 94;  Klivans Sherstov 06; Daniely Linial Shalev-Shwartz ’14]

• Often easy to optimize in practice, on interesting/useful problems

• Magic property of reality that makes local search “work”



[Neyshabur Tomioka S ICLR’15]
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[Neyshabur Tomioka S ICLR’15]

1997



reality

fit random labels

E.g., hard margin SVM: min‖𝑤‖ s.t. 𝐿𝑆
𝑚𝑎𝑟𝑔𝑖𝑛

𝑤 = 0

for ℎ𝑤 = ⟨𝑤, 𝜙 𝑥 ⟩ with inf dim 𝜙

𝒉 ‖𝒉‖ ≤ 𝒓𝒆𝒂𝒍𝒊𝒕𝒚



reality

fit random labels

E.g., hard margin SVM: min‖𝑤‖ s.t. 𝐿𝑆
𝑚𝑎𝑟𝑔𝑖𝑛

𝑤 = 0

for ℎ𝑤 = ⟨𝑤, 𝜙 𝑥 ⟩ with inf dim 𝜙

𝒉 ‖𝒉‖ ≤ 𝒓𝒆𝒂𝒍𝒊𝒕𝒚



AdaBoost

Training 
error

Test 
error

T=5

T=1000

T=100

[Bartlett, Freund, Lee, Schapire 1998]

ℓ1 margin: 
𝑦 𝑤,𝑥

𝑤 1
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reality
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Path-Norm = σpathς𝑒∈path𝑤 𝑒 2

• What is the relevant “complexity measure” (eg norm)?
• How is this minimized (or controlled) by the optimization 

algorithm?
• How does it change if we change the opt algorithm?



Where is the Regularization?
• What we did: minimize unregularized error to convergence

• In convex models, we understand how one-pass SGD (or with early 
stopping) provides for implicit ℓ2 regularization
• More generally, Mirror Descent provides generalization w.r.t. any* inductive 

bias [S Sridharan Tewar, On the Universality of Mirror Descent, NIPS’11]

• Inductive Bias  choice of potential for Mirror Descent

• Here: implicit regularization, without early stopping, and even with 
deterministic optimization

• In underdetermined problem (lots of global optima), optimization is biasing 
us toward specific global optimum.

Different optimization algorithm
➔ Different Bias

➔ Different generalization properties



Cross-Entropy 
Training Loss
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[Neyshabur Salakhudtinov S NIPS’15]



SGD vs ADAM
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Results on Penn Treebank using 3-layer LSTM

[Wilson Roelofs Stern S Recht, “The Marginal Value of 
Adaptive Gradient Methods in Machine Learning”, NIPS’17]



Simple Example: Least Squares

• Consider an under-constraint least-squares problem (𝑛 < 𝑚):
min
𝑤∈ℝ𝑛

‖𝐴𝑤 − 𝑏‖2

𝐴 ∈ ℝ𝑚×𝑛

• Claim: Gradient Descent (or SGD, or conjugate gradient descent, or 
BFGS) converges to the least norm solution

min
𝐴𝑤=𝑏

𝑤 2

➢Proof: iterates always spanned by rows of 𝐴 (more details soon)



reality



The Deep Recurrent Residual Boosting Machine
Joe Flow, DeepFace Labs

Section 1: Introduction
We suggest a new amazing architecture and loss function 
that is great for learning.  All you have to do to learn is fit 
the model on your training data

Section 2: Learning Contribution: our model
The model class ℎ𝑤 is amazing.  Our learning method is:

𝐚𝐫𝐠𝐦𝐢𝐧
𝒘

𝟏

𝒎
σ𝒊=𝟏
𝒎 𝒍𝒐𝒔𝒔(𝒉𝒘 𝒙 ; 𝒚) (*)

Section 3: Optimization
This is how we solve the optimization problem (*): […]

Section 4: Experiments
It works!



Different optimization algorithm
➔ Different bias in optimum reached

➔ Different Inductive bias
➔ Different generalization properties



To Understand Deep Learning 
• Ultimate Question: What is the true Inductive Bias?  What makes reality 

efficiently learnable by fitting a huge (infinite) neural net with a specific 
algorithm?

• The “complexity measure” approach: identify 𝑐(ℎ) s.t.

• Reality is well explained by low 𝑐 ℎ

• ℋ𝑐 𝑟𝑒𝑎𝑙𝑖𝑡𝑦 = ℎ 𝑐 ℎ ≤ 𝑐(𝑟𝑒𝑎𝑙𝑖𝑡𝑦) has low capacity

• Opt. algorithm (with or w/o regularization?) biases towards low 𝑐(ℎ)

• Mathematical questions:

• What is the capacity (≡sample complexity) of the sublevel sets ℋ𝑐?

• What is the bias of optimization algorithms?

• Question about reality (scientific Q?): does it have low 𝑐(ℎ)?

• Alternative empirical questions:

• Do models we actually learn have low 𝑐(ℎ)?

• Does it explain generalization? 

• Can we at least corelate generalization with 𝑐 ℎ ?



min
𝑋∈ℝ𝑛×𝑛

𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑋 − 𝑦 2
2 ≡ min

𝑈,𝑉∈ℝ𝑛×𝑛
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑈𝑉⊤ − 𝑦 2

2

• Underdetermined non-sensical problem, lots of useless global min

• Since 𝑈, 𝑉 full dim, no constraint on 𝑋, all the same non-sense global min

2 4 5 1 4 2
3 1 2 2 5 4
4 2 4 1 3 1
3 3 4 2 4
2 3 1 4 3 2

2 2 1 4 5
2 4 1 4 2 3

1 3 1 1 4 3
4 2 2 5 3 1

𝒚 𝑋 𝑈 × 𝑉⊤=≈

What happens when we optimize by gradient descent on 𝑼,𝑽 ?

Unconstrained Matrix Completion

[Gunasekar Woodworth Bhojanapalli Neyshabur S 2017]



Gradient descent on 𝒇 𝑼, 𝑽 gets to “good” global minima

[Gunasekar Woodworth Bhojanapalli Neyshabur S 2017]



Gradient descent on 𝒇 𝑼, 𝑽 generalizes better with smaller step size

Gradient descent on 𝒇 𝑼, 𝑽 gets to “good” global minima

[Gunasekar Woodworth Bhojanapalli Neyshabur S 2017]



[Gunasekar Woodworth Bhojanapalli Neyshabur S 2017]

Grad Descent on 𝑈, 𝑉→min nuclear norm solution
argmin 𝑋 ∗ 𝑠. 𝑡. 𝑜𝑏𝑠 𝑋 = 𝑦

(with inf. small stepsize and initialization, exact and 
rigorous under additional conditions)
→ good generalization if Y (aprox) low rank



• Rigorous proof of exact convergence:

• when 𝐴𝑖s commute

• [Yuanzhi Li, Hongyang Zhang and Tengyu Ma, COLT 2018]: 
when 𝑦 = 𝒜(low rank 𝑊∗), 𝒜 RIP

• General 𝐴𝑖: empirical validation (approximate) + hand waving

Conjecture: With stepsize→0 (i.e. gradient flow) and initialization→0,

(and additional conditions?) gradient descent on 𝑈 converges 

(approximately) to minimum nuclear norm solution:

𝑈𝑈⊤ → min
𝑊≽0

𝑊 ∗ 𝑠. 𝑡.𝒜 𝑋 = 𝑦

[Gunasekar Woodworth Bhojanapalli Neyshabur S 2017]



Understand optimization algorithm not just as reaching
some (global) optimum, but as reaching a specific optimum



Implicit Bias in Least Squared
min ‖𝐴𝑤 − 𝑏‖2

• Gradient Descent (+Momentum) on 𝑤

➔ min
𝐴𝑤=𝑏

𝑤 2

• Gradient Descent on factorization 𝑊 = 𝑈𝑉

➔ probably min
𝐴 𝑊 =𝑏

𝑊 𝑡𝑟 with stepsize↘ 0 and init ↘ 0,

but only in limit, depends on stepsize, init, proved only in special cases

• AdaGrad on 𝑤

➔ in some special cases min
𝐴𝑤=𝑏

𝑤 ∞, but not always,

and it depends on stepsize, adaptation param, momentum

• Steepest Descent w.r.t. ‖𝑤‖

➔ ??? Not min
𝐴𝑤=𝑏

𝑤 , even as stepsize↘ 0 !

and it depends on stepsize, init, momentum

• Coordinate Descent (steepest descent w.r.t. 𝑤 1)

➔ Related to, but not quite the Lasso
(with stepsize↘ 0 and particular tie-breaking ≈ LARS)



Implicit Bias in Logistic Regression

arg min
𝑤∈ℝ𝑛

ℒ 𝑤 =෍

𝑖=1

𝑚

ℓ 𝑦𝑖 𝑤, 𝑥𝑖

ℓ 𝑧 = log 1 + 𝑒−𝑧

• Data 𝑥𝑖 , 𝑦𝑖 𝑖=1
𝑚 linearly separable (∃𝑤∀𝑖𝑦𝑖 𝑤, 𝑥𝑖 > 0)

• Where does gradient descent converge?
𝑤 𝑡 = 𝑤 𝑡 − 𝜂𝛻ℒ(𝑤(𝑡))

• inf ℒ 𝑤 = 0, but minima unattainable

• GD diverges to infinity: 𝑤 𝑡 → ∞, ℒ 𝑤 𝑡 → 0

• In what direction? What does 
𝑤 𝑡

𝑤 𝑡
converge to?



Implicit Bias in Logistic Regression

arg min
𝑤∈ℝ𝑛

ℒ 𝑤 =෍

𝑖=1

𝑚

ℓ 𝑦𝑖 𝑤, 𝑥𝑖

ℓ 𝑧 = log 1 + 𝑒−𝑧

• Data 𝑥𝑖 , 𝑦𝑖 𝑖=1
𝑚 linearly separable (∃𝑤∀𝑖𝑦𝑖 𝑤, 𝑥𝑖 > 0)

• Where does gradient descent converge?
𝑤 𝑡 = 𝑤 𝑡 − 𝜂𝛻ℒ(𝑤(𝑡))

• inf ℒ 𝑤 = 0, but minima unattainable

• GD diverges to infinity: 𝑤 𝑡 → ∞, ℒ 𝑤 𝑡 → 0

• In what direction? What does 
𝑤 𝑡

𝑤 𝑡
converge to?

• Theorem:  
𝑤 𝑡

𝑤 𝑡 2
→

ෝ𝑤

ෝ𝑤 2
ෝ𝑤 = argmin 𝑤 2 𝑠. 𝑡. ∀𝑖𝑦𝑖 𝑤, 𝑥𝑖 ≥ 1



Logistic Regression on Separable Data 

arg min
𝑤∈ℝ𝑛

ℒ 𝑤 =෍

𝑖=1

𝑚

ℓ 𝑦𝑖 𝑤, 𝑥𝑖

ℓ 𝑧 = log 1 + 𝑒−𝑧

Theorem:  
𝑤 𝑡

𝑤 𝑡 2
→

ෝ𝑤

ෝ𝑤 2
ෝ𝑤 = argmin 𝑤 2 𝑠. 𝑡. ∀𝑖𝑦𝑖 𝑤, 𝑥𝑖 ≥ 1

• 𝑤 𝑡 = ෝ𝑤 log 𝑡 + 𝜌(𝑡), with 𝜌(𝑡) bounded*

• Holds for any initial point 𝑤(0) and stepsize 𝜂 ≤ 2

• Holds for any monotonically decreasing strictly positive smooth loss s.t.
− ℓ′(𝑧) has a tight exponential tail

*For data in general position. With degenerate data, 𝜌 𝑡 = 𝑂 log log 𝑡

[Soudry Hoffer S ICLR 2018]



Proof sketch: (𝑦𝑖 = 1 w.l.og.)

Write 𝑤 𝑡 = 𝑔 𝑡 𝑤∞ + 𝜌(𝑡) with 𝑔 𝑡 → ∞ and 𝜌 𝑡 = 𝑜 𝑔 𝑡 . 

Since we converge to zero error, ∀𝑖 𝑤∞, 𝑥𝑖 > 0

Since the loss derivative has an exponential tail:

−𝛻ℒ 𝑤 ≈෍

𝑖

𝑒−⟨𝑤 𝑡 ,𝑥𝑖⟩𝑥𝑖
⊤ =෍

𝑖

𝑒−𝑔 𝑡 𝑤∞,𝑥𝑖 − 𝜌 𝑡 ,𝑥𝑖 𝑥𝑖
⊤

As 𝑔 𝑡 → ∞, only points with minimal 𝑤∞, 𝑥𝑖 (points on the margin, 
“support vectors”) will dominate gradient

➔ 𝛻ℒ(𝑤) spanned by support vectors

➔ 𝑤(𝑡) spanned by support vectors

Define ෝ𝑤 =
𝑤∞

min
𝑖

𝑤∞,𝑥𝑖
.  We have:

ෝ𝑤 = σ𝛼𝑖𝑤𝑖 ∀𝑖 𝛼𝑖 ≥ 0 and ෝ𝑤, 𝑥𝑖 = 1 OR 𝛼𝑖 = 0 and ෝ𝑤, 𝑥𝑖 > 1



How Fast is the Margin Maximized?

Convergence to the max margin ෝ𝑤: *
𝑤 𝑡

𝑤 𝑡
−

ෝ𝑤

ෝ𝑤
= 𝑂

1

log 𝑡

Convergence of the margin itself:

max
𝑤 ≤1

min
𝑖
𝑦𝑖⟨𝑤, 𝑥𝑖⟩ − min

𝑖
𝑦𝑖

𝑤 𝑡

𝑤 𝑡
, 𝑥𝑖 = 𝑂

1

log 𝑡

Contrast with convergence of the loss:

ℒ 𝑤 𝑡 = 𝑂
1

𝑡

➔ Even after we get extremely small loss, need to continue optimizing 
in order to maximize margin

*For data in general position. With degenerate data, 𝑂 log log 𝑡 / log 𝑡



Training a conv net using SGD+momentum on CFAIR10 



Other Objectives and Opt Methods
• Single linear unit, logistic loss

➔ hard margin SVM solution (regardless of init, stepsize)

• Multi-class problems with softmax loss
➔multiclass SVM solution (regardless of init, stepsize)

• Steepest Descent w.r.t. ‖𝑤‖

➔ argmin 𝑤 𝑠. 𝑡. ∀𝑖𝑦𝑖 𝑤, 𝑥𝑖 ≥ 1 (regardless of init, stepsize)

• Coordinate Descent

➔ argmin 𝑤 1 𝑠. 𝑡. ∀𝑖𝑦𝑖 𝑤, 𝑥𝑖 ≥ 1 (regardless of init, stepsize)

• Matrix factorization problems ℒ 𝑈, 𝑉 = σ𝑖 ℓ 𝐴𝑖 , 𝑈𝑉
⊤ ,

including 1-bit matrix completion

➔ argmin 𝑊 𝑡𝑟 𝑠. 𝑡. 𝐴𝑖 ,𝑊 ≥ 1 (regardless of init)



Different Asymptotics

• For least squares (or any other loss with attainable minimum):
• 𝑤∞ depends on initial point 𝑤0 and stepsize 𝜂

• To get clean characterization, need to take 𝜂 → 0

• If 0 is a saddle point, need to take 𝑤0 → 0

• For monotone decreasing loss (eg logistic)
• 𝑤∞ does NOT depend on initial 𝑤0 and stepsize 𝜂

• Don’t need 𝜂 → 0 and 𝑤0 → 0

• What happens at the beginning doesn’t effect 𝑤∞



Single Overparametrized Linear Unit

Train single unit with SGD using logistic (“cross entropy”) loss
→ Hard Margin SVM predictor
𝑤 ∞ ∝ argmin 𝑤 2 𝑠. 𝑡. ∀𝑖𝑦𝑖 𝑤, 𝑥𝑖 ≥ 1

Even More Overparameterization:
Deep Linear Networks

Network implements a linear mapping:
𝑓𝑤 𝑥 = ⟨𝛽𝑤 , 𝑥⟩

Training: same opt. problem as logistic regression:
min
𝑤

ℒ(𝑓𝑤) ≡ min
𝛽

ℒ 𝑥 ↦ 𝛽, 𝑥

Train 𝑤 with SGD
→ Hard Margin SVM predictor
𝛽𝑤(∞) → argmin 𝛽 2 𝑠. 𝑡. ∀𝑖𝑦𝑖 𝛽, 𝑥𝑖 ≥ 1



Linear Conv Nets

L-1 hidden layers, ℎ𝑙 ∈ ℝ𝑛, each with (one channel) full-width cyclic “convolution” 𝑤ℓ ∈ ℝ𝐷:

ℎ𝑙 𝑑 = ෍

𝑘=0

𝐷−1

𝑤𝑙 𝑘 ℎ𝑙−1[𝑑 + 𝑘 𝑚𝑜𝑑 𝐷] ℎ𝑜𝑢𝑡 = 𝑤𝐿, ℎ𝐿−1

With single conv layer (L=2), training weights with SGD

→ 𝐚𝐫𝐠𝐦𝐢𝐧 𝑫𝑭𝑻(𝜷) 𝟏 𝑠. 𝑡. ∀𝑖𝑦𝑖 𝛽, 𝑥𝑖 ≥ 1

With multiple conv layers

→ critical point of 𝐦𝐢𝐧 𝑫𝑭𝑻(𝜷) ൗ𝟐 𝑳
𝑠. 𝑡. ∀𝑖𝑦𝑖 𝛽, 𝑥𝑖 ≥ 1

for ℓ 𝑧 = exp(−𝑧), almost all linearly separable data sets and initializations 𝑤(0) and any 
bounded stepsizes s.t. ℒ → 0, and Δ𝑤(𝑡) converge in direction

Discrete Fourier Transform

[Gunasekar Lee Soudry S 2018]



min 𝜷 𝟐 𝑠. 𝑡. ∀𝑖𝑦𝑖 𝛽, 𝑥𝑖 ≥ 1

min 𝑫𝑭𝑻(𝜷) ൗ𝟐 𝑳
𝑠. 𝑡. ∀𝑖𝑦𝑖 𝛽, 𝑥𝑖 ≥ 1

min 𝜷 ൗ𝟐 𝑳
𝑠. 𝑡. ∀𝑖𝑦𝑖 𝛽, 𝑥𝑖 ≥ 1

𝑳 = 𝟐

𝑳 = 𝟓

𝑳 = 𝟓



Effect of Parametrization
• Matrix completion (also: reconstruction from linear measurements)

• 𝑋 = 𝑈𝑉 is over-parametrization of all matrices 𝑋 ∈ ℝ𝑛×𝑛

• GD on 𝑈, 𝑉➔ implicitly minimize 𝑿 ∗

[Gunasekar Woodworth Bhojanapalli Neyshabur S 2017]

• Linear Convolutional Network:
• Complex over-parametrization of linear predictors 𝛽

• GD on weight ➔ implicitly minimize 𝑫𝑭𝑻 𝜷 𝒑 for 𝑝 =
2

𝑑𝑒𝑝𝑡ℎ
.

(sparsity in frequency domain)

[Gunasekar Lee Soudry S 2018]

• Infinite Width ReLU Net with 1-d input:
• Parametrization of essentially all functions  𝑓:ℝ → ℝ
• Weight decay ➔ implicitly minimize…

max ∫ 𝒇′′ 𝒅𝒙 , 𝑓′ −∞ + 𝑓′ +∞
[Savarese Evron Soudry S 2019]



All Functions Parameter Space

𝑓

Optimization Geometry and hence Inductive Bias effected by:

• Geometry of local search in parameter space

• Choice of parameterization

𝑤



To Understand Deep Learning 
• Ultimate Question: What is the true Inductive Bias?  What makes reality 

efficiently learnable by fitting a huge (infinite) neural net with a specific 
algorithm?

• The “complexity measure” approach: identify 𝑐(ℎ) s.t.

• Reality is well explained by low 𝑐 ℎ

• ℋ𝑐 𝑟𝑒𝑎𝑙𝑖𝑡𝑦 = ℎ 𝑐 ℎ ≤ 𝑐(𝑟𝑒𝑎𝑙𝑖𝑡𝑦) has low capacity

• Opt. algorithm (with or w/o regularization?) biases towards low 𝒄(𝒉)

• Mathematical questions:

• What is the capacity (≡sample complexity) of the sublevel sets ℋ𝑐?

• What is the bias of optimization algorithms?

• Question about reality (scientific Q?): does it have low 𝑐(ℎ)?

• Alternative empirical questions:

• Do models we actually learn have low 𝑐(ℎ)?

• Does it explain generalization? 

• Can we at least corelate generalization with 𝑐 ℎ ?


