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Introduction

undirected graphical model:
∗ graph G = (V,E) with N vertices
∗ random vector: (X1, X2, . . . , XN )

(a) Markov chain (b) Multiscale quadtree (c) Two-dimensional grid

useful in many statistical and computational fields:
◮ spatial statistics
◮ statistical physics
◮ statistical machine learning, artificial intelligence
◮ computational biology, bioinformatics
◮ statistical signal/image processing
◮ communication and information theory
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Graphs and random variables

associate to each node s ∈ V a random variable Xs

for each subset A ⊆ V , random vector XA := {Xs, s ∈ A}.
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Maximal cliques (123), (345), (456), (47) Vertex cutset S

a clique C ⊆ V is a subset of vertices all joined by edges

a vertex cutset is a subset S ⊂ V whose removal breaks the graph into two
or more pieces
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What are undirected graphical models?
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clique C is a fully connected subset of vertices

non-negative compatibility function ψC defined on variables
xC = {xs, s ∈ C}

associated undirected graphical model is the collection of all distributions
that factorize in the form

p(x1, . . . , xN ) =
1

Z

∏

C∈C

ψC(xC).
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Example: Optical digit/character recognition

Goal: correctly label digits/characters based on “noisy” versions

E.g., mail sorting; document scanning; handwriting recognition systems



Example: Optical digit/character recognition

Goal: correctly label digits/characters based on “noisy” versions

strong sequential dependencies captured by (hidden) Markov chain

“message-passing” spreads information along chain
(Baum & Petrie, 1966; Viterbi, 1967, and many others)



Example: Social network analysis

Vote of person s: xs =

{
+1 if individual s votes “yes”

−1 if individual s votes “no”
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Example: Social network analysis

Vote of person s: xs =

{
+1 if individual s votes “yes”

−1 if individual s votes “no”

(1) Independent voting

p(x1, . . . , x5) ∝

5∏

s=1

exp(θsxs)

(2) Cycle-based voting

p(x1, . . . , x5) ∝
5∏

s=1

exp(θsxs)
∏

(s,t)∈C

exp(θstxs xt)

(3) Full clique voting

p(x1, . . . , x5) ∝
5∏

s=1

exp(θsxs)
∏

s 6=t

exp(θstxsxt)



Graph fit to US politicians

(Ravikumar et al., AOS 2010)



Example: Depth estimation in computer vision

Stereo pairs: two images taken from horizontally-offset cameras



Modeling depth with a graphical model

Introduce variable at pixel location (a, b):

xab ≡ Offset between images in position (a, b)

Left image

Right image

ψab(xab)ψcd(xcd)

ψab,cd(xab, xcd)

Use message-passing algorithms to estimate most likely offset/depth map.
(Szeliski et al., 2005)



Example: Communication over noisy channels

Goal: Achieve reliable communication over a noisy channel.

DecoderEncoder Channel
Noisy

00000 10010 00000

source

0

X Y X̂

wide variety of applications: satellite communication, sensor networks,
computer memory, neural communication

error-control codes based on careful addition of redundancy, with their
fundamental limits determined by Shannon theory

very active area of contemporary research: graphical codes (e.g., turbo
codes, LDPC) and message-passing algorithms (e.g., Gallager, 1963; Berroux

et al., 1993; MacKay, 1999; Richardson & Urbanke, 2007)
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Graphical codes and decoding

Parity check matrix Factor graph

H =



1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1




Codeword: [0 1 0 1 0 1 0]
Non-codeword: [0 0 0 0 0 1 1]

ψ1357

ψ2367ψ4567

x1

x2

x3

x4

x5

x6

x7
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Example: Epidemiological networks

(a) Cholera epidemic (London, 1854)
Snow, 1855

network structure associated with spread of disease



Example: Epidemiological networks

(a) Cholera epidemic (London, 1854) (b) “Spoke-hub” network
Snow, 1855

network structure associated with spread of disease

useful diagnostic information: contaminated water from Broad Street
pump



Example: Image processing and denoising

8-bit digital image: matrix of intensity values {0, 1, . . . 255}

enormous redundancy in “typical” images (useful for denoising,
compression, etc.)



Example: Image processing and denoising

8-bit digital image: matrix of intensity values {0, 1, . . . 255}

enormous redundancy in “typical” images (useful for denoising,
compression, etc.)

multiscale tree used to represent coefficients of a multiscale transform
(e.g., wavelets, Gabor filters etc.)

(e.g., Willsky, 2002)



Many other examples

natural language processing (e.g., parsing, translation)

computational biology (gene sequences, protein folding, phylogenetic
reconstruction)

transportation and commodity networks

data compression and source coding

satisfiability problems (3-SAT, MAX-XORSAT, graph colouring)

robotics (path planning, tracking, navigation)

sensor network deployments (e.g., distributed detection, estimation, fault
monitoring)

. . .
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Factorization and Markov properties

The graph G can be used to impose constraints on the random vector
X = XV (or on the distribution p) in different ways.

Markov property: X is Markov w.r.t G if XA and XB are conditionally indpt.
given XS whenever S separates A and B.

Factorization: The distribution p factorizes according to G if it can be
expressed as a product over cliques:

p(x1, x2, . . . , xN ) =
1

Z︸︷︷︸

∏

C∈C

ψC(xC)︸ ︷︷ ︸
Normalization compatibility function on clique C

Theorem: (Hammersley & Clifford, 1973) For strictly positive p(·), the
Markov property and the Factorization property are equivalent.
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Core computational challenges

Given an undirected graphical model (Markov random field):

p(x1, x2, . . . , xN ) =
1

Z

∏

C∈C

ψC(xC)

How to efficiently compute?

most probable configuration (MAP estimate):

Maximize : x̂ = arg max
x∈XN

p(x1, . . . , xN ) = arg max
x∈XN

∏

C∈C

ψC(xC).

the data likelihood or normalization constant

Sum/integrate : Z =
∑

x∈XN

∏

C∈C

ψC(xC)

marginal distributions at single sites, or subsets:

Sum/integrate : p(Xs = xs) =
1

Z

∑

xt, t 6=s

∏

C∈C

ψC(xC)
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§1. Max-product message-passing on trees

Goal: Compute most probable configuration (MAP estimate) on a tree:

x̂ = arg max
x∈XN





∏

s∈V

exp(θs(xs)
∏

(s,t)∈E

exp(θst(xs, xt))



 .

M12 M32

1 2 3

max
x1,x2,x3

p(x) = max
x2

[
exp(θ2(x2))

∏

t∈1,3

{
max
xt

exp[θt(xt) + θ2t(x2, xt)]

}]

Max-product strategy: “Divide and conquer”: break global maximization
into simpler sub-problems. (Lauritzen & Spiegelhalter, 1988)



Max-product on trees

Decompose: max
x1,x2,x3,x4,x5

p(x) = max
x2

[
exp(θ1(x1))

∏
t∈N(2)Mt2(x2)

]
.

nt

M12 M32

M53

M43

1 2 3

4

5

Update messages:

M32(x2) = max
x3


exp(θ3(x3) + θ23(x2, x3)

∏

v∈N(3)\2

Mv3(x3)






Putting together the pieces

Max-product is an exact algorithm for any tree.

Tu

Tv

Tw

w

u

v

s

t
Mut

Mwt

Mvt

Mts
Mts ≡ message from node t to s
N (t) ≡ neighbors of node t

Update: Mts(xs) ← max
x′

t
∈Xt

{
exp

[
θst(xs, x

′
t) + θt(x

′
t)
] ∏

v∈N (t)\s

Mvt(xt)
}

Max-marginals: p̃s(xs; θ) ∝ exp{θs(xs)}
∏

t∈N (s)Mts(xs).
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Summary: max-product on trees

converges in at most graph diameter # of iterations

updating a single message is an O(m2) operation

overall algorithm requires O(Nm2) operations

upon convergence, yields the exact max-marginals:

p̃s(xs) ∝ exp{θs(xs)}
∏

t∈N (s)

Mts(xs).

when argmaxxs
p̃s(xs) = {xs} for all s ∈ V , then x∗ = (x∗1, . . . , x

∗
N ) is the

unique MAP solution

otherwise, there are multiple MAP solutions and one can be obtained by
back-tracking
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