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Introduction

graph G = (V, E) with N vertices

@ undirected graphical model: random vector: (X1, Xs, ..., Xn)

(a) Markov chain  (b) Multiscale quadtree (c¢) Two-dimensional grid

o useful in many statistical and computational fields:
» spatial statistics

statistical physics

statistical machine learning, artificial intelligence

computational biology, bioinformatics

statistical signal/image processing

communication and information theory

vV vyvVvYVvyy
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Graphs and random variables

@ associate to each node s € V' a random variable X
o for each subset A C V, random vector X 4 := {X;,s € A}.

Maximal cliques (123), (345), (456), (47) Vertex cutset S

@ a cligue C C V is a subset of vertices all joined by edges

@ a verter cutset is a subset S C V whose removal breaks the graph into two
or more pieces
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What are undirected graphical models?

1/)456

o clique C'is a fully connected subset of vertices

@ non-negative compatibility function ¥ defined on variables
xo = {xs,s € C}

@ associated undirected graphical model is the collection of all distributions
that factorize in the form

p(x1,...,zN) = % H Yo(ze).

Ccec
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Example: Optical digit/character recognition

@ Goal: correctly label digits/characters based on “noisy” versions

@ E.g., mail sorting; document scanning; handwriting recognition systems



Example: Optical digit/character recognition

@ Goal: correctly label digits/characters based on “noisy” versions

@ strong sequential dependencies captured by (hidden) Markov chain

@ “message-passing” spreads information along chain
(Baum & Petrie, 1966; Viterbi, 1967, and many others)



Example: Social network analysis

<

41 if individual s votes “yes”

Vote of person s: Ty = o
—1 if individual s votes “no”



Example: Social network analysis

<

41 if individual s votes “yes”

Vote of person s: Ty = o
—1 if individual s votes “no”

(1) Independent voting

5 O
p(T1,...,25) X H exp(8sz5)

s=1



Example: Social network analysis
41 if individual s votes “yes”

Vote of person s: Ty = o
—1 if individual s votes “no”

(1) Independent voting

5 ©)
p(xh R ,.’175) X H exp(@sms)
s=1

(2) Cycle-based voting

5
plar,... z5) o [Jexp(Bszs) J] exp(Bsze )

s=1 (s,t)eC



Example: Social network analysis

41 if individual s votes “yes”
Vote of person s: Ty = o
—1 if individual s votes “no”

(1) Independent voting

5

p(x1,...,T5) Hexp(@sms) o
s=1

(2) Cycle-based voting

5

p(x1,...,25) X H exp(fsxs) H exp(Ostxs o)
s=1 (s,t)eC

(3) Full clique voting

p(z1,...,o5) H exp(fszs) Hexp (Osrzsy)
s#t



Graph fit to US politicians

=
RS X 1
NV = -
< —— e
——a

(Ravikumar et al., AOS 2010)



Example: Depth estimation in computer vision

Stereo pairs: two images taken from horizontally-offset cameras



Modeling depth with a graphical model

Introduce variable at pixel location (a,b):

xap = Offset between images in position (a, b)

Yab,cd(Tab, Ted)

Yed(Tea) T\ i e Vab(Tab)

O—O——(O0——0
O—O—0——<C
O—O—0O0—=—0
Rightige O O O

Use message-passing algorithms to estimate most likely offset/depth map.
(Szeliski et al., 2005)



Example: Communication over noisy channels
Goal: Achieve reliable communication over a noisy channel.

00000

00000 10010
:
source

@ wide variety of applications: satellite communication, sensor networks,
computer memory, neural communication

@ error-control codes based on careful addition of redundancy, with their
fundamental limits determined by Shannon theory

@ very active area of contemporary research: graphical codes (e.g., turbo
codes, LDPC) and message-passing algorithms (e.g., Gallager, 1963; Berroux
et al., 1993; MacKay, 1999; Richardson & Urbanke, 2007)
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Graphical codes and decoding

Parity check matrix Factor graph

101 01 01
00 11
1 1 11

Codeword: 0101010
Non-codeword: [0000011]
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Example: Epidemiological networks

(a) Cholera epidemic (London, 1854)
Snow, 1855

@ network structure associated with spread of disease



Example: Epidemiological networks

(a) Cholera epidemic (London, 1854) (b) “Spoke-hub” network
Snow, 1855

@ network structure associated with spread of disease

o useful diagnostic information: contaminated water from Broad Street
pump



Example: Image processing and denoising

@ 8-bit digital image: matrix of intensity values {0,1,...255}
@ enormous redundancy in “typical” images (useful for denoising,
compression, etc.)



Example: Image processing and denoising

@ 8-bit digital image: matrix of intensity values {0,1,...255}

@ enormous redundancy in “typical” images (useful for denoising,
compression, etc.)

@ multiscale tree used to represent coefficients of a multiscale transform
(e.g., wavelets, Gabor filters etc.)

(e.g., Willsky, 2002)



Many other examples
@ natural language processing (e.g., parsing, translation)

@ computational biology (gene sequences, protein folding, phylogenetic
reconstruction)

@ transportation and commodity networks

@ data compression and source coding
@ satisfiability problems (3-SAT, MAX-XORSAT, graph colouring)

@ robotics (path planning, tracking, navigation)

@ sensor network deployments (e.g., distributed detection, estimation, fault
monitoring)
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Factorization and Markov properties

The graph G can be used to impose constraints on the random vector
X = Xy (or on the distribution p) in different ways.

Markov property: X is Markov w.r.t G if X, and Xp are conditionally indpt.
given Xg whenever S separates A and B.

Factorization: The distribution p factorizes according to G if it can be
expressed as a product over cliques:

1 ‘
p(xla-TQa--wa) = E H 1/")0(;73(;)
S~~~ cecC
Normalization compatibility function on clique (

Theorem: (Hammersley & Clifford, 1973) For strictly positive p(-), the
Markov property and the Factorization property are equivalent.
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Core computational challenges

Given an undirected graphical model (Markov random field):

1
p(a1, 22,..,28) = & I ¢e(zeo)
cec
How to efficiently compute?

@ most probable configuration (MAP estimate):

Maximize : Z = arg max p(z1,...,xN) = arg max H Ye(ze).
xexN Xl Sée

@ the data likelihood or normalization constant

Sum/integrate : Z = Z H Yeo(ze)

zexN CeC

@ marginal distributions at single sites, or subsets:

Sum/integrate : p(Xs =m5) = % Z H Yo(ze)
zy, t#s CEC
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§1. Max-product message-passing on trees

Goal: Compute most probable configuration (MAP estimate) on a tree:

T = arg max Hexp H exp(Ost (s, T¢))
xexN
seV (s,t)eE
M12 M32

—_— -
O O O

1 2 3

max p(x) = max lexpwz(xz)) 11 {maxexp[etm)+92t<x2,xt>}}]

Z1,22,T3 tel.3 Tt

Max-product strategy: “Divide and conquer”: break global maximization
into simpler sub-problems. (Lauritzen & Spiegelhalter, 1988)



Max-product on trees

Decompose: max  p(x) = max [exp(&l(xl)) HteN(2) Mis(22)].
x2

Z1,%2,23,T4,T5

4

M12 M32
- = A 3
O O
1 2 3 \M53

Update messages:

M3y (z2) = max exp(f3(x3) + Oa3(x2, 3) H My3(x3)
vEN(3)\2



Putting together the pieces

Max-product is an exact algorithm for any tree.

Mg = message from node ¢ to s
N(t) = neighbors of node t
Update: Mis(xs) < max {exp [05,5 (zs,7y) + 04 (mé)] [T M (Xt)}
TLEXL vEN(t)\s

Max-marginals:  ps(2s;0) o< exp{0s(2s)} [Len(sy Mes(@s)-
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Summary: max-product on trees

@ converges in at most graph diameter # of iterations
@ updating a single message is an O(m?) operation

@ overall algorithm requires O(Nm?) operations

@ upon convergence, yields the exact maz-marginals:

Ds(xs) o< exp{fs(zs)} H Mys(xs).
teN (s)

@ when argmaz, ps(z,) = {x*} for all s € V| then z* = (x%,...,x%) is the

unique MAP solution

@ otherwise, there are multiple MAP solutions and one can be obtained by
back-tracking
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