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Examples of networks

Networks arise in numerous areas:
social science, biology, internet,. . .

Very different structures from one
another.

mitochondrial metabolic network
social network

Goal: Get some valuable information from such networks
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Community detection

Infer relevant features:
→ to characterize the graph.

Number of triangles, stars,. . .

Degree of vertices,

Connectivity of vertices.

Goal:

Detect subsets of vertices with the
same within and between groups

connectivity. social network
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I Stochastic Block Model
(SBM)
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Stochastic Block Model (SBM)

Stochastic Block Model (SBM)

C1, . . . ,CQ : Q classes of vertices {v1, . . . , vn}.
∀1 ≤ i ≤ n, Zi ∈ {1, . . . ,Q}: label of vi .

Model:

∀1 ≤ i ≤ n, Zi
i.i.d.∼ M (1, α1, α2, . . . , αQ) ,

∀1 ≤ i 6= j ≤ n, Xi ,j ∼ B (πq,l) , if Zi = q,Zj = l ,

Xi ,i = 0 .

Rk:

Xi ,js are no longer independent.

Goal: Estimate

(α1, . . . , αQ) ∈ [0, 1]Q , with
∑

q αq = 1,

{πq,l ∈ [0, 1] | 1 ≤ q, l ≤ Q}.
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Conditional likelihood (cSBM)

X[n] = {Xi ,j}1≤i ,j≤n: adjacency matrix.

Z[n] = (Z1, . . . ,Zn)′ ∈ {1, . . . ,Q}n: label vector.

Log-likelihood given Z[n] = z[n]

Idea:

Given Z[n] = z[n] (labels), the Xi ,j ∼ B(πzi ,zj ) independent.

L1(X[n]; z[n], π) = log

∏
i 6=j

π
Xi,j
zi ,zj (1− πzi ,zj )

1−Xi,j


=
∑
i 6=j

Xi ,j log πzi ,zj +
∑
i 6=j

(1− Xi ,j) log
(
1− πzi ,zj

)
.

Rk:

Sums of independent r.v. −→ concentration inequalities.
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Permutation-invariant matrices

Example: Let

π =

 1 2 3
2 1 3
3 3 4

 = πσ , where σ :
1 7→ 2
2 7→ 1
3 7→ 3

,

and πσ denote the matrix defined by πσq,l = πσ(q),σ(l) .
Then, {

πσzi ,zj

}
i ,j

=
{
πzi ,zj

}
i ,j

=
{
πσ(zi ),σ(zj )

}
i ,j

.

Conclusion:

−→ z[n] and zσ[n] = σ(z[n]) cannot be distinguished.
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Permutation-invariant matrices

Permutation invariance
If there exists a permutation σ(6= Id) : {1, . . . ,Q} → {1, . . . ,Q}
such that

πσ = π ,

π is a permutation-invariant matrix.
Equivalence classes

[
z[n]

]
π

=
{

z ′[n] | ∃σ, πσ = π, z ′[n] = zσ[n]

}
.
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Concentration result in cSBM (given Z[n] = z∗[n])

Under some assumptions detailed later, we have

Theorem (C., Daudin, Pierre (12))

For every t > 0,

P

 ∑
z[n] 6=z∗

[n]

P
(
Z[n] = z[n] | X[n]

)
P
(

Z[n] = z∗[n] | X[n]

) > t | Z[n] = z∗[n]

 = O
(
ne−κn

)
,

where κ = κ(π∗) > 0: constant and O (ne−κn) uniform w.r.t z∗[n].

Rk:

→ the same result holds without conditioning.
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Main assumptions

Assumption (A1)

∀q, q′, ∃l ∈ {1, . . . ,Q} , πq,l 6= πq′,l , or πl ,q 6= πl ,q′ .

Rk: → related to identifiability.

Assumption (A2)

∃ζ > 0, πq,l ∈]0, 1[ ⇒ πq,l ∈ [ζ, 1− ζ] .

Rk: → πq,ls are either equal to 0 or 1, or away from 0 and 1.

Assumption (A3)

∃0 < γ < 1/Q, αq = P [ Zi = q ] ∈ [γ, 1− γ] .

Rk: → No empty class.
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Generic identifiability of SBM parameters

Allman, Matias, and Rhodes (2011) proved for Q > 2:

n (even) ≥
(

Q − 1 +
(Q + 2)2

2

)2

implies identifiability (up to label switching) except on a set with
null Lebesgue measure: Generic Identifiability.

Theorem (C., Daudin, Pierre (2012))

Let us assume

1 Q ≤ n/2,

2 ∀q, αq > 0,

3 coordinates of π · α (or π′ · α) are distinct.

Then, SBM parameters (α, π) are identifiable (up to l.s.).

Rk: → (coordinates of π · α (or π′ · α) are distinct) implies (A1).
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II Estimation strategy
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Estimation and Computational aspects

SBM log-likelihood

L2(X[n];α, π) = log

∑
z[n]

eL1(X[n];z[n],π)PZ[n]
(z[n];α)

 .

Computational cost:

The sum over z[n] cannot be cast as a product.

L2(X[n];α, π) cannot be computed (Qn terms involved).

Solutions:

MCMC → high comput. cost (Andrieu, Atchadé (2007)),

Variational approximation (Jordan et al. (1999)).

. . .
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Variational approximation

Idea:

Maximize w.r.t. (α, π) a (tight) lower bound of L2(X[n];α, π).

Variational log-likelihood:

J (X[n]; A, α, π) = L2(X[n];α, π)− K
(
A; P

(
Z[n] = · | X[n]

))
,

where

K (P,Q) ≥ 0 : Kullback-Leibler divergence between P and Q,

A: approximation to P
(
Z[n] = · | X[n]

)
.

Rk:

sup
A

{
J (X[n]; A, α, π)

}
= L2(X[n];α, π)− inf

A

{
K
(
A; P

[
Z[n] = · | X[n]

])}
.
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Variational approximation (Con’t.)

Approximating P
[

Z[n] = · | X[n]

]
Choose a subset R of distributions such that

R =


n∏

i=1

M(1, τi ,1, . . . , τi ,Q) | τi ,q ∈ [0, 1],
Q∑

q=1

τi ,q = 1

 .

Final variational objective function

J (X[n]; τ̂[n], α, π) := L2(X[n];α, π)− inf
A∈R

K
(
A; P

[
Z[n] = · | X[n]

])
.

Interest:
For every (α, π),

unlike L2(X[n];α, π), J (X[n]; τ̂[n], α, π) can be computed.
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How to prove consistency of VE?

Maximum likelihood estimator (MLE)

(α̂, π̂) := Argmin(α,π)L2(X[n];α, π) .

Variational estimator (VE)

(α̃, π̃) := Argmin(α,π)J (X[n]; τ̂[n], α, π) .

Main goal:

Settle consistency of Variational Estimator (VE).
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III Main results
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Uniform convergence

Theorem (C., Daudin, Pierre (12))

Under assumptions (A1)− (A3),

sup
(α,π)

1

n(n − 1)

∣∣J (X[n]; τ̂[n], α, π)− L2(X[n];α, π)
∣∣ a.s.−−−−→

n→+∞
0 .

Idea:

MLE and VE share the same asymptotic properties.

Two-step Strategy:

1 Settle consistency of MLE.

2 Deduce consistency of VE.
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Different scaling between α and π

Log-likelihood of SBM

L2(X[n];α, π) = log

∑
z[n]

eL1(X[n];z[n],π)PZ[n]
(z[n];α)

 ,

with

PZ[n]
(z[n];α) =

∏Q
q=1

(
α
∑n

i=1 1(zi=q)
q

)
,

L1(X[n]; z[n], π) =∑
q,l

[
Sq,l(z[n]) log πq,l +

(
Nq,l(z[n])− Sq,l(z[n])

)
log (1− πq,l)

]
,

where
Nq,l(z[n]) =

∑
i 6=j 1(zi=q,zj=l),

Sq,l(z[n]) =
∑

i 6=j Xi ,j1(zi=q,zj=l).

Idea:

−→ Two-step estimation strategy: Estimate first π, then α.
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MLE consistency: General consistency theorem

Theorem (C., Daudin, Pierre (12))

Let Mn : Θ×Ψ→ R: random function and M : Θ→ R
deterministic such that for every ε > 0,

sup
d(θ,θ0)≥ε

M (θ) <M (θ0) ,

sup
(θ,ψ)
|Mn (θ, ψ)−M (θ)| P−−−−→

n→+∞
0 .

If (θ̂, ψ̂) = Argmaxθ,ψMn (θ, ψ), then

d
(
θ̂, θ0

)
P−−−−→

n→+∞
0 .

Remark:

θ = π, ψ = α, Mn(π, α) = [n(n − 1)]−1L2(X[n];α, π).
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MLE consistency: Main strategy

First step: P(· | Z[n] = z∗[n]) as reference probability.
Concentration inequalities with∑

r ,t

∑
i 6=j ,zi=q,zj=l

Xi ,j1(z∗i =r ,z∗j =t) (ind. r.v.) .

For every u > 0,∣∣∣∣∣∣
∑
r ,t

∑
i 6=j ,zi=q,zj=l

(Xi ,j − π∗r ,t)1(z∗i =r ,z∗j =t)

∣∣∣∣∣∣ > u

with proba. ≤ exp
[
−∆ · Nq,l(z[n]) · u2

]
(∆: constant).

Second step: Integrating over Z[n]

Concentration of
∑n

i=1(1(Zi=q) − αq) (ind. Bernoulli r.v.).
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MLE consistency

Theorem (C., Daudin, Pierre (12))

(α̂, π̂) := Argmax(α,π)L2(X[n];α, π) .

Then for any distance d(·, ·) on the set of parameters π,

d (π̂, π∗)
P−−−−→

n→+∞
0 .

Theorem (C., Daudin, Pierre (12))

If ‖π̂ − π∗‖∞ = oP
(√

log n/n
)
, then

d(α̂, α∗)
P−−−−→

n→+∞
0 .

−→ Similar results for VE.
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Take-home message and prospects

Recap.

Main tool: concentration inequalities.
Two-step strategy: (i) cSBM, and (ii) SBM.
First theoret. guarantees on consistency of VE (MLE) in SBM.

Prospects

Rates of convergence of MLE and VE estimators.
Distinguish between regimes (let ζ and γ → 0):
P [ Xi ,j = 1 | Zi ,Zj ]→ 0 as n→ +∞
(Bickel, Choi, Chang, Zhang (12)).

Thank you!
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