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VC-Dimension of Neural Networks

Theorem (Vapnik and Chervonenkis)

Suppose F ⊆ {−1, 1}X .
For every prob distribution P on X × {−1, 1},
with probability 1− δ over n iid examples (x1, y1), . . . , (xn, yn),
every f in F satisfies

P(f (x) 6= y) ≤ 1

n
|{i : f (xi ) 6= yi}|+

(c
n

(VCdim(F) + log(1/δ))
)1/2

.

For uniform bounds (that is, for all distributions and all f ∈ F ,
proportions are close to probabilities), this inequality is tight within a
constant factor.
For neural networks, VC-dimension:

increases with number of parameters
depends on nonlinearity and depth
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VC-Dimension of Neural Networks

Theorem

Consider the class F of {−1, 1}-valued functions computed by a network
with L layers, p parameters, and k computation units with the following
nonlinearities:

1 Piecewise constant (linear threshold units): VCdim(F) = Õ (p).
(Baum and Haussler, 1989)

2 Piecewise linear (ReLUs): VCdim(F) = Õ (pL).
(B., Harvey, Liaw, Mehrabian, 2017)

3 Piecewise polynomial: VCdim(F) = Õ
(
pL2
)
.

(B., Maiorov, Meir, 1998)

4 Sigmoid: VCdim(F) = Õ
(
p2k2

)
.

(Karpinsky and MacIntyre, 1994)
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Generalization in Neural Networks: Number of Parameters

NeurIPS 1996
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Large-Margin Classifiers

Consider a real-valued function f : X → R used for classification.

The prediction on x ∈ X is sign(f (x)) ∈ {−1, 1}.
For a pattern-label pair (x , y) ∈ X × {−1, 1},
if yf (x) > 0 then f classifies x correctly.

We call yf (x) the margin of f on x .

We can view a larger margin as a more confident correct classification.

Minimizing a continuous loss, such as

n∑
i=1

(f (Xi )− Yi )
2 ,

encourages large margins.

For large-margin classifiers, we should expect the fine-grained details
of f to be less important.
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Generalization: Margins and Size of Parameters

Theorem (B., 1996)

1. With high probability over n training examples
(X1,Y1), . . . , (Xn,Yn) ∈ X × {±1}, every f ∈ F ⊂ RX has

Pr(sign(f (X )) 6= Y ) ≤ 1

n

n∑
i=1

1[Yi f (Xi ) ≤ γ] + Õ

(√
fatF (γ)

n

)
.

2. If functions in F are computed by L-layer sigmoid networks with each
unit’s weights bounded in 1-norm, that is, ‖w‖1 ≤ B, then

fatF (γ) = Õ((B/γ)L).

The bound depends on the margin loss plus a complexity term.

Minimizing quadratic loss or cross-entropy loss leads to large margins.

fatF (γ) is a scale-sensitive version of VC-dimension. Unlike the
VC-dimension, it need not grow with the number of parameters.

Same ideas used to give rigorous dimension-independent
generalization bounds for SVMs (B. and Shawe-Taylor, 1999)

... and margins analysis of AdaBoost. (Schapire, Freund, B., Lee, 1998)

The scale of functions f ∈ F is important.

Bigger f s give bigger margins, so fatF (γ) should be bigger.

The output y of a sigmoid layer has ‖y‖∞ ≤ 1,
so ‖w‖1 ≤ B controls the scale of f .
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Recall: Rademacher Complexity Structural Results

Theorem

1 F ⊆ G implies ‖Rn‖F ≤ ‖Rn‖G .

2 ‖Rn‖cF = |c |‖Rn‖F .

3 For |g(X )| ≤ 1, |E‖Rn‖F+g − E‖Rn‖F | ≤
√

2 log 2/n.

4 ‖Rn‖coF = ‖Rn‖F , where coF is the convex hull of F .

5 If φ : R×Z has α 7→ φ(α, z) 1-Lipschitz for all z and φ(0, z) = 0,
then for φ(F ) = {z 7→ φ(f (z), z)}, E‖Rn‖φ(F ) ≤ 2E‖Rn‖F .
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Rademacher Complexity for Lipschitz Loss

Example

To analyze ERM over F : X → Y with loss `, we want ‖P − Pn‖`F small,
where

`F := {(x , y) 7→ `(f (x), y) : f ∈ F} ,

If `(·, y) is 1-Lipschitz, then we can define φ(α, (x , y)) = `(α, y)− `(0, y)
and

φ(F ) = {(x , y) 7→ `(f (x), y)− `(0, y) : f ∈ F}
= `F − `0.

Then (5) implies E‖Rn‖φ(F ) ≤ 2E‖Rn‖F .

And if |`| ≤ 1, (3) implies E‖Rn‖`F ≤ 2E‖Rn‖F +
√

2 log 2/n.
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Rademacher Complexity for Lipschitz Loss

Classification loss is not Lipschitz!

Consider the 1/γ-Lipschitz loss

φ(α) =


1 if α ≤ 0,

1− α/γ if 0 < α < γ,

0 if α ≥ 1.

Large margin loss is an upper bound and classification loss is a lower
bound:

1[Yf (X ) ≤ 0] ≤ φ(Yf (X )) ≤ 1[Yf (X ) ≤ γ].

So if we can relate the Lipschitz risk Pφ(Yf (X )) to the Lipschitz
empirical risk Pnφ(Yf (X )), we have a large margin bound:

P1[Yf (X ) ≤ 0] ≤ Pφ(Yf (X )) c.f. Pnφ(Yf (X )) ≤ Pn1[Yf (X ) ≤ γ].
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Rademacher Complexity for Lipschitz Loss

P1[Yf (X ) ≤ 0] ≤ Pφ(Yf (X ))

≤ Pnφ(Yf (X )) +
c

γ
E‖Rn‖F + O(1/

√
n)

≤ Pn1[Yf (X ) ≤ γ] +
c

γ
E‖Rn‖F + O(1/

√
n)

with high probability.
Notice that we’ve turned a classification problem into a regression problem.
The VC-dimension (which captures arbitrarily fine-grained properties of
the function class) is no longer important.
This is only an upper bound, but there are comparison theorems that
relate the excess risk to the excess φ-risk.
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Rademacher Averages for Sigmoid Networks

Theorem

Consider the following class FB of two-layer neural networks:

FB =

{
x 7→

k∑
i=1

wiσ
(
vTi x

)
: wi ≥ 0, ‖w‖1 ≤ B, ‖vi‖1 ≤ B, k ≥ 1

}
,

where B > 0 and the nonlinear function σ : R→ R satisfies the Lipschitz
condition, |σ(a)− σ(b)| ≤ |a− b|, and σ(0) = 0. Suppose that the
distribution is such that ‖X‖∞ ≤ 1 a.s. Then

E‖Rn‖FB
≤ B2

√
2 log 2d

n
,

where d is the dimension of the input space, X = Rd .

14 / 34



Rademacher Averages for Sigmoid Networks: Proof

Recall the notation

co(F ) =

{
k∑

i=1

αi fi : k ≥ 1, αi ≥ 0, ‖α‖1 = 1, fi ∈ F

}
.

Define

G := {(x1, . . . , xd) 7→ xj : 1 ≤ j ≤ d},

VB :=

{
x 7→ v ′x : ‖v‖1 =

d∑
i=1

|vi | ≤ B

}
= Bco ({0} ∪ G ∪ −G)

= Bco (G ∪ −G)
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Rademacher Averages for Sigmoid Networks: Proof

FB =

{
x 7→

k∑
i=1

wiσ(vi (x)) | k ≥ 1,wi ≥ 0,
k∑

i=1

wi ≤ B, vi ∈ VB

}
= Bco ({0} ∪ σ ◦ VB) = Bco (σ ◦ VB)

Rn(FB) = Rn (Bco (σ ◦ VB))

= BRn (co (σ ◦ VB))

= BRn (σ ◦ VB)

≤ BRn(VB)

= BRn (Bco (G ∪ −G))

= B2Rn (G ∪ −G)

≤ B2

√
2 log (2d)

n
.
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ReLU Networks

The sigmoid nonlinearity is convenient, because it ensures
boundedness (in `∞) of the inputs to each layer.

What about nonlinearities like the ReLU’s, which is Lipschitz, but
unbounded?

We also need to keep control of the scale of the vectors that are
computed throughout the network.
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Networks with Lipschitz Nonlinearities

Theorem (B., Foster, Telgarsky, 2017)

With high probability over n training examples
(X1,Y1), . . . , (Xn,Yn) ∈ X × {±1}, every fW with RW ≤ r has

Pr(sign(f (X )) 6= Y ) ≤ 1

n

n∑
i=1

1[Yi f (Xi ) ≤ γ] + Õ

(
rL

γ
√
n

)
.

Here, fW is computed in a network with L layers and parameters
W1, . . . ,WL:

fW (x) := σL(WLσL−1(WL−1 · · ·σ1(W1x) · · · )),

where the σi are 1-Lipschitz, and we measure the scale of fW using a
product of norms of the matrices Wi ,

for example, r :=
∏L

i=1 ‖Wi‖∗
∑L

i=1

‖Wi‖
2/3
2,1

‖Wi‖
2/3
∗

3/2

.

The proof uses a covering numbers argument.
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ReLU Networks

Using the positive homogeneity property of the ReLU nonlinearity (that is,
for all α ≥ 0 and x ∈ R, σ(αx) = ασ(x)) gives an elegant argument (due
to Gollowich, Rakhlin and Shamir) to bound the Rademacher complexity.

Theorem

With high probability over n training examples
(X1,Y1), . . . , (Xn,Yn) ∈ X ×{±1} with ‖Xi‖ ≤ 1 a.s., every f ∈ FF

L,B has

Rn(FF ,B) ≤ (2B)L√
n
,

where f ∈ FF ,B is an L-layer network of the form

FF ,B := WLσ(WL−1 · · ·σ(W1x) · · · ),

σ is 1-Lipschitz, positive homogeneous (that is, for all α ≥ 0 and x ∈ R,
σ(αx) = ασ(x)), and applied componentwise, and ‖Wi‖F ≤ B.
(WL is a row vector.)
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ReLU Networks: Proof

(Write Eε as the conditional expectation given the data.)

Lemma

Eε sup
f ∈F ,‖W ‖F≤B

1

n

∥∥∥∥∥
n∑

i=1

εiσ(Wf (Xi ))

∥∥∥∥∥
2

≤ 2BEε sup
f ∈F

1

n

∥∥∥∥∥
n∑

i=1

εi f (Xi )

∥∥∥∥∥
2

.

Iterating this and using Jensen’s inequality proves the theorem:

E

[
1

n

∥∥∥∥∥
n∑

i=1

εiXi

∥∥∥∥∥
2

∣∣∣∣∣X1, . . . ,Xn

]
≤ 1

n

√√√√√E

∥∥∥∥∥
n∑

i=1

εiXi

∥∥∥∥∥
2

2

∣∣∣∣∣∣X1, . . . ,Xn


=

1

n

√√√√ n∑
i=1

‖Xi‖2
2 ≤

1√
n
.
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ReLU Networks: Proof

For W> = (w1 · · ·wk), we use positive homogeneity:∥∥∥∥∥
n∑

i=1

εiσ(Wf (xi ))

∥∥∥∥∥
2

=
k∑

j=1

(
n∑

i=1

εiσ(w>j f (xi ))

)2

=
k∑

j=1

‖wj‖2

(
n∑

i=1

εiσ

(
w>j
‖wj‖

f (xi )

))2

,

and

sup
‖W‖F≤B

k∑
j=1

‖wj‖2

(
n∑

i=1

εiσ

(
w>j
‖wj‖

f (xi )

))2

= sup
‖wj‖=1;‖α‖1≤B2

k∑
j=1

αj

(
n∑

i=1

εiσ
(
w>j f (xi )

))2

= B2 sup
‖w‖=1

(
n∑

i=1

εiσ
(
w>f (xi )

))2

,

then apply the Ledoux-Talagrand contraction and Cauchy-Schwartz inequalities.
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Generalization: Margins and Size of Parameters

A classification problem becomes a regression problem if we use a loss
function that doesn’t vary too quickly.

For regression, the complexity of a neural network is controlled by the
size of the parameters, and can be independent of the number of
parameters.

We have a tradeoff between the fit to the training data (margins) and
the complexity (size of parameters):

Pr(sign(f (X )) 6= Y ) ≤ 1

n

n∑
i=1

`(Yi , f (Xi )) + pn(F)

Even if the training set is classified correctly, it might be worthwhile
to increase the complexity, to improve this loss function.
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Interpolation in Deep Networks:
A New Challenge for Statistical Learning Theory

Deep networks can be trained to zero
training error (for regression loss)

... with near state-of-the-art
performance

... even for noisy problems.

No tradeoff between fit to training data
and complexity!

Pr(sign(f (X )) 6= Y ) ≤
1

n

n∑
i=1

`(Yi , f (Xi )) + pn(F)

(Zhang, Bengio, Hardt, Recht, Vinyals, 2017) (Belkin, Hsu, Ma, Mandal, 2018)
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Interpolating Prediction Rules

Progress on interpolating prediction

Interpolating nearest neighbor rules in high dimensions
(Belkin, Hsu, Mitra, 2018)

Kernel regression with polynomial kernels
(Liang and Rakhlin, 2018)

Kernel smoothing with singular kernels
(Belkin, Rakhlin, Tsybakov, 2018)
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Interpolation in Linear Regression

Phil Long Gábor Lugosi Alexander Tsigler

Linear regression

Training data (x1, y1), . . . , (xn, yn) ∈ Rp × R.

Linear functions: fθ(x) = x>θ.

Squared error: `(y , fθ(x)) = (y − fθ(x))2.

Least squares linear prediction: θ∗ minimizes E`(y , fθ(x)).

Choose θ̂ to interpolate:
1

n

n∑
i=1

`(yi , fθ(xi )) = 0.

Hence, y1 = fθ̂(x1), . . . , yn = fθ̂(xn) (need p ≥ n).

Which interpolating fθ? Choose θ̂ to minimize ‖θ‖.
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Interpolation in Linear Regression

Think of this optimization as

min
θ

‖θ‖

s.t.
n∑

i=1

`(yi , fθ(xi )) ≤ C ,

with C = 0. Compare this to

min
θ

n∑
i=1

`(yi , fθ(xi )) + λ‖θ‖,

or min
θ

n∑
i=1

`(yi , fθ(xi ))

s.t. ‖θ‖ ≤ B.
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Interpolation in Linear Regression

We have

θ̂ = (X>X )†X>y

= (X>X )†X>(Xθ∗ + ε),

so

E(x>θ̂ − y)2 − E(x>θ∗ − y)2

= Eθ∗>
(
I − Σ̂Σ̂†

)(
Σ− Σ̂

)(
I − Σ̂†Σ̂

)
θ∗ + ETr

(
Σ
(
X>X

)†)
.
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Interpolation in Linear Regression

Interpolation for linear prediction

Excess expected loss, E`(y , fθ̂(x))− E`(y , fθ∗(x)) has two
components: (corresponding to fθ∗ (x) and y − fθ∗ (x))

1 θ̂ is a distorted version of θ∗, because the sample x1, . . . , xn distorts our
view of the covariance of x .

Not a problem, even in high dimensions (p > n).
2 θ̂ is corrupted by the noise in y1, . . . , yn.

Problematic in high dimensions.

When can we hide the label noise in θ̂ without hurting predictive
accuracy?
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Interpolation in Linear Regression

Accurate interpolating prediction as dimension pn grows

Split the covariance of x into two pieces:

a big piece of dimension k , and
a ‘tail’ (of dimension pn − k))—that gets longer and flatter with n.

Denote the variance in the first k directions as λ1 ≥ · · · ≥ λk ,

and the variance in the ‘tail’ directions as λk+1 ≥ · · · ≥ λpn .

Denote rk(Σ) =
1

λk+1

pn∑
i=k+1

λi .

(This is the scale of the variance tail, relative to its highest variance.)

Also write r0(Σ) =
1

λ1

pn∑
i=1

λi .
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Interpolation in Linear Regression

Theorem

If k = o(n) and the ‘tail’ is long and flat:

a small proportion of variance in any direction, rk(Σ) = ω(n), that is,
λk+1∑
i>k λi

= o(1/n),

total variance not too large, r0(Σ) = o(n),

then for jointly gaussian (x, y),

E`(y , fθ̂(x))− E`(y , fθ∗(x)) = Õ

(√
r0(Σ)

n
+

n

rk(Σ)
+

k

n

)
→ 0,

where rk(Σ) =
1

λk+1

∞∑
i=k+1

λi .

There is also a (weaker) lower bound in terms of n/rk(Σ).
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Interpolating Prediction

Interpolation: far from the regime of a tradeoff between fit to training
data and complexity.

In high-dimensional linear regression, if the covariance has a long, flat
tail, the minimum norm interpolant can hide the noise in these many
unimportant directions.

Relies on overparameterization
... and lots of unimportant parameters

Can we extend these results to interpolating deep networks?

What is the analog of the minimum norm linear prediction rule?
What role does the optimization method play?
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