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Abstract

In this paper, we study a single-server polling model with two queues. Customers
arrive at the queues according to two independent Poisson processes. The server
spends random amounts of time in each queue, regardless of the amounts of work
present at the queues. The service speed is not constant; it is assumed that the server
works at speed rixi at queue i when its current workload equals xi, i = 1, 2. We
first focus on the case that all visit times are constant. In the two-queue case we then
compute the LST of the steady-state joint workload distribution. Using a different
method in which we exploit the independence of the workloads at visit endings, we
compute the joint LST of workloads in the case of an arbitrary number of queues with
constant visit times.

Next, we consider a two-queue polling model with constant visit times at the first
queue and general visit times at the second, and we derive the marginal workload dis-
tribution at the first queue. We also investigate the case of a two-queue polling model
with exponentially distributed visit times. We determine the steady-state marginal
workload distributions, and we formulate a two-dimensional Volterra integral equa-
tion for the LST of the steady-state joint workload distribution. We finally show that
this equation can be solved by a fixed-point iteration.
Keywords: polling model; time-limited; workload; workload-dependent service speed.

1 Introduction

In this paper, we study a single-server polling model with two queues, in which cus-
tomers arrive at the queues according to two independent Poisson processes and
bring along certain service requirements. Our model has two special features. The
first one concerns the visit times of the server to the queues. It is usually assumed in
polling models (see [7] for a survey) that the server follows one of the key service dis-
ciplines (namely exhaustive, gated or k-limited); and if, for the latter disciplines, the

1



visited queue becomes idle, the server immediately moves to another queue. How-
ever, in this paper, we assume that the server spends a certain amount of time (either
deterministic or random) at a queue, and stays there until that time is up, even if the
queue becomes empty beforehand. When the server moves to the next queue, that
switch is assumed to be instantaneous.

The second special feature of the model is, that the service speed at each queue is
not constant but workload dependent; it is assumed that the server works at speed
rixi at queue i when its current workload equals xi, i = 1, 2. Such a workload process
with exponential decay in between upward jumps is called a shot-noise process.

Our motivation for studying this polling model is twofold. Our first motivation
is an intrinsic interest in the mathematical complexity of polling systems. A service
speed which is proportional to the workload has mathematically pleasing properties.
That raises the question whether polling models with such a workload-dependent
(shot-noise) service speed might be more tractable than classic polling models. For
classic polling models, a sharp division is known to exist between ”easy” and ”hard”
models. Service disciplines of so-called branching type give rise to ”easy” models [16],
for which explicit expressions for (the transform of) the joint queue length distribution
can be obtained. However, if the service discipline in at least one queue is not of
branching type, then the joint queue length distribution is almost never known; see
Section 5 of [7] for a discussion of some exceptions to this rule. When it comes to
joint workloads, a very similar sharp division holds; now multi-type Jirina processes
(continuous-state discrete-time branching processes) give rise to explicit expressions
for (the transform of) the steady-state joint workload distribution [9]. We shall show
that polling systems with workload-proportional service speed are quite tractable,
even if the service discipline at the queues is not of branching type.

Our second motivation is provided by the increasingly important topic of balanc-
ing energy consumption of processors and performance for users. Dynamic scaling
techniques like frequency scaling or voltage scaling enable individual computers to
adjust their processing speed in accordance with their workload [17]. Since energy
consumption is an increasing function of the processor speed, less energy is consumed
when the processor has a smaller workload and, accordingly, a lower speed. Another
societal argument for studying workload-dependent server speeds is that the service
speed of human servers typically is influenced by their workload.

Related literature. In the recent literature, shot-noise processes have been widely
studied in the context of queueing, mathematical finance, and insurance, see for exam-
ple [1, 3, 4, 6, 11, 13]. However, as far as we know, in polling systems, we are applying
the shot-noise process for the first time. In [18] a single server polling model with
two queues and random (exponentially distributed) visit times was analyzed, with
constant arrival and service rates. In the present paper, we analyze the same model
where the service rates are not constant but workload-dependent. Other research that
is relevant to this work is [17], where the authors study a queueing system in which
the service speed is a function of the workload, and in which the server switches
off when the system becomes empty, only to be activated again when the workload
reaches a certain threshold. For this system, the authors obtained the steady-state
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workload distribution.

Main contributions. In Theorem 4.1, we obtain an explicit expression for the joint
workload LST, for the two-queue polling model in the case of constant visit times.
Using a different method, we generalize this result in Theorem 5.1 to the case of an
arbitrary number of queues with constant visit times and Lévy subordinator inputs.
This provides a rare example of a polling system in which an exact joint workload
distribution can be obtained even though the so-called branching property is vio-
lated. When one of the visit times is not constant, we are no longer able to obtain
the joint workload LST. However, for the case of one constant and one general visit
time, we derive detailed exact and asymptotic results for the marginal workload LST
at the queue with constant visit times. Moreover, for the case of two queues with ex-
ponentially distributed visit times, we are able to determine the marginal workload
LST and to obtain a two-dimensional Volterra integral equation for the joint work-
load LST. The associated Volterra operator has an unbounded kernel, and is therefore
of non-standard type. It has the joint workload LST as an eigenfunction with eigen-
value 1. While we have not been able to find the joint workload LST analytically, we
show that it can be found numerically by a fixed-point iteration, the Volterra operator
being a weak contraction.

Structure of the paper. In Section 2, we present some results for a single server
queue with workload-proportional server speed – a shot-noise queue. The two-queue
polling model under consideration in this paper is described in Section 3. Section 4
contains the derivation of the joint workload LST in the two-queue case with constant
visit times. This result is extended to the case of an arbitrary number of queues in
Section 5. Sections 6 and 7 are successively devoted to the case of constant visit times
at queue 1 and general visit times at queue 2, and to the case of exponential visit times
at both queues.

2 Preliminaries and notation

In this section we briefly review the case of an M/G/1 queue with the special feature
that the server works at speed rx when the workload is x, with r > 0. Suppose that
the Poisson arrival process {A(t), t ≥ 0} has rate λ and that the service requirements
(Bi)i∈N are i.i.d. with distribution B(·) and LST β(·). Denote the workload of the
system at time t by {X(t), t ≥ 0}. Due to the linear service speed assumption, it holds
that (see [15, Eqn. (1)])

X(t) = X(0)e−rt +

A(t)∑
i=1

Bie
−r(t−ti), t ≥ 0, (1)

with ti the arrival epoch of customer i, i = 1, . . . , A(t). Using the well-known property
that, if n events occur in [0, t] according to a Poisson process, the event times are
independent and uniformly distributed on [0, t], it easily follows (see, e.g., Chapter 2
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of [14]) that

E(e−sX(t)) = exp

(
−sX(0)e−rt − λ

r

∫ s

se−rt

1− β(u)

u
du

)
, Re s ≥ 0. (2)

We shall strongly rely on this expression in the remainder of this paper.
For any r > 0, the process {X(t), t ≥ 0} has a steady-state distribution. Denoting

by X a random variable with that distribution, with LST φ(s), it follows from (2) that
(see already [12])

φ(s) = exp

(
−λ
r

∫ s

0

1− β(u)

u
du

)
. (3)

In the special case thatB is exponentially distributed with mean 1/µ, we substitute
β(s) = µ

µ+s to obtain

φ(s) =

(
µ

µ+ s

)λ/r
,

which corresponds to a Gamma distribution with shape parameter λ/r and scale pa-
rameter 1/µ.

3 Model description and notation

In this section, we introduce the single-server two-queue polling model that will be
studied in this paper. Customers arrive at the two queues, say Q1 and Q2, according
to two independent Poisson processes at rates λ1, λ2. There is a single server, that
alternately visits the two queues for random periods. The service times of customers
in Q1 (respectively in Q2) are independent and identically, generally, distributed pos-
itive random variables; a generic service time at Qi is denoted by Bi, i = 1, 2. The
service times in Q1 are also independent of those in Q2, and the service times are also
independent of the interarrival times. We denote the LST of Bi by βi(s) = E(e−sBi),
with Re s ≥ 0, i = 1, 2.

Just like in the shot-noise queue described in Section 2 the service speed is a linear
function of the workload of the queue that it visits, i.e., if the workload at Qi is xi
then the service rate at that queue is rixi, i = 1, 2. A special feature of this service
speed and the ensuing exponential decrement of the workload is that neither queue
ever becomes empty.

We make the following assumption about the visit times of the server at the two
queues. The server alternately spends independent random times T11, T21, T12, T22, . . .
at Q1, Q2, Q1, Q2, . . . . Upon completion of a visit time at Qi, the server instanta-
neously switches to the other queue, i.e., there is no switch-over time. Furthermore if,
upon completion of the visit time, the server is providing service to a customer, this
service is interrupted and resumed at the next visit of the server to the queue. More
explicitly, we assume that if a server resumes the service after being interrupted, the
server continues from where the service stopped instead of starting from the begin-
ning, i.e., the service is preemptive–resume.
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4 Model 1: Two queues with constant visit times

In this section we consider the single-server two-queue polling model as described in
Section 3, with the following additional assumption: the visit periods to Q1 and Q2

are both constant, of size T1 and T2, respectively. We focus on the steady-state joint
workload of Q1 and Q2.

We let Vi(t) denote the workload at time t ≥ 0 atQi, i = 1, 2, and Vi the steady-state
workload at an arbitrary epoch.

Theorem 4.1. The LST of the steady-state joint workload of Q1 and Q2 is

E(e−s1V1−s2V2)

=
exp

(
−λ1

r1

∫ s1
0

1−β1(u)
u du− λ2

r2

∫ s2
0

1−β2(u)
u du

)
T1 + T2

×[
exp

−λ2T1 ∞∑
j=0

(1− β2(s2e
−(j+1)r2T2))


∫ T1

0

exp

(
− λ2(1− β2(s2))x− λ1T2

∞∑
j=0

(1− β1(s1e
−jr1T1−r1x))

)
dx

+ exp

−λ1T2 ∞∑
j=0

(1− β1(s1e
−(j+1)r1T1))


∫ T2

0

exp

(
− λ1(1− β1(s1))x− λ2T1

∞∑
j=0

(1− β2(s2e
−jr2T2−r2x))

)
dx

]
. (4)

Proof. The proof of (4) consists of five steps. In Step 1, we express the joint workload
LST at time T1 in that at time 0. In Step 2, we express the joint workload LST at time
T1 + T2 in that at time 0. In Step 3, we observe that, in steady-state, the latter two
LST’s should coincide. That leads to a recursive relation, which is solved. In Step 4
we determine the joint workload LST at time T1. In Step 5, finally, we obtain the joint
workload LST at an arbitrary epoch.
Step 1. Calculation of E(e−s1V1(T1)−s2V2(T1)).
Because of the constant visit times and the independent arrival processes, we have

E(e−s1V1(T1)−s2V2(T1))

=

∫ ∞
x1=0

∫ ∞
x2=0

E(e−s1V1(T1)−s2V2(T1)|V1(0) = x1, V2(0) = x2)

dP(V1(0) < x1, V2(0) < x2)

=

∫ ∞
x1=0

∫ ∞
x2=0

E(e−s1V1(T1)|V1(0) = x1)E(e−s2V2(T1)|V2(0) = x2)

dP(V1(0) < x1, V2(0) < x2). (5)

In the time interval [0, T1), the first queue behaves as a shot-noise queue, hence from
(2) we know that

E(e−s1V1(t)|V1(0) = x1) = e
−s1x1e

−r1t−λ1r1
∫ s1
s1e
−r1t

1−β1(u)
u du

, 0 ≤ t ≤ T1. (6)
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In the time interval [0, T1), the second queue behaves as a vacation queue so the work-
load in that system only increases by the sum of the service times of all the customers
that arrived in this interval. The increments occur according to a compound Poisson
process, hence we have

E(e−s2V2(t)|V2(0) = x2) = e−s2x2−λ2(1−β2(s2))t , 0 ≤ t ≤ T1. (7)

So combining (5), (6) and (7), we get

E(e−s1V1(T1)−s2V2(T1))

=e
−λ2(1−β2(s2))T1−λ1r1

∫ s1
s1e
−r1T1

1−β1(u)
u du

×∫ ∞
x1=0

∫ ∞
x1=0

e−s1x1e
−r1T1−s2x2 dP(V1(0) < x1, V2(0) < x2)

=e
−λ2(1−β2(s2))T1−λ1r1

∫ s1
s1e
−r1T1

1−β1(u)
u du

E(e−s1e
−r1T1V1(0)−s2V2(0)). (8)

Step 2. Calculation of E(e−s1V1(T1+T2)−s2V2(T1+T2)).
Because of the symmetry of our polling model, performing a similar step as in Step 1,
it is obvious that

E(e−s1V1(T1+T2)−s2V2(T1+T2))

= e
−λ1(1−β1(s1))T2−λ2r2

∫ s2
s2e
−r2T2

1−β2(u)
u du

E(e−s1V1(T1)−s2e−r2T2V2(T1)). (9)

Substituting E(e−s1V1(T1)−s2e−r2T2V2(T1)) from (8) in the above equation yields

E(e−s1V1(T1+T2)−s2V2(T1+T2))

=e
−λ1(1−β1(s1))T2−λ2(1−β2(s2e

−r2T2 ))T1−λ1r1
∫ s1
s1e
−r1T1

1−β1(u)
u du

e
−λ2r2

∫ s2
s2e
−r2T2

1−β2(u)
u du

E(e−s1e
−r1T1V1(0)−s2e−r2T2V2(0)). (10)

Step 3. Calculation of E(e−s1V1(T1+T2)−s2V2(T1+T2)) in steady-state.
In steady-state, (V1(0), V2(0)) has the same distribution as (V1(T1 + T2), V2(T1 + T2)).
Introducing Gi(s1, s2) as the joint workload LST at the end of a visit to Qi, i = 1, 2, we
have

G2(s1, s2) = H(s1, s2) G2(s1e
−r1T1 , s2e

−r2T2), (11)

with

H(s1, s2) =e
−λ1(1−β1(s1))T2−λ2(1−β2(s2e

−r2T2 ))T1−λ1r1
∫ s1
s1e
−r1T1

1−β1(u)
u du

e
−λ2r2

∫ s2
s2e
−r2T2

1−β2(u)
u du

. (12)

Iterating (11) yields after one step

G2(s1, s2) = H(s1, s2)H(s1e
−r1T1 , s2e

−r2T2)G2(s1e
−2r1T1 , s2e

−2r2T2).

Continuing in this way and observing thatG2(s1e
−jr1T1 , s2e

−jr2T2)→ G2(0, 0) = 1

as j →∞, we obtain

G2(s1, s2) =

∞∏
j=0

H(s1e
−jr1T1 , s2e

−jr2T2).
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Here we observe that, since 1 − e−x < x for x > 0, one has convergence of the in-
finite sums:

∑∞
j=0(1 − βi(sie

−jriTi)) ≤ si E(Bi)
∑∞
j=0 e

−jriTi < ∞ for i = 1, 2. By
substituting H(s1, s2) from (12) in the above equation, we get

G2(s1, s2)

= exp

(
−λ1
r1

∫ s1

0

1− β1(u)

u
du− λ2

r2

∫ s2

0

1− β2(u)

u
du

)
∞∏
j=0

exp
(
−λ1(1− β1(s1e

−jr1T1))T2 − λ2(1− β2(s2e
−(j+1)r2T2))T1

)
= exp

(
−λ1
r1

∫ s1

0

1− β1(u)

u
du− λ2

r2

∫ s2

0

1− β2(u)

u
du

)

exp

−λ1T2 ∞∑
j=0

(1− β1(s1e
−jr1T1))− λ2T1

∞∑
j=0

(1− β2(s2e
−(j+1)r2T2))

 . (13)

Step 4. Calculation of E(e−s1V1(T1)−s2V2(T1)) in steady-state.
It follows from (8) that

G1(s1, s2) = e
−λ2(1−β2(s2))T1−λ1r1

∫ s1
s1e
−r1T1

1−β1(u)
u du

G2(s1e
−r1T1 , s2). (14)

Step 5. Calculation of E(e−s1V1−s2V2) in steady-state.
Firstly, let us denote by {S = 1} (respectively by {S = 2}) the event that the server
resides in the first (respectively second) queue. Then,

E(e−s1V1−s2V2)

= E(e−s1V1−s2V2 |S = 1)P(S = 1) + E(e−s1V1−s2V1 |S = 2)P(S = 2)

= E(e−s1V1−s2V2 |S = 1)
T1

T1 + T2
+ E(e−s1V1−s2V2 |S = 2)

T2
T1 + T2

. (15)

Using the stochastic mean value theorem on [0, T1] (cf. Chapter 1 of [10]), we deter-
mine the steady-state joint workload LST when the server is serving at Q1 as

E(e−s1V1−s2V2 |S = 1)

=
1

T1
E
(∫ T1

0

e−s1V1(x)−s2V2(x)dx

)
=

1

T1
E
(∫ T1

0

e
−s1V1(0)e

−r1x−λ1r1
∫ s1
s1e
−r1x

1−β1(u)
u du−s2V2(0)−λ2(1−β2(s2))x

dx

)
=

1

T1

∫ T1

0

e
−λ1r1

∫ s1
s1e
−r1x

1−β1(u)
u du−λ2(1−β2(s2))x

G2(s1e
−r1x, s2)dx. (16)
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Substituting G2(s1, s2) from (13) in the above equation, we obtain

E(e−s1V1−s2V2 |S = 1)

=
1

T1

∫ T1

0

[
e
−λ1r1

∫ s1
s1e
−r1x

1−β1(u)
u du−λ2(1−β2(s2))x−λ1r1

∫ s1e−r1x
0

1−β1(u)
u du−λ2r2

∫ s2
0

1−β2(u)
u du

exp

−λ1T2 ∞∑
j=0

(1− β1(s1e
−jr1T1−r1x))− λ2T1

∞∑
j=0

(1− β2(s2e
−(j+1)r2T2))

]dx

=
1

T1
exp

(
− λ1
r1

∫ s1

0

1− β1(u)

u
du− λ2

r2

∫ s2

0

1− β2(u)

u
du

− λ2T1
∞∑
j=0

(
1− β2

(
s2e
−(j+1)r2T2

)))
∫ T1

0

exp
(
− λ2(1− β2(s2))x− λ1T2

∞∑
j=0

(1− β1(s1e
−jr1T1−r1x))

)
dx, (17)

where in the last step we took all the terms not involving x outside the integral. In a
completely similar way, or just using symmetry, we obtain

E(e−s1V1−s2V2 |S = 2)

=
1

T2
exp

(
− λ1
r1

∫ s1

0

1− β1(u)

u
du− λ2

r2

∫ s2

0

1− β2(u)

u
du

− λ1T2
∞∑
j=0

(
1− β1

(
s1e
−(j+1)r1T1

)))
∫ T2

0

exp
(
− λ1(1− β1(s1))x− λ2T1

∞∑
j=0

(1− β2(s2e
−jr2T2−r2x))

)
dx. (18)

Combining (15), (17) and (18) concludes the proof of (4).

Corollary 4.2. It holds that

E(V1) =
λ1 E(B1)

r1

1 +
T2

T1 + T2

(
1 +

r1T2
2

1 + e−r1T1

1− e−r1T1

) , (19)

E(V 2
1 ) =

λ1 E(B2
1)

2r1
+

(
λ1 E(B1)

r1

)2
1 +

2T2
T1 + T2

(
1 +

r1T2
2

1 + e−r1T1

1− e−r1T1

)
+

λ1 E(B1)T2
2r1(T1 + T2)

[
λ1 E(B1)T2(1 + e−r1T1)

1− e−r1T1
+

2r1λ1 E(B1)T 2
2 e
−2r1T1

(1− e−r1T1)2

+
2λ1 E(B1)r1T

2
2

3

1 + 2e−r1T2

1− e−r1T1
+

E(B2
1)

E(B1)

(
1 + r1T2

1 + e−2r1T1

1− e−2r1T1

)]
. (20)
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Symmetric formulas hold for E(V2) and E(V 2
2 ). It also holds that

E(V1V2) =
λ1λ2 E(B1)E(B2)

r1r2

[
1 +

T2
T1 + T2

(
1 +

r1T2
2

1 + e−r1T1

1− e−r1T1

)

+
T1

T1 + T2

(
1 +

r2T1
2

1 + e−r2T2

1− e−r2T2

)]

+
λ1λ2 E(B1)E(B2)

T1 + T2

[
T1
r22

+
T2
r21

+
T2T1e

−r1T1

1− e−r1T1

(
1

r2
− 1

r1

)

+
T1T2e

−r2T2

1− e−r2T2

(
1

r1
− 1

r2

)]
, (21)

Cov(V1, V2) =
λ1λ2 E(B1)E(B2)

r1r2

T1T2
T1 + T2

[
r1
T2r2

+
r2
T1r1

+ (r1 − r2)

(
e−r1T1

1− e−r1T1
− e−r2T2

1− e−r2T2

)

− 1

T1 + T2

(
1 +

r1T2
2

1 + e−r1T1

1− e−r1T1

)(
1 +

r2T1
2

1 + e−r2T2

1− e−r2T2

)]
. (22)

Proof. The moment expressions follow from the LST expression of Equation (4) after
tedious but straightforward differentiations.

Remark 4.3. It seems natural to expect that V1 and V2 are negatively correlated. In
the special case r1 = r2, T1 = T2, we have been able to verify this. The term between
square brackets in (22) in this case becomes, with x := r1T1:

2

T
− 1

2T

(
1 +

x

2

1 + e−x

1− e−x

)
.

This expression is non-positive if x 1+e−x

1−e−x ≥ 2, which is easily shown to hold (with
equality for x = 0).

Remark 4.4. It is straightforward to extend Theorem 4.1 from compound Poisson in-
puts at the queues to Lévy subordinator inputs (i.e., nondecreasing Lévy processes).
Indeed, consider a shot-noise process as in Section 2, but with input a Lévy subor-
dinator process {L(t), t ≥ 0}, with Laplace exponent η(·); i.e., E(e−sL(t)) = e−η(s)t,
t ≥ 0. In the compound Poisson case, one has η(s) = λ(1 − β(s)). Formula (2) now
generalizes to (cf. Formula (12) of [19]):

E(e−sX(t)) = exp

(
−sX(0)e−rt − 1

r

∫ s

se−rt

η(u)

u
du

)
, Re[s] ≥ 0, (23)

the only difference being that λ(1 − β(u)) has been replaced by η(u). Theorem 4.1
remains valid in the case of Lévy subordinators with Laplace exponents ηi(·) at Qi,
i = 1, 2, if one also simply replaces λi(1− βi(·)) by ηi(·), i = 1, 2; this is easily seen by
carefully checking the five steps of the proof of Theorem 4.1.
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5 N queues with constant visit times

The techniques employed in Section 4 could also be used to analyze the steady-state
joint workload LST in the case ofN > 2 queues with constant visit times, independent
Lévy subordinator input processes (cf. Remark 4.4) and a service speed at each queue
which is proportional to its workload. However, the analysis, and the bookkeeping
of the various workload contributions, become quite involved. For this reason, we
implement a slightly more straightforward approach. Inspection of Expression (13)
for G2(s1, s2), which has a product form, reveals that the workloads in Q1 and Q2 at
visit completion epochs are independent. Of course that is not surprising, because we
are viewing the queues after fixed visit times. This independence at visit completion
epochs also holds in the case of N > 2 queues with constant visit times. To obtain the
steady-state joint workload LST at arbitrary epochs, we can now use the following
procedure:

Step 1. Calculate the marginal workload LST of some queue Qm at the end of its visit
period.
Step 2. Calculate the marginal workload LST of Qm at the end of a visit to Qi−1.
Step 3. Multiply all those LST’s of the independent marginal workloads, thus obtain-
ing the joint workload LST at the end of a visit to Qi−1.
Step 4. Use the latter result to obtain the joint workload LST at an arbitrary epoch
during a visit to Qi.
Step 5. Take a weighted average of all these LST’s, for i = 1, 2, . . . , N , over the visit
intervals of lengths T1, T2, . . . , TN .

It should be noted that the N workloads at an arbitrary epoch are not independent.
They are correlated because, when considering them at an arbitrary epoch in a visit
period to some queue, say, Qi, the length of the past part of Ti influences how the
workload at Qi has developed, and how the other workloads have grown.

Below we first formally describe the N -queue model; subsequently we follow the
five outlined steps to arrive at Theorem 5.1 for the steady-state joint workload LST.

Model description. A single server cyclically visits N queues, having constant visit
times T1, T2, . . . , TN at these queues. Work arrives at the queues according to N in-
dependent Lévy subordinators, with Laplace exponents η1(·), η2(·), . . . , ηN (·). When
the server visits Qi, it serves that queue at speed riyi when the workload is yi, i =

1, 2, . . . , N .

Step 1: The LST of the marginal workload V̂m of Qm at the end of its visit.
Take the visit periods atQm+1, . . . , QN , Q1, . . . , Qm−1 together as one new visit period
in a two-queue model consisting of Qm and the aggregated other queues. It follows
from (13) for G2(s1, s2) with s2 = 0 – while using the fact that, cf. Remark 4.4, we can
replace λi(1− βi(·)) by the Laplace exponent ηi(·) – that, for m = 1, 2, . . . , N ,

E(e−smV̂m) = e−
1
rm

∫ sm
0

ηm(u)
u due−

∑
k 6=m Tk

∑∞
j=0 ηm(sme−(j+1)rmTm ). (24)

Step 2: The marginal workload LST of Qm at the end of a visit to Qi−1.
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The workload of Qm does not decrease after the end of the last visit to Qm until the
end of the next visit to Qi−1; it equals the workload present at the end of the visit to
Qm plus all the work that arrives during the visit periods of Qm+1, . . . , Qi−1. Hence,
we let i runs from 1 to N , in view of Step 4 below, but i − 1 = 0 should be replaced
by i − 1 = N . Hence, denoting the workload of Qm at the end of a visit to Qi−1 by
Vm,i−1, we have Vm,m = V̂m and

E(e−smVm,i−1) = E(e−smV̂m)e−
∑i−1
k=m+1 Tkηm(sm), m 6= i− 1. (25)

Here
∑i−1
k=m+1 Tkηm(sm) =

∑N
k=m+1 Tkηm(sm) +

∑i−1
k=1 Tkηm(sm) if i− 1 < m.

Step 3. Using the independence of the workloads of the N queues at the end of a visit
to Qi−1 we can write:

fi−1(s1, s2, . . . , sN ) := E(e−s1V1,i−1−s2V2,i−1−···−sNVN,i−1) (26)

= exp
(
−

N∑
m=1

1

rm

∫ sm

0

ηm(u)

u
du−

N∑
m=1

∑
k 6=m

Tk

∞∑
j=0

ηm(sme−(j+1)rmTm)
)

exp
(
−

∑
m6=i−1

i−1∑
k=m+1

Tkηm(sm)
)
.

Step 4: The joint workload LST at an arbitrary epoch during a visit to Qi.
Denoting the joint workload LST at some time x ∈ (0, Ti) by gi,x(s1, s2, . . . , sN ), we
can write (cf. (2)):

gi,x(s1, s2, . . . , sN )

= fi−1(s1, . . . , si−1, sie
−rix, si+1, . . . , sN )e

− 1
ri

∫ si
sie
−rix

ηi(u)

u du
e−
∑
j 6=i ηj(sj)x. (27)

Here i = 1, 2, . . . , N but f0 = fN .

Step 5. To obtain the LST of the steady-state joint workload distribution, take a
weighted average of all these LST’s, for i = 1, 2, . . . , N , over the visit intervals of
lengths T1, T2, . . . , TN , using a stochastic mean value theorem to average over a Ti
interval:

E(e−s1V1−s2V2−···−sNVN ) =

N∑
i=1

Ti
T1 + T2 + · · ·+ TN

∫ Ti

x=0

gi,x(s1, s2, . . . , sN )
dx

Ti
. (28)

We thus arrive at the following theorem.

Theorem 5.1. The LST of the steady-state joint workload distribution in theN−queue polling
model with constant visit times, independent Lévy subordinator inputs and workload-proportional
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service speeds is given by

E(e−s1V1−s2V2−···−sNVN )

=
1∑N
i=1 Ti

exp
(
−

N∑
i=1

1

ri

∫ si

0

ηi(u)

u
du
)
×

N∑
i=1

∫ Ti

x=0

exp
(
−
∑
m 6=i

∑
k 6=m

Tk

∞∑
j=0

ηm(sme−(j+1)rmTm)
)

exp
(
−
∑
k 6=i

Tk

∞∑
j=0

ηi(sie
−rix−(j+1)riTi)

)
exp

(
−
∑
m 6=i

i−1∑
k=m+1

Tkηm(sm)
)

exp
(
−

i−1∑
k=i+1

Tkηi(sie
−rix)

)
exp

(
−
∑
j 6=i

ηj(sj)x
)

dx. (29)

Remark 5.2. Theorem 5.1 is readily seen to reduce to Theorem 4.1 when N = 2 and
the arrival processes are compound Poisson processes.

6 Model 2: Constant visit times for Q1, general visit times
for Q2

In this section, we consider the same single-server two-queue polling model as in
Section 4, with one difference: the visit periods of Q2 now have a general distribution
with LST γ2(·) (whereas the visit periods of Q1 are still constant). In this section, we
focus on the steady-state workload of Q1; for this model we have not been able to
determine the joint workload LST.

Let V1(t) denote the workload at time t, t ≥ 0, and V1 the steady-state workload at
an arbitrary epoch.

Theorem 6.1. The LST of the steady-state workload of Q1 is

E(e−sV1) =

exp

(
− λ1

r1

∫ s
0

1−β1(u)
u du

)
T1 + E(T2)

[∫ T1

0

∞∏
j=0

γ2(λ1(1− β1(se−r1(x+jT1))))dx

+
1− γ2(λ1(1− β1(s)))

λ1(1− β1(s))

∞∏
j=1

γ2(λ1(1− β1(se−jr1T1)))

]
. (30)

Proof. The proof contains the following steps:
Step 1. Calculation of E(e−sV1(T1+T2)|V1(T1) = y).
During (T1, T1 + T2) the server is on vacation, so the workload in the system only in-
creases by the sum of the service times of all the customers that arrived in this interval.
The increments occur according to a compound Poisson process. So,

E(e−sV1(T1+T2)|V1(T1) = y) = e−syγ2(λ1(1− β1(s))). (31)
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Step 2. Calculation of E[e−sV1(T1)|V1(0) = x].
From (2), we know that

E(e−sV1(T1)|V1(0) = x) = e−sxe
−r1T1−λ1r1

∫ s
se−r1T1

1−β1(u)
u du. (32)

Step 3. Calculation of E[e−sV1(T1+T2)|V1(0) = x]. Let fV1(T1)(·|V1(0) = x) denote the
density of V1(T1) conditional on {V1(0) = x}, then

E(e−sV1(T1+T2)|V1(0) = x)

=

∫ ∞
y=0

E(e−sV1(T1+T2)|V1(T1) = y)fV1(T1)(y|V1(0) = x)dy

= γ2(λ1(1− β1(s)))

∫ ∞
y=0

e−syfV1(T1)(y|V1(0) = x)dy

= γ2(λ1(1− β1(s)))E(e−sV1(T1)|V1(0) = x)

= γ2(λ1(1− β1(s)))e−sxe
−r1T1−λ1r1

∫ s
se−r1T1

1−β1(u)
u du, (33)

where the last equality comes from Equation (32).
Step 4. Calculation of E(e−sV1(T1+T2)) in steady-state.
Observe that

E(e−sV1(T1+T2))

=

∫ ∞
x=0

E(e−sV1(T1+T2)|V1(0) = x)fV1(0)(x)dx

= γ2(λ1(1− β1(s)))

∫ ∞
x=0

e−sxe
−r1T1−λ1r1

∫ s
se−r1T1

1−β1(u)
u dufV1(0)(x)dx, (34)

with fV1(0)(x) the probability density function of V1(0). Now observe that in steady-
state V1(T1 +T2) has the same distribution as V1(0). So we can rewrite (34) as follows:

E(e−sV1(T1+T2)) = γ2(λ1(1− β1(s)))e−
λ1
r1

∫ s
se−r1T1

1−β1(u)
u du E(e−sV1(T1+T2)e

−r1T1
).

Using the above equation, we compute E(e−sV1(T1+T2)e
−r1T1

). Substituting this in the
r.h.s. of the above equation yields

E(e−sV1(T1+T2))

=γ2(λ1(1− β1(s)))γ2(λ1(1− β1(se−r1T1)))×

e
−λ1r1

(∫ se−r1T1
se−2r1T1

1−β1(u)
u du+

∫ s
se−r1T1

1−β1(u)
u du

)
E(e−sV1(T1+T2)e

−2r1T1
)

=γ2(λ1(1− β1(s)))γ2(λ1(1− β1(se−r1T1)))e−
λ1
r1

∫ s
se−2r1T1

1−β1(u)
u du

E(e−sV1(T1+T2)e
−2r1T1

)

...

=e−
λ1
r1

∫ s
se−kr1T1

1−β1(u)
u du

k−1∏
j=0

γ2(λ1(1− β1(se−jr1T1)))E(e−sV1(T1+T2)e
−kr1T1

).
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Observing that E(e−sV1(T1+T2)e
−jr1T1

) → 1 as j → ∞, the r.h.s. of the above equation
becomes

E(e−sV1(T1+T2)) = e−
λ1
r1

∫ s
0

1−β1(u)
u du

∞∏
j=0

γ2(λ1(1− β1(se−jr1T1))), (35)

assuming

∞∏
j=0

γ2(λ1(1− β1(se−jr1T1))) <∞. (36)

In Step 6 we shall prove that (36) indeed holds.
Step 5. Calculation of E(e−sV1) in steady-state.
Firstly, let us again denote by {S = 1} (respectively by {S = 2}) the event of the server
residing in the first (respectively second) queue. Then,

E(e−sV1) = E(e−sV1 |S = 1)P(S = 1) + E(e−sV1 |S = 2)P(S = 2)

= E(e−sV1 |S = 1)
T1

T1 + E(T2)
+ E(e−sV1 |S = 2)

E(T2)

T1 + E(T2)
. (37)

Using a stochastic mean value theorem (see [10, Theorem 4.1]) we determine the LST
of the steady-state workload when the server is serving at Q1 as

E(e−sV1 |S = 1) =
1

T1
E
(∫ T1

0

e−sV1(x)dx

)
=

1

T1

∫ T1

0

E(e−sV1(x))dx. (38)

Using (2), we obtain

E(e−sV1 |S = 1) =
1

T1

∫ T1

0

E
(
e−sV1(0)e

−r1x
)
e−

λ1
r1

∫ s
se−r1x

1−β1(u)
u dudx. (39)

Since V1(0) and V1(T1 + T2) have the same distribution in steady-state, substituting
E(e−sV1(T1+T2)) as given in (35) in the above equation yields

E(e−sV1 |S = 1)

=
exp

(
−λ1

r1

∫ s
0

1−β1(u)
u du

)
T1

∫ T1

0

∞∏
j=0

γ2(λ1(1− β1(se−r1(x+jT1))))dx. (40)

Again, using the stochastic mean value theorem for the given E(e−sV1(T1)), we deter-
mine the LST of the steady-state workload when the server is serving at Q2,

E(e−sV1 |S = 2) =
1

E(T2)
E
(∫ T1+T2

T1

e−sV1(x)dx

)
. (41)

The workload V1(x) is the sum of two independent workloads, i.e., V1(T1) and the
workload (say A(x)) that has arrived during the time period [T1, T1 + x); this yields

E(e−sV1 |S = 2) =
1

E(T2)
E
(∫ T2

0

E(e−s(V1(T1)+A(x))dx

)
. (42)
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During [T1, T1 + T2) the server serves only customers in the second queue, so the
workload in the first queue only increases by the sum of the service times of all the
customers that arrived in this interval. The increments occur according to a com-
pound Poisson process. So,

E(e−sV1 |S = 2) =
E(e−sV1(T1))

E(T2)
E
(∫ T2

0

e−λ1(1−β1(s))xdx

)
=

E(e−sV1(T1))

E(T2)
E
(

1− e−λ1(1−β1(s))T2

λ1(1− β1(s))

)
=

E(e−sV1(T1))

E(T2)

1− γ2(λ1(1− β1(s)))

λ1(1− β1(s))
. (43)

From (31), we obtain

E(e−sV1(T1)) =
E(e−sV1(T1+T2))

γ2(λ1(1− β1(s)))
. (44)

Combining (35) and (44), we get

E(e−sV1(T1)) = exp

(
−λ1
r1

∫ s

0

1− β1(u)

u
du

) ∞∏
j=1

γ2(λ1(1− β1(se−jr1T1))). (45)

Substituting (45) in (43) yields

E(e−sV1 |S = 2) =
1− γ2(λ1(1− β1(s)))

λ1(1− β1(s))E(T2)
exp

(
−λ1
r1

∫ s

0

1− β1(u)

u
du

)
×

∞∏
j=1

γ2(λ1(1− β1(se−jr1T1))). (46)

Combining (37), (40) and (46) proves (30).
Step 6. Proof that

∏∞
j=0 γ2(λ1(1− β1(se−jr1T1))) <∞.

It is well-known that, for 0 < aj < 1, the infinite product
∏∞
j=0 aj converges iff∑∞

j=0(1 − aj) < ∞. Since γ2(s) is the LST corresponding to the random variable
T2, we get

∞∑
j=0

(
1− γ2(λ1(1− β1(se−jr1T1)))

)
=

∞∑
j=0

(
1−

∫ ∞
0

e−x(λ1(1−β1(se
−jr1T1 )))dP(T2 < x)

)

=

∞∑
j=0

(∫ ∞
0

(
1− e−x(λ1(1−β1(se

−jr1T1 )))
)

dP(T2 < x)

)
. (47)
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Since 1− e−x < x, for x > 0, we get
∞∑
j=0

(∫ ∞
0

(
1− e−x(λ1(1−β1(se

−jr1T1 )))
)

dP(T2 < x)

)

<

∞∑
j=0

(∫ ∞
0

x(λ1(1− β1(se−jr1T1)))dP(T2 < x)

)

= λ1 E(T2)

∞∑
j=0

(1− β1(se−jr1T1)). (48)

Now we need to show that
∑∞
j=0(1− β1(se−jr1T1)) <∞. Since β1(s) is the LST of the

random variable B1, applying a similar analysis as in (47) and (48), one easily gets
∞∑
j=0

(1− β1(se−jr1T1)) =

∞∑
j=0

(∫ ∞
0

(1− e−sye
−jr1T1

)dP(B1 < y)

)

<

∞∑
j=0

(∫ ∞
0

sye−jr1T1dP(B1 < y)

)

= sE(B1)

∞∑
j=0

e−jr1T1 =
sE(B1)

1− e−r1T1
<∞. (49)

Remark 6.2. In the case of constant T2, the marginal workload LST of Q1 can also be
obtained by substituting s2 = 0 in the joint workload LST obtained in Theorem 4.1.

Remark 6.3. The expression in Theorem 6.1 for the marginal workload LST allows
us to study the tail behavior of the workload in case the service times at Q1 and/or
the visit times at Q2 are regularly varying at infinity. First recall the definition of a
regularly varying random variable/distribution:

Definition 6.4. The distribution function of a random variable B1 on [0,∞) is called
regularly varying of index −ν, with ν ∈ R, if

P(B1 > x) ∼ L(x)x−ν , x ↑ ∞, (50)

with L(x) a slowly varying function at infinity, i.e., lim
x→∞

L(αx)
L(x) = 1, for all α > 0.

Using the Tauberian Theorem 8.1.6 of [5], which relates the behavior of a regularly
varying function at infinity and the behavior of its LST near 0, one can prove the
following. If B1 is regularly varying of index −ν and T2 is regularly varying of index
−τ , then the workload V1 is regularly varying of index−min(ν, τ−1). We refrain from
giving the details because the approach is fairly straightforward; cf. the survey [8].

7 Model 3: Exponential visit times

In this section, we consider the two-queue polling model of Section 3, but we now
assume that the visit periods to Qi are i.i.d. exp(ci) distributed, i = 1, 2. In Sub-
section 7.1, we obtain the marginal workload LST for one of the queues. In Subsec-
tion 7.2, we show that this LST can be decomposed in three terms which are LST’s
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of independent, non-negative random variables. That decomposition is exploited in
Subsection 7.3 to obtain the asymptotic behavior of the workload at a queue in case its
service time distribution is regularly varying. We derive a two-dimensional Volterra
integral equation for the steady-state joint workload LST in Subsection 7.4, and we
show, in Subsection 7.5, that this equation can be solved by implementing the so-
called fixed-point iteration.

7.1 Marginal workload analysis

In this subsection, we derive the LST of the marginal workload in steady-state at an
arbitrary epoch. The individual queues behave as vacation systems: from the per-
spective of one queue, the server is on vacation when it resides at the other queue.
We let Vi(t) denote the workload at time t, t ≥ 0, of Qi, i = 1, 2, and let Vi denote
the steady-state workload of Qi at an arbitrary epoch, i = 1, 2. In this subsection, we
prove the following theorem.

Theorem 7.1.

E(e−sV1)

=

(
c2

c1 + c2
+

c1
c1 + c2

c2
c2 + λ1(1− β1(s))

)
exp

(
− λ1
r1

∫ s

0

1− β1(u)

u
du

)

exp

(
− c1
r1

∫ s

0

1− c2
c2+λ1(1−β1(u))

u
du

)
. (51)

E(e−sV2) is given by the symmetric expression, with all indices 1 and 2 swapped.

Proof. We determine the marginal workload LST in the following five steps.
Step 1. Calculation of E(e−sV1(T1+T2)|V1(T1) = y).
During (T1, T1 + T2) the server serves only customers in the second queue, so the
workload in the first queue only increases by the sum of the service times of all the
customers that arrived in this interval. The increments occur according to a com-
pound Poisson process. So,

E(e−sV1(T1+T2)|V1(T1) = y) = e−sy
c2

c2 + λ1(1− β1(s))
. (52)

Step 2. Calculation of E[e−sV1(T1)|V1(0) = x].

E(e−sV1(T1)|V1(0) = x) =

∫ ∞
t=0

c1e
−c1t E(e−sV1(t)|V1(0) = x)dt. (53)

From (2) we know that

E(e−sV1(t)|V1(0) = x) = e−sxe
−r1t−λ1r1

∫ s
se−r1t

1−β1(u)
u du. (54)

Combining (53) and (54), we get

E(e−sV1(T1)|V1(0) = x) =

∫ ∞
t=0

c1e
−c1t e−sxe

−r1t−λ1r1
∫ s
se−r1t

1−β1(u)
u du dt. (55)
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Simplifying the above equation by substituting e−r1t = z yields

E(e−sV1(T1)|V1(0) = x) =
c1
r1

∫ 1

z=0

z
c1
r1
−1 e−sxz−

λ1
r1

∫ s
sz

1−β1(u)
u du dz. (56)

Step 3. Calculation of E[e−sV1(T1+T2)|V1(0) = x].

E(e−sV1(T1+T2)|V1(0) = x)

=

∫ ∞
y=0

E(e−sV1(T1+T2)|V1(T1) = y)fV1(T1)(y|V1(0) = x)dy

=
c2

c2 + λ1(1− β1(s))

∫ ∞
y=0

e−syfV1(T1)(y|V1(0) = x)dy

=
c2

c2 + λ1(1− β1(s))
E(e−sV1(T1)|V1(0) = x)

=
c2

c2 + λ1(1− β1(s))

c1
r1

∫ 1

z=0

z
c1
r1
−1 e−sxz−

λ1
r1

∫ s
sz

1−β1(u)
u du dz, (57)

where the second equation comes from Equation (52) and the fourth from Equation
(56).
Step 4. Calculation of E(e−sV1(T1+T2)) in steady-state.
Observe that

E(e−sV1(T1+T2))

=

∫ ∞
x=0

E(e−sV1(T1+T2)|V1(0) = x)fV1(0)(x)dx

=

∫ ∞
x=0

[
c2

c2 + λ1(1− β1(s))

c1
r1

∫ 1

z=0

z
c1
r1
−1 e−sxz−

λ1
r1

∫ s
sz

1−β1(u)
u du dz

]
fV1(0)(x)dx,

(58)

with fV1(0)(x) the probability density function of V1(0). Now observe that in steady-
state V1(T1 +T2) has the same distribution as V1(0). So we can rewrite (58) as follows:

E(e−sV1(T1+T2))

=
c2

c2 + λ1(1− β1(s))

c1
r1

∫ 1

z=0

z
c1
r1
−1 e−

λ1
r1

∫ s
sz

1−β1(u)
u du E(e−sV1(T1+T2)z) dz.

Defining G(s) := E(e−sV1(T1+T2)) and then substituting sz = v in the integrand of the
r.h.s. yields

G(s) =
1

s

c2
c2 + λ1(1− β1(s))

c1
r1

∫ s

v=0

(
v

s

) c1
r1
−1

e−
λ1
r1

∫ s
v

1−β1(u)
u du G(v) dv (59)

Multiplying by s in the above equation and subsequently differentiating w.r.t. s, by
using the Leibniz integral rule, yields

s
d

ds
G(s) +G(s) =

λ1β
′

1(s)

c2 + λ(1− β1(s))
sG(s) +

c2
c2 + λ(1− β1(s))

c1
r1
G(s)

+

(
1− c1

r1

)
G(s)− λ1

r1

1− β1(s)

s
sG(s).
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Arranging the terms of the above equation we get

d

ds
G(s) =

(
λ1β

′

1(s)

c2 + λ1(1− β1(s))
− c1
r1

λ1(1− β1(s))

s(c2 + λ1(1− β1(s)))
− λ1(1− β1(s))

sr1

)
G(s),

which implies

G(s) = exp

(
−
∫ s

0

(
− λ1β

′

1(u)

c2 + λ1(1− β1(u))
+
c1
r1

λ1(1− β1(u))

u(c2 + λ(1− β1(u)))

+
λ1(1− β1(u))

ur1

)
du

)

=
c2

c2 + λ1(1− β1(s))
exp

(
−
∫ s

0

(c1
r1

λ1(1− β1(u))

u(c2 + λ1(1− β1(u)))

+
λ1(1− β1(u))

ur1

)
du

)
. (60)

Step 5. Calculation of E(e−sV1) in steady-state.
Firstly, let us again denote by {S = 1} (respectively by {S = 2}) the event of the server
residing in the first (respectively second) queue. Then,

E(e−sV1) = E(e−sV1 |S = 1)P(S = 1) + E(e−sV1 |S = 2)P(S = 2)

= E(e−sV1 |S = 1)
c2

c1 + c2
+ E(e−sV1 |S = 2)

c1
c1 + c2

. (61)

Because of the memoryless property of the exponential distribution it is obvious that

E(e−sV1 |S = 1) = E(e−sV1(T1)), E(e−sV1 |S = 2) = E(e−sV1(T1+T2)).

The latter term is given by (60), while the former term is calculated using the same
argument as in the derivation of Equation (56):

E(e−sV1(T1+T2)) = E(e−sV1(T1))
c2

c2 + λ1(1− β1(s))
. (62)

Substituting (62), for E(e−sV1(T1)), and (60) in Equation (61) yields (56).

Remark 7.2. Equation (51) for c2 → ∞ (zero visit time at Q2) reduces to Equation (3)
which gives the LST of the steady-state amount of work in the shot-noise queue.

7.2 Workload decomposition

In this subsection, we show that the steady-state workload V1 can be written as the
sum of three independent terms, one corresponding to the steady-state workload
when the server is only serving Q1 all the time, and the second plus third correspond-
ing to the amount of work when the server is on ”vacation”. We focus on Q1, but a
symmetric result holds for Q2 when the indices 1 and 2 are swapped.
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Corollary 7.3. The steady-state amount of work of the first queue, V1, is distributed as a sum
of three independent random variables X1, X2 and X3, i.e.,

V1
d
= X1 +X2 +X3, (63)

where X1 is the steady-state amount of work in Q1 considered in isolation (see Section 2), X2

is the steady-state amount of work in a shot-noise queue with arrival rate c1, service speed r1
and upward jumps having LST c2

c2+λ1(1−β1(u))
, andX3 is a weighted sum of 0 and the amount

of work increment in Q1 during a visit period of Q2.

Proof. The decomposition immediately follows from the product form of the LST of
V1 in the righthand side of (51). The LST of X1 was already given in (3). The LST’s of
X2 and X3 are given as

E(e−sX2) = exp

(
− c1
r1

∫ s

0

1− c2
c2+λ1(1−β1(u))

u
du

)
, (64)

E(e−sX3) =
c2

c1 + c2
+

c1
c1 + c2

c2
c2 + λ1(1− β1(s))

. (65)

The LST of X2 has exactly the same shape as that of X1, but the arrival rate is c1
instead of λ1 (it corresponds to occurrences of ends of visits to Q1) and the service
requirement is the total amount of service requirement arriving in a visit period of
Q2, instead of B1. The LST of X3 is a weighted sum of 1 (the LST of 0) and of the LST
of the work increment in Q1 during an exponential visit period of Q2, with weights
the fractions of time spent in Q1 and on vacation (i.e., in Q2).

We now use the decomposition result (63) to determine the mean and the variance
of V1. A straightforward computation yields:

Corollary 7.4. The expectation of the steady-state workload of the first queue, E(V1), is

E(V1) =
λ1 E(B1)

r1

[
1 +

c1
c2

+
c1
c2

r1
c1 + c2

]
, (66)

and the corresponding variance, Var(V1), is

Var(V1) =
λ1 E(B2

1)

2r1

[
1 +

c1
c2

+
c1
c2

2r1
c1 + c2

]
+
c1
r1

(
λ1 E(B1)

c2

)2 [
1 +

r1(c1 + 2c2)

(c1 + c2)2

]
.

(67)

7.3 Heavy-tail asymptotics

In this subsection, we discuss the tail behavior of the workload in the case of heavy-
tailed service time distributions (cf. Definition 6.4).

Theorem 7.5. If the service time distribution of the random variable B1 is regularly varying
of index −ν, with ν ∈ (1, 2), then the workload of the first queue is regularly varying at
infinity of index −ν. More precisely,

P (V1 > x) ∼ λ1Γ(−ν)

r1

[
1 +

c1
c2

+
c1
c2

νr1
c1 + c2

]
x−νL (x) , x ↑ ∞. (68)
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Proof. To prove that V1 is regularly varying at infinity, one can again use the decom-
position property of the workload V1. Corollary 7.3 implies that

P(V1 > x) = P(X1 +X2 +X3 > x). (69)

Now we have to consider the behavior of P(X1 +X2 +X3 > x) for x ↑ ∞. Our main
tool is the Tauberian Theorem 8.1.6 of [5], which relates the behavior of a regularly
varying function at infinity and the behavior of its LST near 0. This theorem states
that (50) holds iff

β1(s)− 1 + sE(B1) ∼ −Γ (1− ν) sνL

(
1

s

)
, s ↓ 0. (70)

We successively consider the LST’s of X1, X2 and X3, each time using (70). One has

E(e−sX1) = exp

(
−λ1
r1

∫ s

0

1− β1(u)

u
du

)

∼ exp

−λ1
r1

∫ s

0

(
E(B1) + Γ (1− ν)uν−1L

(
1

u

))
du


∼ 1− λ1 E(B1)

r1
s− λ1Γ(1− ν)

r1ν
sνL

(
1

s

)
+O(s2), s ↓ 0. (71)

Hence

E(e−sX1)− 1 + E(X1)s ∼ −λ1Γ(−ν)

r1
sνL

(
1

s

)
, as s ↓ 0. (72)

Similarly using (70) in (64) and (65) , we get

E(e−sX2)− 1 + E(X2)s ∼ −λ1Γ(−ν)

r1

c1
c2
sνL

(
1

s

)
, as s ↓ 0, (73)

E(e−sX3)− 1 + E(X3)s ∼ −λ1νΓ(−ν)

c1 + c2

c1
c2
sνL

(
1

s

)
, as s ↓ 0. (74)

From Equation (72), (73) and (74), we see that X1, X2 and X3 are all regularly
varying random variables of index −ν. Using the workload decomposition property
(63) and a well-known result regarding the tail behavior of the sum of independent
regularly varying random variables of the same index, see [20], yields

P (V1 > x) ∼ (C1 + C2 + C3)x−νL (x) , x ↑ ∞, (75)

with C1, C2 and C3 the coefficients of the tail x−ν for X1, X2 and X3 in (72), (73) and
(74), respectively. Substituting the coefficients from (72), (73) and (74) concludes the
proof of the theorem.

7.4 Joint workload in the symmetric case

So far we have focused on the marginal workload distribution at the first queue. A
much harder problem is to determine the steady-state joint workload distribution. In
this subsection and the next one, we begin the exploration of this problem, outlining
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a possible approach as well as the mathematical complications arising. Let us now
restrict ourselves to the fully symmetric case c1 = c2 = c, λ1 = λ2 = λ, β1(s) =

β2(s) = β(s) and r1 = r2 = r.
Step 1: Calculation of E(e−s1V1(T1)−s2V2(T1)|V1(0) = x1, V2(0) = x2).
In the first step we calculate the LST of the two-dimensional workload for t = T1.
Using the same arguments as in Subsection 7.1 we can easily see that

E(e−s1V1(T1)−s2V2(T1)|V1(0) = x1, V2(0) = x2)

= e−s2x2

∫ ∞
t=0

e−λ(1−β(s2))tE(e−s1V1(t)|V1(0) = x1)ce−ctdt.

Using (2) we get

E(e−s1V1(T1)−s2V2(T1)|V1(0) = x1, V2(0) = x2)

= e−s2x2

∫ ∞
t=0

e−λ(1−β(s2))te
−s1x1e

−rt−λr
∫ s1
s1e
−rt

1−β(u)
u du

ce−ctdt.

Step 2: Calculation of E(e−s1V1(T1)−s2V2(T1)) in steady-state. Using the fact that, in
steady-state, (V1(T1 + T2), V2(T1 + T2)) has the same distribution as (V1(0), V2(0)), we
have

E(e−s1V1(T1)−s2V2(T1))

=

∫ ∞
t=0

e−λ(1−β(s2))te
−λr

∫ s1
s1e
−rt

1−β(u)
u du

ce−ct E(e−s1e
−rtV1(T1+T2)−s2V2(T1+T2)) dt.

Defining G(s1, s2) := E(e−s1V1(T1)−s2V2(T1)) and simplifying the above equation by
substituting e−rt = z yields

G(s1, s2) =
c

r

∫ 1

z=0

z
c+λ(1−β(s2))

r −1 e
−λr

∫ s1
s1z

1−β(u)
u du

G(s2, s1z) dz.

Substituting s1z = v in the integrand of the r.h.s. yields

G(s1, s2) =
c

s1r

∫ s1

v=0

(
v

s1

) c+λ(1−β(s2))
r −1

e−
λ
r

∫ s1
v

1−β(u)
u du G(s2, v) dv. (76)

Replacing s2 by s1 and s1 by s2 in the above equation gives

G(s2, s1) =
c

s2r

∫ s2

v=0

(
v

s2

) c+λ(1−β(s1))
r −1

e−
λ
r

∫ s2
v

1−β(u)
u du G(s1, v) dv. (77)

Combining the above two equations yields a two-dimensional Volterra Integral equa-
tion, as

G(s1, s2) =
c2

s1s2r2

∫ s1

v=0

∫ s2

w=0

(
v

s1

) c+λ(1−β(s2))
r −1(

w

s2

) c+λ(1−β(v))
r −1

e
−λr

( ∫ s1
v

1−β(u)
u du+

∫ s2
w

1−β(u)
u du

)
G(v, w) dwdv. (78)

In the next subsection, we shall prove that (78) can be solved by a fixed-point
iteration.
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7.5 Solution of (78) by fixed-point iteration

Our goal in this section is to show that (78) can be solved by a fixed-point iteration.
We do this in three steps, after introducing some definitions. Let S > 0 be fixed, and
consider the set FS of all continuous functions H : [0, S]2 → [0, 1] with H(0, 0) = 1.
For H ∈ FS and (s1, s2) ∈ (0, S]2, we put

RH(s1, s2) =
c2

s1s2r2

∫ s1

v=0

∫ s2

w=0

(
v

s1

) c+λ(1−β(s2))
r −1(

w

s2

) c+λ(1−β(v))
r −1

Z(s1, v; s2, w) H(v, w) dwdv, (79)

where for 0 ≤ v ≤ s1, 0 ≤ w ≤ s2,

Z(s1, v; s2, w) = exp

(
−λ
r

(∫ s1

v

1− β(u)

u
du+

∫ s2

w

1− β(u)

u
du
))

. (80)

Step 1. Let H ∈ FS . Our aim in this step is to show that we can define RH for all
(s1, s2) ∈ [0, S]2, and that this extended RH is a member of FS .
To this end, we start by noting that for all (s1, s2) ∈ [0, S]2 and 0 ≤ v ≤ s1, 0 ≤ w ≤ s2,

0 < Z(s1, v; s2, w) ≤ 1 = Z(s1, s1; s2, s2), (81)

with equality in the second inequality iff v = s1 and w = s2. This follows from β(u) ≤
β(0) = 1, u ≥ 0. Furthermore, by the boundedness of 1−β(u)

u = E(e−uB
res

)E(B), u ≥
0, with Bres denoting the residual of a service requirement B, we have that

Z(s1, v; s2, w) ↑ 1, (s1, s2)→ (0, 0), (82)

uniformly in v, w with 0 ≤ v ≤ s1, 0 ≤ w ≤ s2.
A basic calculation shows that for (s1, s2) ∈ (0, S]2,

c2

s1s2r2

∫ s1

v=0

∫ s2

w=0

(
v

s1

) c+λ(1−β(s2))
r −1(

w

s2

) c+λ(1−β(v))
r −1

dwdv

=
c2

s1r

∫ s1

v=0

(
v

s1

) c+λ(1−β(s2))
r −1

dv

c+ λ(1− β(v))
. (83)

The quantity on the r.h.s. of (83) is positive and less than 1, and tends to 1 as (s1, s2)→
(0, 0), since β(u) < 1, u > 0 and β(u) ↑ β(0) = 1, u ↓ 0. As a consequence of 0 ≤
H(v, w) ≤ 1 = H(0, 0) and the continuity of H , we have

0 < RH(s1, s2) < 1, (s1, s2) ∈ (0, S]2, (84)

and also
lim

(s1,s2)→(0,0)
RH(s1, s2) = 1. (85)
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Similarly, by continuity of H and Z, we have for s1 > 0,

lim
s2↓0

RH(s1, s2) = lim
s2↓0

c2

s1s2r2

∫ s1

v=0

∫ s2

w=0

(
v

s1

) c+λ(1−β(s2))
r −1(

w

s2

) c+λ(1−β(v))
r −1

Z(s1, v; s2, w)H(v, w) dwdv

=
c2

s1r2

∫ s1

v=0

(
v

s1

) c
r−1

Z(s1, v; 0, 0)H(v, 0)

lim
s2↓0

[ ∫ s2

w=0

(
w

s2

) c+λ(1−β(v))
r −1

d

(
w

s2

)]
dv

=
c2

s1r

∫ s1

v=0

(
v

s1

) c
r−1

Z(s1, v; 0, 0)H(v, 0)
dv

c+ λ(1− β(v))
, (86)

and this limit is attained uniformly in s1 ∈ [ε, S] for any ε > 0. In the same way, we
have for s2 > 0,

lim
s1↓0

RH(s1, s2) =
c2

s2r

∫ s2

w=0

(
w

s2

) c
r−1

Z(0, 0; s2, w)H(0, w)
dw

c+ λ(1− β(s2))
, (87)

and this limit is attained uniformly in s2 ∈ [ε, S] for any ε > 0. Observe that the r.h.s.
of (86) and (87) depend continuously on s1 > 0 and s2 > 0 and that their limit as s1 ↓ 0

and s2 ↓ 0 equals 1. Thus, when we define RH(0, 0) = 1 and RH(s1, 0), RH(0, s2) for
s1 > 0, s2 > 0 by the r.h.s. of (86), (87), we get that RH(s1, s2) is defined everywhere
on [0, S]2 as a continuous function. From (84) and (85) we then see that RH ∈ FS .

Remark 7.6. Notice that (87) is in agreement with the integral equation (59) for the
one-dimensional G(s); both expressions concern the workload LST in a queue just
before its visit begins. That one-dimensional equation can be solved explicitly, cf.
(60).

Step 2. In this step, we show that R is a weak contraction of FS in the sense that for
H1, H2 ∈ FS ,

d(RH1, RH2) ≤ d(H1, H2) := max
(s1,s2)∈[0,S]2

|H1(s1, s2)−H2(s1, s2)|, (88)

with equality iff H1 = H2.
Indeed, we have for H1, H2 ∈ FS and (s1, s2) ∈ (0, S]2 by the fact that the quantity in
(83) is positive and less than 1,

|RH1(s1, s2)−RH2(s1, s2)| ≤ c2

s1s2r2

∫ s1

v=0

∫ s2

w=0

(
v

s1

) c+λ(1−β(s2))
r −1(

w

s2

) c+λ(1−β(v))
r −1

Z(s1, v; s2, w) |H1(v, w)−H2(v, w)| dwdv

≤ d(H1, H2), (89)

with strict inequality when d(H1, H2) > 0, since |H1(v, w)−H2(v, w)| is continuous at
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(v, w) = (0, 0) and vanishes there. Similarly, using (86), we have for s1 > 0,

|RH1(s1, 0)−RH2(s1, 0)| ≤ c

s1r

∫ s1

v=0

(
v

s1

) c
r−1

Z(s1, v; 0, 0)

× |H1(v, 0)−H2(v, 0)| dv

c+ λ(1− β(v))

≤d(H1, H2), (90)

with strict inequality when d(H1, H2) > 0, since |H1(v, 0)−H2(v, 0)| is continuous at
v = 0 and vanishes there. In the same way, we have from (87) for s2 > 0,

|RH1(0, s2)−RH2(0, s2)| ≤ d(H1, H2), (91)

with strict inequality when d(H1, H2) > 0. Hence, the continuous function |RH1 −
RH2| is less than d(H1, H2) everywhere on the compact set [0, S]2 when d(H1, H2) > 0,
and so (88) holds with strict inequality when d(H1, H2) > 0.

Step 3. In this step, we turn to the fixed-point iteration itself. It is easy to prove that
there is at most one H ∈ FS such that RH = H ; that such an H does exist in the
present case is clear since the G that occurs in (78) satisfies RG = G and is a member
of FS .
We intend to approximate G by iteration. Thus, we set

H0(s1, s2) = 1, (s1, s2) ∈ [0, S]2; Hk+1 = RHk, k = 0, 1, · · · . (92)

The operator R has a positive kernel. Then from RG = G, (84) and the continuity of
all Hk, we get by induction

1 = H0(s1, s2) ≥ H1(s1, s2) ≥ · · · ≥ G(s1, s2) > 0, (s1, s2) ∈ [0, S]2. (93)

Thus we have

H∞(s1, s2) := lim
k→∞

Hk(s1, s2) ∈ [G(s1, s2), 1], (s1, s2) ∈ [0, S]2. (94)

Our goal in the remainder of Step 3 is to show that H∞(s1, s2) = G(s1, s2), for all
(s1, s2) ∈ [0, S]2. We first do this for (0, S]2. While it is conceivable that H∞ is not
continuous everywhere on [0, S]2, so that definition of RH∞ at the boundary of [0, S]2

might be an issue, we do have that RH∞(s1, s2) is well-defined per integral formula
(79) for (s1, s2) ∈ (0, S]2, and that, by dominated convergence,

RH∞(s1, s2) = H∞(s1, s2), (s1, s2) ∈ (0, S]2. (95)

Also, by (94) since G ∈ FS ,

lim
(s1,s2)→(0,0)

H∞(s1, s2) = 1. (96)

We shall show now that (95) and (96) imply that G(s1, s2) = H∞(s1, s2) for (s1, s2) ∈
(0, S]2. To this end, let

δ := sup
(s1,s2)∈(0,S]2

(H∞(s1, s2)−G(s1, s2)), (97)
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and suppose that δ > 0. We can find ε > 0 such that

0 ≤ H∞(v, w)−G(v, w) ≤ 1

2
δ, 0 < v,w ≤ ε. (98)

Let L be a continuous function on [0, S]2 such that

L(v, w)


= 1

2δ, v2 + w2 ≤ ε2,
∈ [ 12δ, δ], ε2 ≤ v2 + w2 ≤ 2ε2,

= δ, v2 + w2 ≥ 2ε2, (v, w) ∈ [0, S]2.

(99)

Then L ≥ H∞ − G everywhere on (0, S]2, and RL is well-defined and continuous on
[0, S]2, using the same limits as in (85)-(87). Furthermore,

RL(s1, s2) ≤ 1

2
δ, s21 + s22 ≤ ε2, (100)

RL(s1, s2) < δ, s21 + s22 ≥ ε2, (s1, s2) ∈ [0, S]2, (101)

with the strict inequality in (101) following from the continuity of L and L(0, 0) =
1
2δ < δ, compare (84). Therefore,

C := max
(s1,s2)∈[0,S]2

RL(s1, s2) < δ, (102)

by the continuity of RL and compactness of [0, S]2. Then, for (s1, s2) ∈ (0, S]2,

0 ≤ H∞(s1, s2)−G(s1, s2) = R(H∞ −G)(s1, s2) ≤ RL(s1, s2) ≤ C < δ, (103)

since H∞ − G ≤ L everywhere on (0, S]2. This contradicts the definition of δ in (97),
and so δ = 0.

We next show that H∞(s1, 0) = G(s1, 0), s1 ∈ (0, S]. Let FS,1 be the set of all
continuous functions I : [0, S]→ [0, 1] with I(0) = 1, and define

R1I(s1) =
c2

s1r

∫ s1

0

(
v

s1

) c
r−1

Z(s1, v; 0, 0)I(v)
dv

c+ λ(1− β(v))
, s1 ∈ (0, S], (104)

R1I(0) = lim
s1↓0

R1I(s1) = 1. (105)

Then, repeating the earlier steps for the weak contraction R of FS ,

- R1 maps FS,1 into FS,1 and is a weak contraction of FS,1,

- R1H1(s1) = (RH)1(s1) when H ∈ FS and H1 = H(·, 0),

- G1 = G(·, 0) is the unique fixed point of R1 in FS,1,

- the iterands Hk1 = Hk(·, 0) decrease pointwise to H∞1 = H∞(·, 0),

- H∞1(s1) = G1(s1), i.e., H∞(s1, 0) = G(s1, 0) for s1 ∈ (0, S].

Similarly, we can show that H∞(0, s2) = G(0, s2) for s2 ∈ (0, S], and since H∞(0, 0) =

1 = G(0, 0), we have shown now thatHk ↓ G pointwise on all of [0, S]2. Since [0, S]2 is
compact, andG and allHk are continuous, it follows from Dini’s theorem [2, Theorem
8.2.6] that Hk ↓ G uniformly on [0, S]2.
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8 Conclusions and possible extensions

In this paper, we studied a two-queue single-server polling model with workload-
dependent service speed. For the case of constant visit times of the server, we derived
the LST of the steady-state joint workload distribution. We have also extended the
results to the case of an arbitrary number of queues with constant visit times. In the
case of constant visit times at the first queue and general visit times at the second,
we derived the marginal workload distribution at the first queue. For the two-queue
case of exponentially distributed visit times, we determined the steady-state marginal
workload distributions, and the LST of the steady-state joint workload distribution
was analyzed solving a two-dimensional Volterra integral equation by fixed-point it-
eration. An interesting open problem is to provide an analytic solution to that two-
dimensional Volterra integral equation.
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