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Statistical Learning Theory

Probabilistic Formulations of Prediction Problems

Aim: Predict an outcome y from some set Y of possible outcomes,
on the basis of some observation x from a feature space X .

Use data set of n pairs:

(x1, y1), . . . , (xn, yn),

to choose a function f : X → Y so that, for subsequent (x , y) pairs, f (x)
is a good prediction of y .
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Prediction with Deep Networks

Use training data to choose parameters

Evaluate on subsequent data

(microsoft.com) (Johnson et al, 2016) (Lee et al, 2009)
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Probabilistic Formulations of Prediction Problems

To define the notion of a ‘good prediction,’ we can define a loss function

` : Y × Y → R.

`(ŷ , y) is cost of predicting ŷ when the outcome is y .
Aim: `(f (x), y) small.
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Probabilistic Formulations of Prediction Problems

Example

In pattern classification problems, the aim is to classify a pattern x into
one of a finite number of classes (that is, the label space Y is finite). If all
mistakes are equally bad, we could define

`(ŷ , y) = 1[ŷ 6= y ] =

{
1 if ŷ 6= y ,

0 otherwise.

Example

In a regression problem, with Y = R, we might choose the quadratic loss
function, `(ŷ , y) = (ŷ − y)2.
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Probabilistic Assumptions

Assume:

There is a probability distribution P on X × Y,

The pairs (X1,Y1), . . . , (Xn,Yn), (X ,Y ) are chosen independently
according to P

The aim is to choose f with small risk:

R(f ) = E`(f (X ),Y ).

For instance, in the pattern classification example, this is the
misclassification probability.

R(f ) = E1[f (X ) 6= Y ] = Pr(f (X ) 6= Y ).
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Probabilistic Assumptions

Some things to notice:

1 The distribution P can be viewed as modelling both the relative
frequency of different features or covariates X , together with the
conditional distribution of the outcome Y given X .

2 The assumption that the data is i.i.d. is a strong one.
But we need to assume something about what the information in the
data (X1,Y1), . . . , (Xn,Yn) tells us about (X ,Y ).
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Probabilistic Assumptions

3 The function x 7→ fn(x) = fn(x ;X1,Y1, . . . ,Xn,Yn) is random, since it
depends on the random data Dn = (X1,Y1, . . . ,Xn,Yn). Thus, the
risk

R(fn) = E [`(fn(X ),Y )|Dn]

= E [`(fn(X ;X1,Y1, . . . ,Xn,Yn),Y )|Dn]

is a random variable. We might aim for ER(fn) small, or R(fn) small
with high probability (over the training data).
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Key Questions

We might choose fn from some class F of functions
(for instance, linear function, sparse linear function, ReLU network with
fixed architecture and arbitrary parameters, ReLU network with fixed depth
and a bound on norms of parameter matrices in each layer, ...).

1 Can we design algorithms for which fn is close to the best that we
could hope for, given that it was chosen from F? (that is, is
R(fn)− inff ∈F R(f ) small?)

2 How does the performance of fn depend on n? On the complexity of
F? On P?

3 Can we ensure that R(fn) approaches the best possible performance
(that is, the infimum over all f of R(f ))?
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Statistical Learning Theory

We are concerned with results that apply to large classes of
distributions P, such as the set of all joint distributions on X × Y.

Typically, we will not assume that P comes from a small (e.g.,
finite-dimensional) space, P ∈ {Pθ : θ ∈ Θ}.
We will mostly be concerned with ensuring that the performance is
close to the best we can achieve using prediction rules from some
fixed class F .

10 / 52



Statistical Learning Theory: Key Issues

Approximation How good is the best f in the class F that we are using?
That is, how close to inff R(f ) is inff ∈F R(f )?

Estimation How close is our performance to that of the best f in F?
(Recall that we only have access to the distribution P
through observing a finite data set.)

Computation We need to use the data to choose fn, typically by solving
some kind of optimization problem. How can we do that
efficiently?
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Deep Networks

Deep compositions of nonlinear functions

h = hm ◦ hm−1 ◦ · · · ◦ h1

e.g., hi : x 7→ σ(Wix) hi : x 7→ r(Wix)

σ(v)i =
1

1 + exp(−vi )
, r(v)i = max{0, vi}
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Why Deep Networks? Some Intuition

Representation learning
Depth provides an effective way of representing useful
features.

Rich non-parametric family
Depth provides parsimonious representions.
Nonlinear parameterizations provide better rates of
approximation.
Some functions require much more complexity for a shallow
representation.

But...

Optimization?

Nonlinear parameterization.
Apparently worse as the depth increases.

Generalization?

What determines the statistical complexity of a deep network?
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Statistical Learning Theory: Key Issues

This lecture and the next will focus on the estimation issue.

The third lecture will focus on computation issues for deep residual
networks.
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Uniform Laws of Large Numbers: Motivation

Consider the performance of empirical risk minimization:
Choose fn ∈ F to minimize R̂(f ), where R̂ is the empirical risk,

R̂(f ) = Pn`(f (X ),Y ) =
1

n

n∑
i=1

`(f (Xi ),Yi ).

For pattern classification, this is the proportion of training examples
misclassified.
Define f ∗ = arg minf ∈F R(f ). How does the excess risk, R(fn)− R(f ∗)
behave?
We can write

R(fn)− R(f ∗) =
[
R(fn)− R̂(fn)

]
+
[
R̂(fn)− R̂(f ∗)

]
+
[
R̂(f ∗)− R(f ∗)

]
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Uniform Laws of Large Numbers: Motivation

One of these terms is a difference between a sample average and an
expectation for the fixed function (x , y) 7→ `(f ∗(x), y):

R̂(f ∗)− R(f ∗) = (Pn − P)`(f ∗(X ),Y )

The law of large numbers shows that this term converges to zero; and with
information about the tails of `(f ∗(X ),Y ) (such as boundedness), we can
get bounds on its value.
Another term, R̂(fn)− R̂(f ∗), is non-positive, because fn is chosen to
minimize R̂.
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Uniform Laws of Large Numbers: Motivation

The other term, R(fn)− R̂(fn), is more interesting. For any fixed f , this
difference goes to zero. But fn is random, since it is chosen using the data.
An easy upper bound is

R(fn)− R̂(fn) ≤ sup
f ∈F

∣∣∣R(f )− R̂(f )
∣∣∣ ,

and this motivates the study of uniform laws of large numbers.
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Uniform Laws of Large Numbers

For a class F of functions f : X → [0, 1], suppose that X1, . . . ,Xn,X are
i.i.d. on X , and consider

Z = sup
f ∈F

∣∣∣∣∣Ef (X )− 1

n

n∑
i=1

f (Xi )

∣∣∣∣∣ =: ‖P − Pn︸ ︷︷ ︸
emp proc

‖F .

If Z converges to 0, this is called a uniform law of large numbers.

19 / 52



Glivenko-Cantelli Classes

Definition

F is a Glivenko-Cantelli class for P if
supf ∈F |Pnf − Pf | =: ‖Pn − P‖F

P→ 0.

P is a distribution on X ,

X1, . . . ,Xn are drawn i.i.d. from P,

Pn is the empirical distribution (which assigns mass 1/n to each of
X1, . . . ,Xn),

F is a set of measurable real-valued functions on X with finite
expectation under P,

Pn − P is an empirical process, that is, a stochastic process indexed
by a class of functions F , and

‖Pn − P‖F := supf ∈F |Pnf − Pf |.
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Glivenko-Cantelli Classes

Why ‘Glivenko-Cantelli’? An example of a uniform law of large numbers.

Glivenko-Cantelli Theorem

‖Fn − F‖∞
as→ 0.

Here, F is a cumulative distribution function, Fn is the empirical
cumulative distribution function,

Fn(x) =
1

n

n∑
i=1

1[Xi ≥ x ],

where X1, . . . ,Xn are i.i.d. with distribution F , and
‖F − G‖∞ = supt |F (t)− G (t)|.

Glivenko-Cantelli Theorem

‖Pn − P‖G
as→ 0, for G = {x 7→ 1[x ≤ θ] : θ ∈ R}.
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Glivenko-Cantelli Classes

Not all F are Glivenko-Cantelli classes. For instance,

F = {1[x ∈ S ] : S ⊂ R, |S | <∞} .

Then for a continuous distribution P, Pf = 0 for any f ∈ F , but
supf ∈F Pnf = 1 for all n. So although Pnf

as→ Pf for all f ∈ F , this
convergence is not uniform over F . F is too large.
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Uniform Laws and Rademacher Complexity

We’ll look at a proof of a uniform law of large numbers that involves two
steps:

1 Concentration of ‖P − Pn‖F about its expectation.

2 Symmetrization, which bounds E‖P − Pn‖F in terms of the
Rademacher complexity of F , E‖Rn‖F .
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Uniform Laws and Rademacher Complexity

Definition

The Rademacher complexity of F is E‖Rn‖F , where the empirical
process Rn is defined as

Rn(f ) =
1

n

n∑
i=1

εi f (Xi ),

and the ε1, . . . , εn are Rademacher random variables: i.i.d. uniform on
{±1}.

Note that this is the expected supremum of the alignment between the
random {±1}-vector ε and F (X n

1 ), the set of n-vectors obtained by
restricting F to the sample X1, . . . ,Xn.
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Uniform Laws and Rademacher Complexity

Theorem

For any F , E‖P − Pn‖F ≤ 2E‖Rn‖F .
If F ⊂ [0, 1]X ,

1

2
E‖Rn‖F −

√
log 2

2n
≤ E‖P − Pn‖F ≤ 2E‖Rn‖F ,

and, with probability at least 1− 2 exp(−2ε2n),

E‖P − Pn‖F − ε ≤ ‖P − Pn‖F ≤ E‖P − Pn‖F + ε.

Thus, E‖Rn‖F → 0 iff ‖P − Pn‖F
as→ 0.

That is, the supremum of the empirical process P − Pn is concentrated
about its expectation, and its expectation is about the same as the
expected sup of the Rademacher process Rn.

26 / 52



Uniform Laws and Rademacher Complexity

The first step is to symmetrize by replacing Pf by P ′nf = 1
n

∑n
i=1 f (X ′i ). In

particular, we have

E‖P − Pn‖F = E sup
f ∈F

∣∣∣∣∣E
[

1

n

n∑
i=1

(f (X ′i )− f (Xi ))

∣∣∣∣∣X n
1

]∣∣∣∣∣
≤ EE

[
sup
f ∈F

∣∣∣∣∣1n
n∑

i=1

(f (X ′i )− f (Xi ))

∣∣∣∣∣
∣∣∣∣∣X n

1

]

= E sup
f ∈F

∣∣∣∣∣1n
n∑

i=1

(f (X ′i )− f (Xi ))

∣∣∣∣∣ = E‖P ′n − Pn‖F .
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Uniform Laws and Rademacher Complexity

Another symmetrization: for any εi ∈ {±1},

E‖P ′n − Pn‖F = E sup
f ∈F

∣∣∣∣∣1n
n∑

i=1

(f (X ′i )− f (Xi ))

∣∣∣∣∣
= E sup

f ∈F

∣∣∣∣∣1n
n∑

i=1

εi (f (X ′i )− f (Xi ))

∣∣∣∣∣ ,
This follows from the fact that Xi and X ′i are i.i.d., and so the distribution
of the supremum is unchanged when we swap them. And so in particular
the expectation of the supremum is unchanged. And since this is true for
any εi , we can take the expectation over any random choice of the εi .
We’ll pick them independently and uniformly.
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Uniform Laws and Rademacher Complexity

E sup
f ∈F

∣∣∣∣∣1n
n∑

i=1

εi (f (X ′i )− f (Xi ))

∣∣∣∣∣
≤ E sup

f ∈F

∣∣∣∣∣1n
n∑

i=1

εi f (X ′i )

∣∣∣∣∣+ sup
f ∈F

∣∣∣∣∣1n
n∑

i=1

εi f (Xi )

∣∣∣∣∣
= 2E sup

f ∈F

∣∣∣∣∣1n
n∑

i=1

εi f (Xi )

∣∣∣∣∣︸ ︷︷ ︸
Rademacher complexity

= 2E‖Rn‖F ,

where Rn is the Rademacher process Rn(f ) = (1/n)
∑n

i=1 εi f (Xi ).
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Uniform Laws and Rademacher Complexity

The second inequality (desymmetrization) follows from:

E‖Rn‖F ≤ E

∥∥∥∥∥1

n

n∑
i=1

εi (f (Xi )− Ef (Xi ))

∥∥∥∥∥
F

+ E

∥∥∥∥∥1

n

n∑
i=1

εiEf (Xi )

∥∥∥∥∥
F

≤ E

∥∥∥∥∥1

n

n∑
i=1

εi
(
f (Xi )− f (X ′i )

)∥∥∥∥∥
F

+ ‖P‖F E

∣∣∣∣∣1n
n∑

i=1

εi

∣∣∣∣∣
= E

∥∥∥∥∥1

n

n∑
i=1

(
f (Xi )− Ef (Xi ) + Ef (X ′i )− f (X ′i )

)∥∥∥∥∥
F

+ ‖P‖F E

∣∣∣∣∣1n
n∑

i=1

εi

∣∣∣∣∣
≤ 2E ‖Pn − P‖F +

√
2 log 2

n
.
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Uniform Laws and Rademacher Complexity

Next, since f (Xi ) ∈ [0, 1], we have that the following function of the
random variables X1, . . . ,Xn satisfies a bounded differences property with
bound 1/n:

sup
f ∈F
|Pf − Pnf |.

The bounded differences inequality implies that, with probability at least
1− exp(−2ε2n),

‖P − Pn‖F ≤ E‖P − Pn‖F + ε.
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Bounded Differences Inequality

Theorem [Bounded differences inequality]

Suppose f : X n → R satisfies the following bounded differences
property: for all x1, . . . , xn, x

′
i ∈ X ,∣∣f (x1, . . . , xn)− f (x1, . . . , xi−1, x

′
i , xi+1, . . . , xn)

∣∣ ≤ Bi .

Then

P (|f (X )− Ef (X )| ≥ t) ≤ 2 exp

(
− 2t2∑

i B
2
i

)
.
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Uniform Laws and Rademacher Complexity

Theorem

For any F , E‖P − Pn‖F ≤ 2E‖Rn‖F .
If F ⊂ [0, 1]X ,

1

2
E‖Rn‖F −

√
log 2

2n
≤ E‖P − Pn‖F ≤ 2E‖Rn‖F ,

and, with probability at least 1− 2 exp(−2ε2n),

E‖P − Pn‖F − ε ≤ ‖P − Pn‖F ≤ E‖P − Pn‖F + ε.

Thus, E‖Rn‖F → 0 iff ‖P − Pn‖F
as→ 0.

That is, the supremum of the empirical process P − Pn is concentrated
about its expectation, and its expectation is about the same as the
expected sup of the Rademacher process Rn.
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Controlling Rademacher Complexity

So how do we control E‖Rn‖F ? There are several approaches:

1 |F (X n
1 )| small. (max |F (xn1 )| is the growth function)

2 For binary-valued functions: Vapnik-Chervonenkis dimension. Bounds
rate of growth function. Can be bounded for parameterized families.

3 Structural results on Rademacher complexity: Obtaining bounds for
function classes constructed from other function classes.

4 Covering numbers. Dudley entropy integral, Sudakov lower bound.

5 For real-valued functions: scale-sensitive dimensions.
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Controlling Rademacher Complexity: Growth Function

For the class of distribution functions, G = {x 7→ 1[x ≤ α] : α ∈ R}, the
set of restrictions,

G (xn1 ) = {(g(x1), . . . , g(xn)) : g ∈ G}

is always small: |G (xn1 )| ≤ ΠG (n) = n + 1.

Definition

For a class F ⊆ {0, 1}X , the growth function is

ΠF (n) = max{|F (xn1 )| : x1, . . . , xn ∈ X}.
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Controlling Rademacher Complexity: Growth Function

Lemma

For f ∈ F satisfying |f (x)| ≤ 1,

E‖Rn‖F ≤ E
√

2 log(|F (X n
1 ) ∪ −F (X n

1 )|)
n

≤
√

2 log(2E|F (X n
1 )|)

n

≤
√

2 log(2ΠF (n)

n
,

where Rn is the Rademacher process:

Rn(f ) =
1

n

n∑
i=1

εi f (Xi ).

and F (X n
1 ) is the set of restrictions of functions in F to X1, . . . ,Xn.
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Controlling Rademacher Complexity: Growth Function

Proof: For A ⊆ Rn with R2 =
maxa∈A ‖a‖2

2

n
, we have that

E sup
a∈A

∣∣∣∣∣1n
n∑

i=1

εiai

∣∣∣∣∣ ≤
√

2R2 log(|A ∪ −A|)
n

.

Here, we have A = F (X n
1 ), so R ≤ 1, and we get

E‖Rn‖F = EE
[
‖Rn‖F (X n

1 )|X1, . . . ,Xn

]
≤ E

√
2 log(2|F (X n

1 )|)
n

≤
√

2E log(2|F (X n
1 )|)

n

≤
√

2 log(2E|F (X n
1 )|)

n
.

38 / 52



Finite Class Lemma

We used the following result.

Lemma [Finite Classes]

For A ⊆ Rn with R2 =
maxa∈A ‖a‖2

2

n
,

E sup
a∈A

1

n

n∑
i=1

εiai ≤
√

2R2 log |A|
n

.

Hence

E sup
a∈A

∣∣∣∣∣1n
n∑

i=1

εiai

∣∣∣∣∣ = E sup
a∈A∪−A

1

n

n∑
i=1

εiai ≤
√

2R2 log(2|A|)
n

.
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Finite Class Lemma

Proof: exp

(
λE sup

a

1

n

n∑
i=1

εiai

)
≤ E exp

(
λ sup

a

1

n

n∑
i=1

εiai

)

= E sup
a

exp

(
λ

1

n

n∑
i=1

εiai

)

≤
∑
a

E exp

(
λ

1

n

n∑
i=1

εiai

)

≤
∑
a

exp

(
λ2‖a‖2

2

2n2

)
≤ |A| exp

(
λ2R2

2n

)
,

using the fact that εiai/n is bounded, hence sub-Gaussian. Picking
λ2 = 2n log |A|/R2 gives the result.
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Concentration of Sub-Gaussian Random Variables

Definition

X is sub-Gaussian with parameter σ2 if, for all λ ∈ R,

logMX−µ(λ) ≤ λ2σ2

2
,

where MX−µ(λ) = E exp(λ(X − µ)) (for µ = EX ) is the
moment-generating function of X − µ.

Examples: X Gaussian; X a.s. bounded.

A sum of independent sub-Gaussian random variables is sub-Gaussian;
the parameters add.

Chernoff bound for X sub-Gaussian implies

P(|X − µ| ≥ t) ≤ 2 exp(−t2/(2σ2)).
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Controlling Rademacher Complexity: Growth Function

e.g. For the class of distribution functions, G = {x 7→ 1[x ≥ α] : α ∈ R},
we saw that |G (xn1 )| ≤ n + 1. So E‖Rn‖F ≤

√
2 log 2(n+1)

n .
e.g. F parameterized by k bits:
If F =

{
x 7→ g(x , θ) : θ ∈ {0, 1}k

}
for some g : X × {0, 1}k → [0, 1],

|F (xn1 )| ≤ 2k ,

E‖Rn‖F ≤
√

2(k + 1) log 2

n
.

Notice that E‖Rn‖F → 0.
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Growth Function

Definition

For a class F ⊆ {0, 1}X , the growth function is

ΠF (n) = max{|F (xn1 )| : x1, . . . , xn ∈ X}.

E‖Rn‖F ≤
√

2 log(2ΠF (n))
n .

ΠF (n) ≤ |F |, limn→∞ΠF (n) = |F |.
ΠF (n) ≤ 2n. (But then this gives no useful bound on E‖Rn‖F .)

Notice that log ΠF (n) = o(n) implies E‖Rn‖F → 0.
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Vapnik-Chervonenkis Dimension

Definition

A class F ⊆ {0, 1}X shatters {x1, . . . , xd} ⊆ X means that |F (xd1 )| = 2d .
The Vapnik-Chervonenkis dimension of F is

dVC (F ) = max {d : some x1, . . . , xd ∈ X is shattered by F}

= max
{
d : ΠF (d) = 2d

}
.
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Vapnik-Chervonenkis Dimension: “Sauer’s Lemma”

Theorem [Vapnik-Chervonenkis]

dVC (F ) ≤ d implies

ΠF (n) ≤
d∑

i=0

(
n

i

)
.

If n ≥ d , the latter sum is no more than
(
en
d

)d
.

So the VC-dimension is a single integer summary of the growth function:
either it is finite, and ΠF (n) = O(nd), or ΠF (n) = 2n. No other growth is
possible.

ΠF (n)

{
= 2n if n ≤ d ,

≤ (e/d)d nd if n > d .

Thus, for dVC (F ) ≤ d and n ≥ d , we have

E‖Rn‖F ≤
√

2 log(2ΠF (n))

n
≤
√

2 log 2 + 2d log(en/d)

n
.
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VC-dimension Bounds for Parameterized Families

Consider a parameterized class of binary-valued functions,

F = {x 7→ f (x , θ) : θ ∈ Rp} ,

where f : Rm × Rp → {±1}.
Suppose that f can be computed using no more than t operations of the
following kinds:

1 arithmetic (+, −, ×, /),

2 comparisons (>, =, <),

3 output ±1.

Theorem [Goldberg and Jerrum]

dVC (F ) ≤ 4p(t + 2).
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Rademacher Complexity: Structural Results

Theorem

1 F ⊆ G implies ‖Rn‖F ≤ ‖Rn‖G .

2 ‖Rn‖cF = |c |‖Rn‖F .

3 For |g(X )| ≤ 1, |E‖Rn‖F+g − E‖Rn‖F | ≤
√

2 log 2/n.

4 ‖Rn‖coF = ‖Rn‖F , where coF is the convex hull of F .

5 If φ : R×Z has α 7→ φ(α, z) 1-Lipschitz for all z and φ(0, z) = 0,
then for φ(F ) = {z 7→ φ(f (z), z)}, E‖Rn‖φ(F ) ≤ 2E‖Rn‖F .
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Rademacher Complexity Structural Results: Proofs

(1) and (2) are immediate. For (3):

‖Rn‖F+g = sup
f ∈F

∣∣∣∣∣1n∑
i

εi (f (Xi ) + g(Xi ))

∣∣∣∣∣ ,
so |E‖Rn‖F+g − E‖Rn‖F | ≤ E |Rn(g)| ≤

√
2 log 2

n

for |g(X )| ≤ 1.
(4) follows from the fact that a linear criterion in a convex set is
maximized at an extreme point.
(5) is due to Ledoux and Talagrand, and has an elementary proof.
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Uniform Laws of Large Numbers: Summary

Rademacher complexity

Rademacher complexity characterizes uniform laws: For F ⊂ [0, 1]X ,

1

2
E‖Rn‖F −

√
log 2

2n
≤ E‖P − Pn‖F ≤ 2E‖Rn‖F ,

and, with probability at least 1− 2 exp(−2ε2n),

E‖P − Pn‖F − ε ≤ ‖P − Pn‖F ≤ E‖P − Pn‖F + ε.

Vapnik-Chervonenkis dimension

Uniform convergence uniformly over probability distributions is equivalent
to finiteness of the VC-dimension.
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