
Inductive Bias, Generalization
and the role of Optimization

in Deep Learning
Nati Srebro (TTIC)

Based on work with Behnam Neyshabur (TTIC→IAS/NYU→??), Suriya Gunasekar (TTIC→??),
Ryota Tomioka (TTIC→MSR), Srinadh Bhojanapalli (TTIC→Google),
Blake Woodworth, Pedro Savarese, Arturs Backurs, David McAllester (TTIC),
Daniel Soudry, Elad Hoffer, Mor Shpigel, Itay Sofer (Technion), Jason Lee (USC)
Russ Salakhutdinov (CMU), Ashia Wilson, Becca Roelofs, Mitchel Stern, Ben Recht (Berkeley),
Zhiyuan Li (Princeton), Yann LaCun (NYU/Facebook), Charlie Smart (UChicago).

• Supervised Learning: find ℎ:𝒳 → 𝒴 with small generalization error
𝐿 ℎ = 𝔼 𝑥,𝑦 ~𝒟 𝑙𝑜𝑠𝑠 ℎ 𝑥 ; 𝑦

based on samples 𝑆 (hopefully 𝑆 ∼ 𝒟𝑚) using learning rule:

𝐴: 𝑆 ↦ ℎ (i.e. 𝐴: 𝒳 × 𝒴 ∗ → 𝒴𝒳)

• No Free Lunch: For any learning rule, there exists a source 𝒟 (i.e. reality),
for which the learning rule yields expected error ½

• More formally for any 𝐴, 𝑚 there exists 𝒟 s.t. ∃ℎ∗𝐿 ℎ∗ = 0 but

𝔼𝑆∼𝒟𝑚 𝐿 𝐴 𝑆 ≥
1

2
−

𝑚

2 𝒳

• Inductive Bias:

• Some realities (sources 𝒟) are less likely; design 𝐴 to work well on
more likely realities

e.g., by preferring certain 𝑦|𝑥 (i.e. ℎ(𝑥)) over others

• Assumption or property of reality 𝒟 under which 𝐴 ensures good
generalization error

e.g., ∃ℎ ∈ ℋ with low 𝐿(ℎ)

e.g., ∃ℎ with low “complexity” 𝑐(ℎ) and low 𝐿(ℎ)

• “Flat” inductive bias: ∃ℎ∗ ∈ ℋ with low 𝐿(ℎ∗)

• (Almost) optimal learning rule:
𝐸𝑅𝑀ℋ 𝑆 = ℎ = argmin

ℎ∈ℋ
𝐿𝑆(ℎ)

• Guarantee (in expectation over 𝑆 ∼ 𝒟𝑚):

𝐿 𝐸𝑅𝑀ℋ 𝑆 ≤ 𝐿 ℎ∗ +ℛ𝑚 ℋ ≈ 𝐿 ℎ∗ +
𝑂 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ℋ

𝑚

➔ can learn with 𝑂(𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ℋ)

• E.g.

• For binary classification, 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ℋ = 𝑉𝐶𝑑𝑖𝑚(ℋ)

Vapnik-Chrvonenkis (VC) dimension: largest number of points 𝐷 that
can be labeled (by some ℎ ∈ ℋ) in every possible way (i.e. for which
the inductive bias is uninformative)

• For linear classifiers over 𝑑 features, 𝑉𝐶𝑑𝑖𝑚 ℋ = 𝑑

• Usually with 𝑑 parameters, 𝑉𝐶𝑑𝑖𝑚 ℋ ≈ ෨𝑂(#𝑝𝑎𝑟𝑎𝑚𝑠)

• Always: 𝑉𝐶𝑑𝑖𝑚 ℋ ≤ log ℋ = #𝑏𝑖𝑡𝑠

Flat Inductive Bias

• “Flat” inductive bias: ∃ℎ∗ ∈ ℋ with low 𝐿(ℎ∗)

• (Almost) optimal learning rule:
𝐸𝑅𝑀ℋ 𝑆 = ℎ = argmin

ℎ∈ℋ
𝐿𝑆(ℎ)

• Guarantee (in expectation over 𝑆 ∼ 𝒟𝑚):

𝐿 𝐸𝑅𝑀ℋ 𝑆 ≤ 𝐿 ℎ∗ +ℛ𝑚 ℋ ≈ 𝐿 ℎ∗ +
𝑂 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ℋ

𝑚

➔ can learn with 𝑂(𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ℋ)

• E.g.

• For binary prediction, 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ℋ = 𝑉𝐶𝑑𝑖𝑚(ℋ)

• For linear predictors over 𝑑 features, 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ℋ = 𝑑

• Usually with 𝑑 parameters, 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ℋ ≈ ෨𝑂(#𝑝𝑎𝑟𝑎𝑚𝑠)

• Always: 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ℋ ≤ #𝑏𝑖𝑡𝑠

• For linear predictors with 𝑤 2 ≤ 𝐵, with logistic loss and
normalized data: 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ℋ = 𝐵2

Flat Inductive Bias

Machine Learning

• We want model classes (hypothesis classes) that:
• Are expressive enough to capture reality well

• Have small enough capacity to allow generalization

reality

Complexity Measure as Inductive Bias
• Complexity measure: mapping 𝑐: 𝒴𝒳 → [0,∞]

• Associated inductive bias: ∃ℎ with small 𝑐(ℎ) and small 𝐿(ℎ)

• Learning rule: 𝑆𝑅𝑀ℋ 𝑆 = argmin 𝐿 ℎ , 𝑐(ℎ)

e.g. argmin 𝐿 ℎ + 𝜆 𝑐(ℎ) or argmin 𝐿 ℎ s.t. 𝑐 ℎ ≤ 𝐵

and choose 𝜆 or 𝐵 using cross-validation

• Guarantee:

𝐿 𝑆𝑅𝑀ℋ 𝑆 ≤≈ 𝐿 ℎ∗ +
𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ℋ𝑐 ℎ∗

𝑚

• E.g.:

• Degree of poly

• Sparsity

• ‖𝑤‖

ℋ𝐵 = ℎ 𝑐 ℎ ≤ 𝐵

reality

Beyond ERM: Implicit Inductive Bias
• The one-pass-SGD learning rule for linear predictors ℎ𝑤 𝑥 = ⟨𝑤, 𝑥⟩

𝑆𝐺𝐷 𝑆 =
1

𝑚
σ𝑖=1
𝑚 𝑤𝑖 where 𝑤𝑖+1 = 𝑤𝑖 − 𝜂∇𝑙𝑜𝑠𝑠 𝑤, 𝑥𝑖 ; 𝑦𝑖

• Theorem: If 𝑙𝑜𝑠𝑠′ ≤ 1 and 𝑥 ≤ 1, then with 𝑤0 = 0 and appropriate 𝜂

𝐿 𝑆𝐺𝐷 𝑆 ≤ 𝐿 𝑤∗ +
𝑤 2

𝑚

• Inductive bias: 𝑐 ℎ𝑤 = 𝑤 2

𝑤 0

ഥ𝑤 𝑚

ෝ𝑤
𝑤∗

𝑂
‖𝑤∗‖2

𝑚

ෝ𝑤 = arg min
𝑤 ≤𝐵

𝐿𝑆(𝑤)

ℋ or 𝑐(ℎ) ERM or SRM

𝑤 2 SGD

𝑃(𝑦|𝑥) smooth w.r.t 𝑑(𝑥, 𝑥’) Nearest Neighbor

sparsity or 𝑤 1 Exp GD (Mult Weights)

𝑐 ℎ Mirror Descent with potential ≈ 𝑐(ℎ)

Inductive
Bias Learning

Rule

Explicit and Implicit Inductive Bias

Feed-Forward Neural Networks
(The Multilayer Perceptron)

𝑣1

𝑣2

𝑣3

𝑣𝑑
𝑢

𝑣

𝑣𝑜𝑢𝑡

Architecture:

• Directed Acyclic Graph G(V,E). Units (neurons) indexed by vertices in V.

• “Input Units” 𝑣1…𝑣𝑑 ∈ 𝑉, with no incoming edges and 𝑜 𝑣𝑖 = 𝑥[𝑖]

• “Output Unit” 𝑣𝑜𝑢𝑡 ∈ 𝑉, ℎ𝑤 𝑥 = 𝑜 𝑣𝑜𝑢𝑡

• “Activation Function” 𝜎:ℝ → ℝ. E.g. 𝜎 𝑧 = 𝑠𝑖𝑔𝑛 𝑧 or 𝜎 𝑧 =

Parameters:

• Weight 𝑤[𝑢 → 𝑣] for each edge 𝑢 → 𝑣 ∈ 𝐸

𝑎[𝑣] =

𝑢→𝑣∈𝐸

𝑤[𝑢 → 𝑣] 𝑜[𝑢]

𝑜 𝑣 = 𝜎(𝑎 𝑣)

𝑥[1]

𝑥[2]

𝑥[3]

𝑥[𝑑]

⋯

ℎ𝐺 𝑉,𝐸 ,𝜎,𝑤 𝑥

Feed-Forward Neural Networks
as a Hypothesis Class
ℋ𝐺 𝑉,𝐸 ,𝜎 = ℎ𝐺 𝑉,𝐸 ,𝜎,𝑤 | 𝑤: 𝐸 → ℝ

or ℋ𝐺 𝑉,𝐸 ,𝜎
𝑠𝑖𝑔𝑛

= 𝑠𝑖𝑔𝑛 ℎ𝐺 𝑉,𝐸 ,𝜎,𝑤 | 𝑤: 𝐸 → ℝ

• Hypothesis class specified by: (ie we decide on this in advance)
• Graph G(V,E)

• V includes input, output and “hidden” nodes
• Activation function 𝜎

e.g. sign 𝑧 ,

tanh(𝑧), sigmoid 𝑧 =
1

1+𝑒−𝑧
,

relu 𝑧 = max 0, 𝑧 ,

ramp 𝑧 = 𝑐𝑙𝑖𝑝 −1,1 𝑧

• Hypothesis specified by: (ie we need to learn)
• Weights 𝑤, with weight 𝑤[𝑢 → 𝑣] for each edge 𝑢 → 𝑣 ∈ 𝐸

Feed Forward Neural Networks
• Fix architecture (connection graph 𝐺(𝑉, 𝐸), transfer 𝜎)

ℋ𝐺 𝑉,𝐸 ,𝜎 = 𝑓𝑤 𝑥 = 𝑜𝑢𝑡𝑝𝑢𝑡 𝑜𝑓 𝑛𝑒𝑡 𝑤𝑖𝑡ℎ 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑤

• Capacity / Generalization ability / Sample Complexity

• Expressive Power / Approximation

Capacity (Sample Complexity) of NN

• #params = |𝐸| (number of weights we need to learn)

• More formally: 𝑉𝐶𝑑𝑖𝑚 ℋ𝐺 𝑉,𝐸 ,𝑠𝑖𝑔𝑛 = 𝑂(𝐸 log 𝐸)

• Other activation functions?

• 𝑉𝐶𝑑𝑖𝑚 ℋ𝐺(𝑉,𝐸),sin = ∞ even with single unit and single real-valued input

• For 𝜎 𝑧 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑧 =
1

1+𝑒−𝑧
:

Ω 𝐸 2 ≤ 𝑉𝐶𝑑𝑖𝑚(ℋ𝐺 𝑉,𝐸 ,sigmoid) ≤ 𝑂(𝐸 4)

• For piecewise linear, e.g. 𝑟𝑎𝑚𝑝 𝑧 = 𝑐𝑙𝑖𝑝 −1,1 (𝑧) or 𝑅𝑒𝐿𝑈 𝑧 = max 0, 𝑧 :

Ω 𝐸 𝐿 log ൗ𝐸 𝐿 ≤ 𝑉𝐶𝑑𝑖𝑚(ℋ𝐺,𝜎) ≤ 𝑂(𝐸 𝐿 log 𝐸)

• With integer weights ∈ [−𝐵, . . , 𝐵]:

𝑉𝐶𝑑𝑖𝑚 ℋ𝐺 𝑉,𝐸 ,𝜎 ≤ log ℋ𝐺 𝑉,𝐸 ,𝜎 ≤ 2 𝐸 log𝐵

L=depth

Feed Forward Neural Networks
• Fix architecture (connection graph 𝐺(𝑉, 𝐸), transfer 𝜎)

ℋ𝐺 𝑉,𝐸 ,𝜎 = 𝑓𝑤 𝑥 = 𝑜𝑢𝑡𝑝𝑢𝑡 𝑜𝑓 𝑛𝑒𝑡 𝑤𝑖𝑡ℎ 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑤

• Capacity / Generalization ability / Sample Complexity

• ෩𝑶(𝑬) (number of edges, i.e. number of weights)
(with threshold 𝜎, or with RELU and finite precision; RELU with inf precision: ෩Θ 𝐸 ⋅ 𝑑𝑒𝑝𝑡ℎ)

• Expressive Power / Approximation

What can Feed-Forward Networks Represent?

• Any function over 𝒳 = ±1 𝑛

• With a single hidden layer, using DNF (hidden layer does AND, output does OR)

• 𝑉 = 2𝑛, 𝐸 = 𝑛2𝑛

• Like representing the truth table directly…

• Universal Representation Theorem: Any continuous functions
𝑓: 0,1 𝑛 → ℝ can be approximated to within any 𝜖 by a feed-forward
network with sigmoidal (or almost any other) activation and a single
hidden layer.
• Size of layer exponential in n

What can SMALL Networks Represent?

• Intersection of halfspaces
• Using single hidden layer

• Union of intersection of halfspaces (and also sorting, more fun
stuff, …)
• Using two hidden layers

What can SMALL Networks Represent?

• Intersection of halfspaces
• Using single hidden layer

• Union of intersection of halfspaces (and also sorting, more fun
stuff, …)
• Using two hidden layers

• Functions representable by a small logical circuit
• Implement AND using single unit, negation by reversing weight

• Functions that depend on lower level features

Multi-Layer Feature Learning

Feed Forward Neural Networks
• Fix architecture (connection graph 𝐺(𝑉, 𝐸), transfer 𝜎)

ℋ𝐺 𝑉,𝐸 ,𝜎 = 𝑓𝑤 𝑥 = 𝑜𝑢𝑡𝑝𝑢𝑡 𝑜𝑓 𝑛𝑒𝑡 𝑤𝑖𝑡ℎ 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑤

• Capacity / Generalization ability / Sample Complexity

• ෩𝑶(𝑬) (number of edges, i.e. number of weights)
(with threshold 𝜎, or with RELU and finite precision; RELU with inf precision: ෩Θ 𝐸 ⋅ 𝑑𝑒𝑝𝑡ℎ)

• Expressive Power / Approximation

• Any continuous function with huge network

• Lots of interesting things naturally with small networks

• Any time T computable function with network of size ෩𝑶(𝑻)

Free Lunches
• ML as an Engineering Paradigm: Use data and examples, instead of expert

knowledge and tedious programming, to automatically create efficient
systems that perform complex tasks

• We only care about ℎ ℎ is an efficient system

• Free Lunch: 𝑻𝑰𝑴𝑬𝑻 = ℎ ℎ comp. in time 𝑇 has capacity 𝑂(𝑇) and
hence learnable with 𝑂(𝑇) samples, e.g. using ERM

• Even better: 𝑷𝑹𝑶𝑮𝑻 = program of length T has capacity 𝑂(𝑇)
• 𝑃𝑅𝑂𝐺𝑇 = 128𝑇 ➔ capacity ≤ log 𝑃𝑅𝑂𝐺𝑇 = 𝑂(𝑇)

• Problem: ERM for above is not computable!

• Modified ERM for 𝑻𝑰𝑴𝑬𝑻 (truncating exec. time) is NP-complete

• P=NP ➔ Universal Learning is possible! (Free Lunch)

• Crypto is possible (one-way functions exist)
➔ No poly-time learning algorithm for 𝑻𝑰𝑴𝑬𝑻
(that is: no poly-time 𝐴 and uses 𝑝𝑜𝑙𝑦(𝑇) samples s.t. if ∃ℎ∗ ∈ 𝑇𝐼𝑀𝐸𝑇
with 𝐿 ℎ∗ = 0 then 𝔼 𝐿 𝐴 𝑆 ≤ 0.499)

No Free (Computational) Lunch
• Statistical No-Free Lunch: For any learning rule A, there exists a source 𝒟

(i.e. reality), s.t. ∃ℎ∗ with 𝐿 ℎ∗ = 0 but 𝔼 𝐿 𝐴 𝑆 ≈
1

2
.

• Cheating Free Lunch: There exists A, s.t. for any reality 𝒟 and any
efficiently computable 𝒉∗, 𝐴 learns a predictor almost as good as ℎ∗

(with #samples=O(runtime of ℎ∗)).

• Computational No-Free Lunch: For every computationally efficient
learning algorithm 𝑨, there is a reality 𝒟 s.t. there is some comp. efficient

(poly-time) ℎ∗ with 𝐿 ℎ∗ = 0 but 𝔼 𝐿 𝐴 𝑆 ≈
1

2
.

• Inductive Bias: Assumption or property of reality 𝒟 under which a learning
algorithm 𝐴 runs efficiently and ensures good generalization error.

• ℋ or 𝑐(ℎ) are not sufficient inductive bias if ERM/SRM not efficiently
implementable, or implementation doesn’t always work (runs quickly and
returns actual ERM/SRM).

Feed Forward Neural Networks
• Capacity / Generalization ability / Sample Complexity

• ෩𝑶(𝑬) (number of edges, i.e. number of weights)
(with threshold 𝜎, or with RELU and finite precision; RELU with inf precision: ෩Θ 𝐸 ⋅ 𝑑𝑒𝑝𝑡ℎ)

• Expressive Power / Approximation

• Any continuous function with huge network

• Lots of interesting things naturally with small networks

• Any time T computable function with network of size ෩𝑶(𝑻)

• Computation / Optimization

• Non-convex

• No known algorithm guaranteed to work

• NP-hard to find weights even with 2 hidden units

• Even if function exactly representable with single hidden layer with
Θ log𝑑 units, even with no noise, and even if we train a much larger
network or use any other method when learning: no poly-time algorithm
can ensure better-than-chance prediction
[Kearns Valiant 94; Klivans Sherstov 06; Daniely Linial Shalev-Shwartz ’14]

Choose your universal learner:

Short Programs

• Universal
• Captures anything we want

with reasonable sample
complexity

• Provably (worst case) hard
to optimize

• Hard to optimize in practice

Deep Networks

• Universal
• Captures anything we want

with reasonable sample
complexity

• Provably (worst case) hard
to optimize

• Often easy to optimize
• Continuous
• Amenable to local search,

stochastic local search
• Lots of empirical success

Feed Forward Neural Networks
• Capacity / Generalization ability / Sample Complexity

• ෩𝑶(𝑬) (number of edges, i.e. number of weights)
(with threshold 𝜎, or with RELU and finite precision; RELU with inf precision: ෩Θ 𝐸 ⋅ 𝑑𝑒𝑝𝑡ℎ)

• Expressive Power / Approximation

• Any continuous function with huge network

• Lots of interesting things naturally with small networks

• Any time T computable function with network of size ෩𝑶(𝑻)

• Computation / Optimization

• Even if function exactly representable with single hidden layer with
Θ log𝑑 units, even with no noise, and even if we allow a much larger
network when learning: no poly-time algorithm always works
[Kearns Valiant 94; Klivans Sherstov 06; Daniely Linial Shalev-Shwartz ’14]

• Often easy to optimize in practice, on interesting/useful problems

• Magic property of reality that makes local search “work”

[Neyshabur Tomioka S ICLR’15]

[Neyshabur Tomioka S ICLR’15]

[Neyshabur Tomioka S ICLR’15]

1997

reality

fit random labels

E.g., hard margin SVM: min‖𝑤‖ s.t. 𝐿𝑆
𝑚𝑎𝑟𝑔𝑖𝑛

𝑤 = 0

for ℎ𝑤 = ⟨𝑤, 𝜙 𝑥 ⟩ with inf dim 𝜙

𝒉 ‖𝒉‖ ≤ 𝒓𝒆𝒂𝒍𝒊𝒕𝒚

reality

fit random labels

E.g., hard margin SVM: min‖𝑤‖ s.t. 𝐿𝑆
𝑚𝑎𝑟𝑔𝑖𝑛

𝑤 = 0

for ℎ𝑤 = ⟨𝑤, 𝜙 𝑥 ⟩ with inf dim 𝜙

𝒉 ‖𝒉‖ ≤ 𝒓𝒆𝒂𝒍𝒊𝒕𝒚

AdaBoost

Training
error

Test
error

T=5

T=1000

T=100

[Bartlett, Freund, Lee, Schapire 1998]

ℓ1 margin:
𝑦 𝑤,𝑥

𝑤 1

32 64 256 1K 4K

#Hidden Units

N
o

rm

1%

2%

3%

4%

T
e

s
t
E

rr
o

r

“Size of Weights” and Generalization

Norm = 𝑊 2 = σ𝑒𝑤 𝑒 2 Path-Norm = σpathς𝑒∈path𝑤 𝑒 2

reality

32 64 256 1K 4K

#Hidden Units

N
o

rm

1%

2%

3%

4%

T
e

s
t
E

rr
o

r

“Size of Weights” and Generalization

Norm = 𝑊 2 = σ𝑒𝑤 𝑒 2

Path Norm
0

0.5

1

T
e

s
t

E
rr

o
r

Path-Norm = σpathς𝑒∈path𝑤 𝑒 2

• What is the relevant “complexity measure” (eg norm)?
• How is this minimized (or controlled) by the optimization

algorithm?
• How does it change if we change the opt algorithm?

Where is the Regularization?
• What we did: minimize unregularized error to convergence

• In convex models, we understand how one-pass SGD (or with early
stopping) provides for implicit ℓ2 regularization
• More generally, Mirror Descent provides generalization w.r.t. any* inductive

bias [S Sridharan Tewar, On the Universality of Mirror Descent, NIPS’11]

• Inductive Bias choice of potential for Mirror Descent

• Here: implicit regularization, without early stopping, and even with
deterministic optimization

• In underdetermined problem (lots of global optima), optimization is biasing
us toward specific global optimum.

Different optimization algorithm
➔ Different Bias

➔ Different generalization properties

Cross-Entropy
Training Loss

0/1 Training Error 0/1 Test Error

M
N

IS
T

0 50 100 150 200 250 300
0.015

0.02

0.025

0.03

0.035

0 50 100 150 200 250 300
0

0.005

0.01

0.015

0.02

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

0 50 100 150 200 250 300
0.4

0.42

0.44

0.46

0.48

0.5
Path-SGD
SGD

C
IF

A
R

-1
0

0 50 100 150 200 250 300
0.4

0.42

0.44

0.46

0.48

0.5

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

SV
H

N

0 100 200 300 400
0.12

0.13

0.14

0.15

0.16

0.17

0.18

0 100 200 300 400
0

0.1

0.2

0.3

0.4

0 100 200 300 400
0

0.5

1

1.5

2

2.5

0 100 200 300 400
0.65

0.7

0.75

0 100 200 300 400
0

0.2

0.4

0.6

0.8

0 100 200 300 400
0

1

2

3

4

5

Epoch Epoch

C
IF

A
R

-1
0

0

W
it

h
 D

ro
p

o
u

t

[Neyshabur Salakhudtinov S NIPS’15]

SGD vs ADAM

Te
st

 E
rr

o
r

(P
re

p
le

xi
ty

)

Tr
ai

n
iE

rr
o

r
(P

re
p

le
xi

ty
)

Results on Penn Treebank using 3-layer LSTM

[Wilson Roelofs Stern S Recht, “The Marginal Value of
Adaptive Gradient Methods in Machine Learning”, NIPS’17]

Simple Example: Least Squares

• Consider an under-constraint least-squares problem (𝑛 < 𝑚):
min
𝑤∈ℝ𝑛

‖𝐴𝑤 − 𝑏‖2

𝐴 ∈ ℝ𝑚×𝑛

• Claim: Gradient Descent (or SGD, or conjugate gradient descent, or
BFGS) converges to the least norm solution

min
𝐴𝑤=𝑏

𝑤 2

➢Proof: iterates always spanned by rows of 𝐴 (more details soon)

reality

The Deep Recurrent Residual Boosting Machine
Joe Flow, DeepFace Labs

Section 1: Introduction
We suggest a new amazing architecture and loss function
that is great for learning. All you have to do to learn is fit
the model on your training data

Section 2: Learning Contribution: our model
The model class ℎ𝑤 is amazing. Our learning method is:

𝐚𝐫𝐠𝐦𝐢𝐧
𝒘

𝟏

𝒎
σ𝒊=𝟏
𝒎 𝒍𝒐𝒔𝒔(𝒉𝒘 𝒙 ; 𝒚) (*)

Section 3: Optimization
This is how we solve the optimization problem (*): […]

Section 4: Experiments
It works!

Different optimization algorithm
➔ Different bias in optimum reached

➔ Different Inductive bias
➔ Different generalization properties

To Understand Deep Learning
• Ultimate Question: What is the true Inductive Bias? What makes reality

efficiently learnable by fitting a huge (infinite) neural net with a specific
algorithm?

• The “complexity measure” approach: identify 𝑐(ℎ) s.t.

• Reality is well explained by low 𝑐 ℎ

• ℋ𝑐 𝑟𝑒𝑎𝑙𝑖𝑡𝑦 = ℎ 𝑐 ℎ ≤ 𝑐(𝑟𝑒𝑎𝑙𝑖𝑡𝑦) has low capacity

• Opt. algorithm (with or w/o regularization?) biases towards low 𝑐(ℎ)

• Mathematical questions:

• What is the capacity (≡sample complexity) of the sublevel sets ℋ𝑐?

• What is the bias of optimization algorithms?

• Question about reality (scientific Q?): does it have low 𝑐(ℎ)?

• Alternative empirical questions:

• Do models we actually learn have low 𝑐(ℎ)?

• Does it explain generalization?

• Can we at least corelate generalization with 𝑐 ℎ ?

min
𝑋∈ℝ𝑛×𝑛

𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑋 − 𝑦 2
2 ≡ min

𝑈,𝑉∈ℝ𝑛×𝑛
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑈𝑉⊤ − 𝑦 2

2

• Underdetermined non-sensical problem, lots of useless global min

• Since 𝑈, 𝑉 full dim, no constraint on 𝑋, all the same non-sense global min

2 4 5 1 4 2
3 1 2 2 5 4
4 2 4 1 3 1
3 3 4 2 4
2 3 1 4 3 2

2 2 1 4 5
2 4 1 4 2 3

1 3 1 1 4 3
4 2 2 5 3 1

𝒚 𝑋 𝑈 × 𝑉⊤=≈

What happens when we optimize by gradient descent on 𝑼,𝑽 ?

Unconstrained Matrix Completion

[Gunasekar Woodworth Bhojanapalli Neyshabur S 2017]

Gradient descent on 𝒇 𝑼, 𝑽 gets to “good” global minima

[Gunasekar Woodworth Bhojanapalli Neyshabur S 2017]

Gradient descent on 𝒇 𝑼, 𝑽 generalizes better with smaller step size

Gradient descent on 𝒇 𝑼, 𝑽 gets to “good” global minima

[Gunasekar Woodworth Bhojanapalli Neyshabur S 2017]

[Gunasekar Woodworth Bhojanapalli Neyshabur S 2017]

Grad Descent on 𝑈, 𝑉→min nuclear norm solution
argmin 𝑋 ∗ 𝑠. 𝑡. 𝑜𝑏𝑠 𝑋 = 𝑦

(with inf. small stepsize and initialization, exact and
rigorous under additional conditions)
→ good generalization if Y (aprox) low rank

• Rigorous proof of exact convergence:

• when 𝐴𝑖s commute

• [Yuanzhi Li, Hongyang Zhang and Tengyu Ma, COLT 2018]:
when 𝑦 = 𝒜(low rank 𝑊∗), 𝒜 RIP

• General 𝐴𝑖: empirical validation (approximate) + hand waving

Conjecture: With stepsize→0 (i.e. gradient flow) and initialization→0,

(and additional conditions?) gradient descent on 𝑈 converges

(approximately) to minimum nuclear norm solution:

𝑈𝑈⊤ → min
𝑊≽0

𝑊 ∗ 𝑠. 𝑡.𝒜 𝑋 = 𝑦

[Gunasekar Woodworth Bhojanapalli Neyshabur S 2017]

Understand optimization algorithm not just as reaching
some (global) optimum, but as reaching a specific optimum

Implicit Bias in Least Squared
min ‖𝐴𝑤 − 𝑏‖2

• Gradient Descent (+Momentum) on 𝑤

➔ min
𝐴𝑤=𝑏

𝑤 2

• Gradient Descent on factorization 𝑊 = 𝑈𝑉

➔ probably min
𝐴 𝑊 =𝑏

𝑊 𝑡𝑟 with stepsize↘ 0 and init ↘ 0,

but only in limit, depends on stepsize, init, proved only in special cases

• AdaGrad on 𝑤

➔ in some special cases min
𝐴𝑤=𝑏

𝑤 ∞, but not always,

and it depends on stepsize, adaptation param, momentum

• Steepest Descent w.r.t. ‖𝑤‖

➔ ??? Not min
𝐴𝑤=𝑏

𝑤 , even as stepsize↘ 0 !

and it depends on stepsize, init, momentum

• Coordinate Descent (steepest descent w.r.t. 𝑤 1)

➔ Related to, but not quite the Lasso
(with stepsize↘ 0 and particular tie-breaking ≈ LARS)

Implicit Bias in Logistic Regression

arg min
𝑤∈ℝ𝑛

ℒ 𝑤 =

𝑖=1

𝑚

ℓ 𝑦𝑖 𝑤, 𝑥𝑖

ℓ 𝑧 = log 1 + 𝑒−𝑧

• Data 𝑥𝑖 , 𝑦𝑖 𝑖=1
𝑚 linearly separable (∃𝑤∀𝑖𝑦𝑖 𝑤, 𝑥𝑖 > 0)

• Where does gradient descent converge?
𝑤 𝑡 = 𝑤 𝑡 − 𝜂𝛻ℒ(𝑤(𝑡))

• inf ℒ 𝑤 = 0, but minima unattainable

• GD diverges to infinity: 𝑤 𝑡 → ∞, ℒ 𝑤 𝑡 → 0

• In what direction? What does
𝑤 𝑡

𝑤 𝑡
converge to?

Implicit Bias in Logistic Regression

arg min
𝑤∈ℝ𝑛

ℒ 𝑤 =

𝑖=1

𝑚

ℓ 𝑦𝑖 𝑤, 𝑥𝑖

ℓ 𝑧 = log 1 + 𝑒−𝑧

• Data 𝑥𝑖 , 𝑦𝑖 𝑖=1
𝑚 linearly separable (∃𝑤∀𝑖𝑦𝑖 𝑤, 𝑥𝑖 > 0)

• Where does gradient descent converge?
𝑤 𝑡 = 𝑤 𝑡 − 𝜂𝛻ℒ(𝑤(𝑡))

• inf ℒ 𝑤 = 0, but minima unattainable

• GD diverges to infinity: 𝑤 𝑡 → ∞, ℒ 𝑤 𝑡 → 0

• In what direction? What does
𝑤 𝑡

𝑤 𝑡
converge to?

• Theorem:
𝑤 𝑡

𝑤 𝑡 2
→

ෝ𝑤

ෝ𝑤 2
ෝ𝑤 = argmin 𝑤 2 𝑠. 𝑡. ∀𝑖𝑦𝑖 𝑤, 𝑥𝑖 ≥ 1

Logistic Regression on Separable Data

arg min
𝑤∈ℝ𝑛

ℒ 𝑤 =

𝑖=1

𝑚

ℓ 𝑦𝑖 𝑤, 𝑥𝑖

ℓ 𝑧 = log 1 + 𝑒−𝑧

Theorem:
𝑤 𝑡

𝑤 𝑡 2
→

ෝ𝑤

ෝ𝑤 2
ෝ𝑤 = argmin 𝑤 2 𝑠. 𝑡. ∀𝑖𝑦𝑖 𝑤, 𝑥𝑖 ≥ 1

• 𝑤 𝑡 = ෝ𝑤 log 𝑡 + 𝜌(𝑡), with 𝜌(𝑡) bounded*

• Holds for any initial point 𝑤(0) and stepsize 𝜂 ≤ 2

• Holds for any monotonically decreasing strictly positive smooth loss s.t.
− ℓ′(𝑧) has a tight exponential tail

*For data in general position. With degenerate data, 𝜌 𝑡 = 𝑂 log log 𝑡

[Soudry Hoffer S ICLR 2018]

Proof sketch: (𝑦𝑖 = 1 w.l.og.)

Write 𝑤 𝑡 = 𝑔 𝑡 𝑤∞ + 𝜌(𝑡) with 𝑔 𝑡 → ∞ and 𝜌 𝑡 = 𝑜 𝑔 𝑡 .

Since we converge to zero error, ∀𝑖 𝑤∞, 𝑥𝑖 > 0

Since the loss derivative has an exponential tail:

−𝛻ℒ 𝑤 ≈

𝑖

𝑒−⟨𝑤 𝑡 ,𝑥𝑖⟩𝑥𝑖
⊤ =

𝑖

𝑒−𝑔 𝑡 𝑤∞,𝑥𝑖 − 𝜌 𝑡 ,𝑥𝑖 𝑥𝑖
⊤

As 𝑔 𝑡 → ∞, only points with minimal 𝑤∞, 𝑥𝑖 (points on the margin,
“support vectors”) will dominate gradient

➔ 𝛻ℒ(𝑤) spanned by support vectors

➔ 𝑤(𝑡) spanned by support vectors

Define ෝ𝑤 =
𝑤∞

min
𝑖

𝑤∞,𝑥𝑖
. We have:

ෝ𝑤 = σ𝛼𝑖𝑤𝑖 ∀𝑖 𝛼𝑖 ≥ 0 and ෝ𝑤, 𝑥𝑖 = 1 OR 𝛼𝑖 = 0 and ෝ𝑤, 𝑥𝑖 > 1

How Fast is the Margin Maximized?

Convergence to the max margin ෝ𝑤: *
𝑤 𝑡

𝑤 𝑡
−

ෝ𝑤

ෝ𝑤
= 𝑂

1

log 𝑡

Convergence of the margin itself:

max
𝑤 ≤1

min
𝑖
𝑦𝑖⟨𝑤, 𝑥𝑖⟩ − min

𝑖
𝑦𝑖

𝑤 𝑡

𝑤 𝑡
, 𝑥𝑖 = 𝑂

1

log 𝑡

Contrast with convergence of the loss:

ℒ 𝑤 𝑡 = 𝑂
1

𝑡

➔ Even after we get extremely small loss, need to continue optimizing
in order to maximize margin

*For data in general position. With degenerate data, 𝑂 log log 𝑡 / log 𝑡

Training a conv net using SGD+momentum on CFAIR10

Other Objectives and Opt Methods
• Single linear unit, logistic loss

➔ hard margin SVM solution (regardless of init, stepsize)

• Multi-class problems with softmax loss
➔multiclass SVM solution (regardless of init, stepsize)

• Steepest Descent w.r.t. ‖𝑤‖

➔ argmin 𝑤 𝑠. 𝑡. ∀𝑖𝑦𝑖 𝑤, 𝑥𝑖 ≥ 1 (regardless of init, stepsize)

• Coordinate Descent

➔ argmin 𝑤 1 𝑠. 𝑡. ∀𝑖𝑦𝑖 𝑤, 𝑥𝑖 ≥ 1 (regardless of init, stepsize)

• Matrix factorization problems ℒ 𝑈, 𝑉 = σ𝑖 ℓ 𝐴𝑖 , 𝑈𝑉
⊤ ,

including 1-bit matrix completion

➔ argmin 𝑊 𝑡𝑟 𝑠. 𝑡. 𝐴𝑖 ,𝑊 ≥ 1 (regardless of init)

Different Asymptotics

• For least squares (or any other loss with attainable minimum):
• 𝑤∞ depends on initial point 𝑤0 and stepsize 𝜂

• To get clean characterization, need to take 𝜂 → 0

• If 0 is a saddle point, need to take 𝑤0 → 0

• For monotone decreasing loss (eg logistic)
• 𝑤∞ does NOT depend on initial 𝑤0 and stepsize 𝜂

• Don’t need 𝜂 → 0 and 𝑤0 → 0

• What happens at the beginning doesn’t effect 𝑤∞

Single Overparametrized Linear Unit

Train single unit with SGD using logistic (“cross entropy”) loss
→ Hard Margin SVM predictor
𝑤 ∞ ∝ argmin 𝑤 2 𝑠. 𝑡. ∀𝑖𝑦𝑖 𝑤, 𝑥𝑖 ≥ 1

Even More Overparameterization:
Deep Linear Networks

Network implements a linear mapping:
𝑓𝑤 𝑥 = ⟨𝛽𝑤 , 𝑥⟩

Training: same opt. problem as logistic regression:
min
𝑤

ℒ(𝑓𝑤) ≡ min
𝛽

ℒ 𝑥 ↦ 𝛽, 𝑥

Train 𝑤 with SGD
→ Hard Margin SVM predictor
𝛽𝑤(∞) → argmin 𝛽 2 𝑠. 𝑡. ∀𝑖𝑦𝑖 𝛽, 𝑥𝑖 ≥ 1

Linear Conv Nets

L-1 hidden layers, ℎ𝑙 ∈ ℝ𝑛, each with (one channel) full-width cyclic “convolution” 𝑤ℓ ∈ ℝ𝐷:

ℎ𝑙 𝑑 =

𝑘=0

𝐷−1

𝑤𝑙 𝑘 ℎ𝑙−1[𝑑 + 𝑘 𝑚𝑜𝑑 𝐷] ℎ𝑜𝑢𝑡 = 𝑤𝐿, ℎ𝐿−1

With single conv layer (L=2), training weights with SGD

→ 𝐚𝐫𝐠𝐦𝐢𝐧 𝑫𝑭𝑻(𝜷) 𝟏 𝑠. 𝑡. ∀𝑖𝑦𝑖 𝛽, 𝑥𝑖 ≥ 1

With multiple conv layers

→ critical point of 𝐦𝐢𝐧 𝑫𝑭𝑻(𝜷) ൗ𝟐 𝑳
𝑠. 𝑡. ∀𝑖𝑦𝑖 𝛽, 𝑥𝑖 ≥ 1

for ℓ 𝑧 = exp(−𝑧), almost all linearly separable data sets and initializations 𝑤(0) and any
bounded stepsizes s.t. ℒ → 0, and Δ𝑤(𝑡) converge in direction

Discrete Fourier Transform

[Gunasekar Lee Soudry S 2018]

min 𝜷 𝟐 𝑠. 𝑡. ∀𝑖𝑦𝑖 𝛽, 𝑥𝑖 ≥ 1

min 𝑫𝑭𝑻(𝜷) ൗ𝟐 𝑳
𝑠. 𝑡. ∀𝑖𝑦𝑖 𝛽, 𝑥𝑖 ≥ 1

min 𝜷 ൗ𝟐 𝑳
𝑠. 𝑡. ∀𝑖𝑦𝑖 𝛽, 𝑥𝑖 ≥ 1

𝑳 = 𝟐

𝑳 = 𝟓

𝑳 = 𝟓

Effect of Parametrization
• Matrix completion (also: reconstruction from linear measurements)

• 𝑋 = 𝑈𝑉 is over-parametrization of all matrices 𝑋 ∈ ℝ𝑛×𝑛

• GD on 𝑈, 𝑉➔ implicitly minimize 𝑿 ∗

[Gunasekar Woodworth Bhojanapalli Neyshabur S 2017]

• Linear Convolutional Network:
• Complex over-parametrization of linear predictors 𝛽

• GD on weight ➔ implicitly minimize 𝑫𝑭𝑻 𝜷 𝒑 for 𝑝 =
2

𝑑𝑒𝑝𝑡ℎ
.

(sparsity in frequency domain)

[Gunasekar Lee Soudry S 2018]

• Infinite Width ReLU Net with 1-d input:
• Parametrization of essentially all functions 𝑓:ℝ → ℝ
• Weight decay ➔ implicitly minimize…

max ∫ 𝒇′′ 𝒅𝒙 , 𝑓′ −∞ + 𝑓′ +∞
[Savarese Evron Soudry S 2019]

All Functions Parameter Space

𝑓

Optimization Geometry and hence Inductive Bias effected by:

• Geometry of local search in parameter space

• Choice of parameterization

𝑤

To Understand Deep Learning
• Ultimate Question: What is the true Inductive Bias? What makes reality

efficiently learnable by fitting a huge (infinite) neural net with a specific
algorithm?

• The “complexity measure” approach: identify 𝑐(ℎ) s.t.

• Reality is well explained by low 𝑐 ℎ

• ℋ𝑐 𝑟𝑒𝑎𝑙𝑖𝑡𝑦 = ℎ 𝑐 ℎ ≤ 𝑐(𝑟𝑒𝑎𝑙𝑖𝑡𝑦) has low capacity

• Opt. algorithm (with or w/o regularization?) biases towards low 𝒄(𝒉)

• Mathematical questions:

• What is the capacity (≡sample complexity) of the sublevel sets ℋ𝑐?

• What is the bias of optimization algorithms?

• Question about reality (scientific Q?): does it have low 𝑐(ℎ)?

• Alternative empirical questions:

• Do models we actually learn have low 𝑐(ℎ)?

• Does it explain generalization?

• Can we at least corelate generalization with 𝑐 ℎ ?

