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Abstract

We consider a multivariate Lévy process where the �rst coordinate

is a Lévy process with no negative jumps which is not a subordinator

and the others are nondecreasing. We determine the Laplace-Stieltjes

transform of the steady-state bu�er content vector of an associated

system of parallel queues. The special structure of this transform al-

lows us to rewrite it as a product of joint Laplace-Stieltjes transforms.

We are thus able to interpret the bu�er content vector as a sum of

independent random vectors.
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tion.
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1 Introduction

We consider n parallel stations or queues which process some material that
we call �uid. The inputs to the stations are correlated. The net input vector
is denoted by Y = {(Y1(t), . . . , Yn(t))| t ≥ 0}, where Yi(t) =

∑i
j=1Xj(t), 1 ≤

i ≤ n, and where X1 is a Lévy process with no negative jumps which is not
a subordinator and X2, . . . , Xn are subordinators which are not identically
zero. Put di�erently: station 1 receives a net input process X1, and station
2 receives in addition X2, and station 3 receives on top of that also X3, etc.
Since the processes X2, . . . , Xn are subordinators, i.e., non-decreasing Lévy
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processes, the net input to station i is at least as large as the net input to
station i− 1, 2 ≤ i ≤ n.

This model of n parallel stations generalizes the model studied in [6]
in two respects. Firstly, we do not require X1 to be a subordinator minus
a linear drift. Secondly, throughout the paper we allow X1, . . . , Xn to be
dependent, whereas in [6] independence was assumed in deriving some of its
results. Our model also generalizes the model of n parallel queues studied in
[2], because the latter paper restricts itself to compound Poisson inputs (and
hence the net inputs are compound Poisson processes minus linear drifts).
The steady state workload decomposition that we eventually identify is also
related to results developed in [4]. For further literature on �uid networks
we refer to the mini-survey [3] and references therein; for linear stochastic
�uid networks, see, e.g., [11]. Background material on Lévy processes with
some emphasis on related applications can be found in, e.g., [5, 13].

Our main results are the following. We determine the Laplace-Stieltjes
transform of the steady-state bu�er content vector for the system of n parallel
queues. The special structure of this bu�er content transform allows us to
rewrite it as a product of n joint Laplace-Stieltjes transforms. Each term
of the product is given a probabilistic interpretation. We are thus able to
interpret the bu�er content vector as a sum of n independent random vectors.

The paper is organized as follows. Section 2 contains a detailed model
description and some preliminary results regarding the Laplace exponent of
the multivariate Lévy process X. The main results are derived in Section 3.
Two remarks at the end of that section point out that our main results are
also of immediate relevance for a tandem �uid model, a priority queue and
a multivariate insurance risk model.

2 The model and preliminaries

Let X = {(X1(t), . . . , Xn(t))| t ≥ 0} be a multivariate Lévy process with
X(0) = 0, where X1 is a Lévy process with no negative jumps which is not a
subordinator and Xi is a subordinator which is not identically zero for each
2 ≤ i ≤ n. We have E[e−α

TX(t)] = eϕ(α)t, where the Laplace exponent ϕ(α)
has the form

ϕ(α) = −aTα+
σ2

2
α2
1 +

∫
Rn
+

(
e−α

T x − 1 + αTx1(0,1]n(x)
)
ν(dx), (1)

where if we denote νi(A) = ν(Ri−1+ ×A×Rn−i+ ) for 1 ≤ i ≤ n, then
∫
R+

(x21∧
1)ν1(dx1) <∞ and

∫
R+

(xi ∧ 1)νi(dxi) <∞ for 2 ≤ i ≤ n. For this setup we
can rewrite the Laplace exponent in the following way:

ϕ(α) = −cTα+
σ2

2
α2
1 +

∫
Rn
+

(
e−α

T x − 1 + α1x11(0,1](x1)
)
ν(dx), (2)
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where c1 = a1 +
∫
(0,1]×(Rn−1

+ \(0,1]n−1) x1ν(dx1) and ci = ai −
∫
(0,1]n xiν(dx)

for 2 ≤ i ≤ n. Letting

ϕ1(α1) = ϕ(α1, 0, . . . , 0) (3)

= −c1α1 +
σ2

2
α2
1 +

∫
R+

(
e−α1x1 − 1 + α1x11(0,1](x1)

)
ν1(dx1)

gives that

ϕ(α) = ϕ1(α1)−
n∑
i=2

ciαi −
∫
Rn
+

e−α1x1
(
1− e−

∑n
i=2 αixi

)
ν(dx) . (4)

It should be noted that the integral on the right is �nite for every choice of
α ∈ Rn+. This follows from the fact that

e−α1x1
(
1− e−

∑n
i=2 αixi

)
≤

(
n∑
i=2

αixi

)
∧ 1 , (5)

so that ∫
Rn
+

e−α1x1
(
1− e−

∑n
i=2 αixi

)
ν(dx)

≤
n∑
i=2

αi

∫
(0,1]n

xiν(dx) + ν
(
Rn+ \ (0, 1]n

)
(6)

≤
n∑
i=2

αi

∫
(0,1]

xiνi(dx) + ν
(
Rn+ \ (0, 1]n

)
<∞ .

We note that we may also write

ϕ(α) = ϕ1(α1)+ϕ(0, α2, . . . , αn)+

∫
Rn
+

(
1− e−α1x1

) (
1− e−

∑n
i=2 αixi

)
ν(dx) ,

(7)
observing that

ϕ(0, α2, . . . , αn) = −
n∑
i=2

ciαi−
∫
Rn
+

(
1− e−

∑n
i=2 αixi

)
ν(dx) ≡ −η(α2, . . . , αn)

(8)
is the Laplace exponent of (X2, . . . , Xn), which implies (since it is an (n−1)-
dimensional subordinator) that necessarily ci ≥ 0 for 2 ≤ i ≤ n.

In a similar manner, letting, for β ∈ R+ and 2 ≤ k ≤ n,

ϕk(β) = ϕ(β, . . . , β︸ ︷︷ ︸
k

, 0, . . . , 0︸ ︷︷ ︸
n−k

) , (9)
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we have that ϕk is the Laplace exponent of
∑k

i=1Xi, which is (because of
X1) not a subordinator, and, from (4),

ϕ(β, . . . , β︸ ︷︷ ︸
k

, αk+1, . . . , αn) = ϕk(β)−
n∑

i=k+1

ciαi

−
∫
Rn
+

e−β
∑k

i=1 xi
(
1− e−

∑n
i=k+1 αixi

)
ν(dx) .

(10)

3 The main results

In this section we determine the Laplace-Stieltjes transform of the steady-
state bu�er content vector for the system of n parallel queues (Theorem 1 and
Corollary 1). The special structure of this bu�er content transform allows us
to rewrite it as a product of n joint Laplace-Stieltjes transforms. Each term
of the product is given a probabilistic interpretation. We are thus able to
interpret the bu�er content vector as a sum of n independent random vectors.
We end the section with a few remarks concerning the relations between the
model under consideration and some other multivariate stochastic models.

Lemma 1. For k = 1, . . . , n−1, there is a unique positive β = ψk(αk+1, . . . , αn)
with αk+1, . . . , αn ≥ 0 such that

ϕ(β, . . . , β, αk+1, . . . , αn) = 0 . (11)

Proof. Since Xi is not identically zero for each 2 ≤ i ≤ n, then, when
αk+1, . . . , αn are not all zero, it follows from (10) and the fact that c2, . . . , cn ≥
0, that

ϕ(0, . . . , 0, αk+1, . . . , αn) = −
n∑

i=k+1

ciαi−
∫
Rn
+

(
1− e−

∑n
i=k+1 αixi

)
ν(dx) < 0 .

(12)
Since

∑k
i=1Xi is not a subordinator, as β →∞ we have ϕk(β)→∞ and∫

Rn
+

e−β
∑k

i=1 xi
(
1− e−

∑n
i=k+1 αixi

)
ν(dx)→ 0, (13)

(dominated convergence) and thus, cf. (10), ϕ(β, . . . , β, αk+1, . . . , αn)→∞.
Therefore, since ϕ is convex (hence, ϕ(β, . . . , β, αk+1, . . . , αn) is convex in
β), and ϕ(0, . . . , 0, αk+1, . . . , αn) < 0 according to (12), the statement of the
lemma follows. �
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Now assume that Yi =
∑i

j=1Xj for 1 ≤ i ≤ n. Then, for each t ≥ 0, we
have for each s < t that

Y1(t)− Y1(s) ≤ Y2(t)− Y2(s) ≤ . . . ≤ Yn(t)− Yn(s) . (14)

Clearly, Y = {(Y1(t), . . . , Yn(t))|t ≥ 0} is also a Lévy process with Laplace
exponent

ϕ̃(α) = ϕ(α1 + . . .+ αn, α2 + . . .+ αn, . . . , αn) . (15)

Lemma 1 implies that for

β = ψk(αk+1 + . . . αn, . . . , αn−1 + αn, αn)−
n∑

i=k+1

αi , (16)

ϕ̃(0, . . . , 0, β, αk+1, . . . , αn) is zero.
We are now ready to study the bu�er content of a system of n parallel

�uid queues, with net input Y . Let

Li(t) = − inf
0≤s≤t

Yi(s), Zi(t) = Yi(t) + Li(t) . (17)

Notice that Zi(t) can be viewed as the bu�er content of a queue with net
Lévy input Yi(t) = X1(t) + . . . + Xi(t), i = 1, . . . , n, and Li(t) is the local
time at level 0 of that queue.

We necessarily have (see Theorem 6 of [9]) that Zi(t) ≤ Zi+1(t) for
1 ≤ i ≤ n − 1. Thus, if we assume that EYn(1) < 0 (hence EYi(1) < 0 for
all 1 ≤ i ≤ n), then our system of n parallel �uid queues has a stationary
distribution. We shall now determine the LST (Laplace-Stieltjes transform)
of the steady state workload vector, to be denoted by Z∗.

Theorem 1. The LST of the steady state workload vector Z∗ is given by

ϕ̃(α)Ee−α
TZ∗ =

n−1∑
k=1

αkfk(αk+1, . . . , αn) + αnfn , (18)

where fn = −EYn(1) is constant and fk(αk+1, . . . , αn) are recursively given

by

fk(αk+1, . . . , αn) =

∑n−1
i=k+1 αifi(αi+1, . . . , αn) + αnfn∑n

i=k+1 αi − ψk(αk+1 + . . .+ αn, . . . , αn−1 + αn, αn)
,

(19)
where an empty sum is de�ned to be zero.

Proof. If Z∗ has this distribution, then, since Z∗1 ≤ . . . ≤ Z∗n (hence, Z∗i = 0
implies that Z∗j = 0 for 1 ≤ j ≤ i), as in (2.12) of [6], (18) is satis�ed for
all α1, . . . , αn satisfying

∑n
i=k αi ≥ 0 for all k = 1, . . . , n. Below we �rst

determine fn, and thereafter we show how fn−1, . . . , f1 can successively be
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determined; fn−1 is expressed in fn, then fn−2 is expressed in fn−1 and fn,
etc. Letting α1 = . . . = αn−1 = 0, we have, upon dividing by αn and letting
αn ↓ 0, that

fn =
∂ϕ̃

∂αn
(0) = −EYn(1) = −

n∑
i=1

EXi(1) . (20)

Now, note that if we let α1 = . . . = αk−1 = 0 then we have the formula

ϕ̃(0, . . . , 0, αk, . . . , αn)Ee
−

∑n
i=k αiZ

∗
i =

n−1∑
i=k

αifi(αi+1, . . . , αn)+αnfn . (21)

Assume that fi(αi+1, . . . , αn) are known for i = k+1, . . . , n−1. Set αk to be
the right hand side of (16). Recall that Z∗i−1 ≤ Z∗i for 2 ≤ i ≤ n. Therefore
n∑
i=k

αiZ
∗
i = ψk(αk+1 + . . . , αn, αn−1 + αn, αn)Z

∗
k +

n∑
i=k+1

αi(Z
∗
i − Z∗k) ≥ 0,

(22)
so that Ee−

∑n
i=k αiZ

∗
i ≤ 1 for our choice of αk (remember that we do not

demand that all αi ≥ 0). This implies (19). In principle, we can thus

compute the right side of (18) and hence Ee−α
TZ∗ for all α1, . . . , αn satis-

fying
∑n

i=k αi ≥ 0 for all k = 1, . . . , n. It follows from (2.12) of [6] that
fk(αk+1, . . . , αn) is a constant times some (joint) Laplace-Stieltjes transform
for every 1 ≤ k ≤ n− 1. We shall also see this in Corollary 1. �

It should be mentioned that the above theorem generalizes Section 3 of [6]
in two ways. The �rst is that it is not necessary to assume that X1 is a
subordinator minus a drift and the second is that it is not necessary to as-
sume that X1, . . . , Xn are independent. It also generalizes results from [2]
from the compound Poisson setting to the more general Lévy subordinator
setting. The latter paper considers a system of n queues which simultane-
ously receive input from an n-dimensional compound Poisson process, and
the jump sizes of the simultaneous jumps are stochastically ordered. The
steady state joint workload LST of that system is determined in [2].

In [2], furthermore, a decomposition is presented for the n-dimensional work-
load LST, and the terms of this decomposition are given an interpretation.
In the remainder of this section, our aims are to also decompose the n-
dimensional LST of Z∗ into a product of terms, and to give interpretations
of these terms. In particular, it would be nice to understand the meaning of
ϕk(αk+1, . . . , αn). For this it would su�ce to consider k = 1. We follow ideas
from [6] where some unnecessary independence assumptions were made, but
with a new observation which was missed at the time. The �rst thing to
observe is the following. Let

T1(x) = inf{t|X1(t) = −x}. (23)
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Then it is well known that T1(x) is a.s. �nite for each x ≥ 0 and in fact
{T1(x)|x ≥ 0} is a subordinator with Laplace exponent −ϕ−11 (·), where ϕ−11

is the inverse of the strictly increasing and continuous function ϕ1 (from R+

to R+).
Now, since e−

∑n
i=1 αiXi(t)−ϕ(α)t is a mean one martingale (Wald martin-

gale) for each α ∈ Rn+, this holds in particular for α1 = ψ1(α2, . . . , αn) in
which case ϕ(α) = 0. Since T1(x) is a stopping time, the optional stopping
theorem implies that

E exp

(
−ψ1(α2, . . . , αn)X1(T1(x) ∧ t)−

n∑
i=2

αiXi(T1(x) ∧ t)

)
= 1 . (24)

Noting that ψ1(α2, . . . , αn) ≥ 0 and X1(T1(x)∧t) ≥ −x, and that Xi(T1(x)∧
t) ≥ 0 for each 2 ≤ i ≤ n, this implies by bounded convergence and the fact
that X1(T1(x)) = −x, that

Ee−
∑n

i=2 αiXi(T1(x)) = e−ψ1(α2,...,αn)x . (25)

In [6] it was explained why {(X2(T1(x)), . . . , Xn(T1(x)))|, x ≥ 0} is a (nonde-
creasing) Lévy process where it was stated that it is important thatX2, . . . , Xn

are independent. This statement about independence was an oversight, as
with a similar argument it holds that it is a Lévy process without any in-
dependence assumptions. Formula (25) implies that −ψ1(α2, . . . , αn) is in
fact the Laplace exponent of this Lévy process. If X1 is independent of
(X2, . . . , Xn) then, recalling (8),

E exp

(
−

n∑
i=2

αiXi(T1(x))

)
= E e−η(α2,...,αn)T1(x) = e−ϕ

−1
1 (η(α2,...,αn))x,

(26)
and thus for this case

ψ1(α2, . . . , αn) = ϕ−11 (η(α2, . . . , αn)) , (27)

which is what appears in [6] (with di�erent notations). In fact, sinceX1(T1(x)) =
−x, we clearly have that {X(T1(x))|x ≥ 0} is an n-dimensional Lévy process
with Laplace exponent α1 − ψ1(α2, . . . , αn). In particular, this implies that
the Laplace exponent of {Y (T1(x))|x ≥ 0} is

n∑
i=1

αi − ψ1 (α2 + . . .+ αn, . . . , αn−1 + αn, αn) . (28)

At this point it would be good to refer to (16).
Now, we note that for 2 ≤ i ≤ n,

inf
0≤s≤T1(x)

Yi(s) = inf
0≤y≤x

Yi(T1(y)) (29)
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and thus
Zi(T1(x)) = Yi(T1(x))− inf

0≤y≤x
Yi(T1(y)) . (30)

In addition to the formal proof given in [6], note that if 0 ≤ s ≤ T1(x)
and

s 6∈ {T1(y)| 0 ≤ y ≤ x} (31)

then, since T1(·) is right continuous and T1(0) = 0, there must be some y ∈
[0, x] for which T1(y) < s and X1(T1(y)) = −y < X1(s). Since X2, . . . , Xn

are nondecreasing, Yi(T1(y)) < Yi(s). This means that the only contenders
to minimize Yi on the interval [0, T1(x)] are {T1(y)| 0 ≤ y ≤ x}.

Similar ideas imply that, with Tk(x) = inf{t|Yk(t) = −x},
{(Xk+1(Tk(x)), . . . , Xn(Tk(x)))|x ≥ 0} is a subordinator with Laplace expo-
nent −ψk(αk+1, . . . , αn) and for every k + 1 ≤ i ≤ n it follows that

Zi(Tk(x)) = Yi(Tk(x))− inf
0≤y≤x

Yi(Tk(y)), (32)

and we also observe that Yi(Tk(x)) =
∑i

j=k+1Xj(Tk(x))−x for k+1 ≤ i ≤ n.
That is, for each k + 1 ≤ i ≤ n, Yi(Tk(x)) is a subordinator minus a unit
drift.

Letting Zk∗ denote a random vector having the limiting distribution of
Z(Tk(x)), noting that necessarily Zk∗1 = . . . = Zk∗k = 0, then from Corol-
lary 2.3 of [6] we have that

fk(αk+1, . . . , αn) = −EYk(1)E exp

(
−

n∑
i=k+1

αiZ
k∗
i

)
. (33)

The following corollary is now implied by Theorem 1.

Corollary 1.

ϕ̃(α)Ee−α
TZ∗ =

n∑
k=1

αk(−EYk(1))E exp

(
−

n∑
i=k+1

αiZ
k∗
i

)
, (34)

with an empty sum being zero.

This con�rms the statement, made in the proof of Theorem 1, that all
fk are some LST of a (joint) distribution, up to a multiplicative constant.

We emphasize that Zk∗ is a vector of workloads having the steady state
distribution associated with the vector of workloads process embedded at
time instants where station k (hence also stations 1, . . . , k − 1) is empty.
For what follows, we recall that if −ξ(β) is the Laplace exponent of some
one-dimensional subordinator, then for some b ∈ R+ and Lévy measure µ
satisfying

∫
R+

(u ∧ 1)µ(du) <∞ we have that

ξ(β) = bβ +

∫
R+

(
1− e−βu

)
µ(du), (35)
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and when the mean ξ′(0) is �nite, then ξ(β)
βξ′(0) is the LST of the mixture, with

weight factors (
b

b+
∫∞
0 µ(u,∞)du

,

∫∞
0 µ(u,∞)du

b+
∫∞
0 µ(u,∞)du

)
, (36)

of zero and a (residual lifetime) distribution having the density
µ(x,∞)/

∫∞
0 µ(u,∞)du. See, e.g., (4.6) of [7].

We �rst discuss the workload decomposition for the case n = 2, expos-
ing the key ideas; thereafter, we brie�y treat the case of a general n via a
repetition of the argument.

Workload decomposition for the 2-dimensional case

For the case n = 2 we �rst note that from ϕ(ψ1(α2), α2) = 0 it follows that
with

η2(α2) = −ϕ(0, α2) = c2α2 +

∫
R+

(
1− e−α2x

)
ν2(dx), (37)

we have that

ψ′1(0) =
η′2(0)

ϕ′1(0)
. (38)

It may be seen after some very simple manipulations, that for α2 ≥ 0 and
α1 ≥ −α2, with α1 6= ψ(α2):

Ee−α1Z∗1−α2Z∗2 =
ϕ′1(0)(α1 + α2 − ψ1(α2))

ϕ(α1 + α2, α2)
· (1− ψ

′
1(0))α2

α2 − ψ1(α2)
. (39)

An identical formula is given, employing di�erent methods, in Proposition 1
of [2]. That paper restricts itself to the special case where, with J a two-
dimensional compound Poisson process with nonnegative (two-dimensional)
jumps, we have X(t) = J(t)− (t, 0) (so that Y (t) = (J1(t)− t, J1(t)+J2(t)−
t)).

If we denote W ∗1 = Z∗1 and W ∗2 = Z∗2 − Z∗1 (nonnegative) then

Ee−α1W ∗1−α2W ∗2 =
ϕ′1(0)(α1 − ψ1(α2))

ϕ(α1, α2)
· (1− ψ

′
1(0))α2

α2 − ψ1(α2)
. (40)

The second expression in the product on the right hand side is the LST
of W 1∗

2 = Z1∗
2 (which has the steady state distribution of the workload

in station 2 observed only at times when station 1 is empty) and from its
form (generalized Pollaczek-Khinchin formula, e.g., (2.5) of [7] among many
others), it is indeed the steady state LST of a re�ected process of a Lévy �uid
queue with subordinator input having the Laplace exponent −ψ1(α2) and a
processing rate of one. That is, it is the steady state LST of the re�ected
process associated with the driving process {Ĵ(x)− x|x ≥ 0} where Ĵ(x) =
X2(T1(x)). In the compound Poisson setting of [2], it was observed to be
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the steady state LST of the workload in anM/G/1 queue with service times
distributed as the extra (compared with queue 1) workload accumulated in
station 2 during a busy period of station 1.

Setting α1 = 0, we can rewrite the resulting equation as follows

η2(α2)

α2η′2(0)
Ee−α2W ∗2 =

ψ1(α2)

α2ψ′1(0)
Ee−α2W 1∗

2 . (41)

That is, if ξ∗2 and ξ1∗2 have LST's η2(α)
α2η′2(0)

and ψ1(α2)
α2ψ′1(0)

(see the paragraph that

includes (35) and (36)) and are respectively independent of W ∗2 and W 1∗
2 ,

then we have the following decomposition:

ξ∗2 +W ∗2 ∼ ξ1∗2 +W 1∗
2 . (42)

We note that this is di�erent from the decomposition described in Theo-
rem 4.2 of [6] which holds when X1 and X2 are independent processes, but
not otherwise. It is easy to check that with this independence, this decompo-
sition holds here as well, where, unlike there, X1 need not be a subordinator
minus some drift.

Our next goal is to identify a joint distribution with LST given by the
�rst expression of the product on the right hand side of (40). First we observe
from Corollary (2.1) of [6] and the facts that Z1(T1(x)) = 0, Z1(t) = 0 for
points of (right) increase of L1 and Z1(t) = Z2(t) = 0 for points of (right)
increase of L2 (e.g., [8]), that

ϕ̃(α)E

∫ T1(x)

0
e−α

TZ(s)ds = Ee−α2Z2(T1(x)) − 1 + α2EL2(T1(x))

+ α1E

∫ T1(x)

0
e−α2Z2(s)dL1(s). (43)

And in particular this holds when we substitute α1 = ψ1(α2)−α2 (cf. (16)) in
which case ϕ̃(α) = 0. Therefore, subtracting (43) with α1 = ψ1(α2)−α2 from

(43) and noting (see also Corollary 2.1 of [6]) that
∫ T1(x)
0 e−α2Z2(s)dL1(s) =∫ x

0 e
−α2Z2(T1(y))dy, we have that

ϕ̃(α)E

∫ T1(x)

0
e−α

TZ(s)ds = (α1 + α2 − ψ1(α2))

∫ x

0
Ee−α2Z2(T1(y))dy . (44)

Dividing by ET1(x) = x/ϕ′1(0) and recalling that ϕ̃(α) = ϕ(α1+α2, α2) now
gives

1

ET1(x)
E

∫ T1(x)

0
e−α

TZ(s)ds =
ϕ′1(0)(α1 + α2 − ψ1(α2))

ϕ(α1 + α2, α2)

1

x

∫ x

0
Ee−α2Z2(T1(y))dy .

(45)
We now observe two facts. The �rst is that by regenerative theory the left
hand side is the LST of the steady state distribution of a corresponding
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regenerative process where at time T1(x) the process is restarted. At this
time Z1(T1(x)) = 0 and the remaining quantity at the second station is lost.
The second fact is that as x ↓ 0 we have by bounded convergence and the
fact that Z(T1(·)) is right continuous with Z(T1(0)) = 0 (since T1(0) = 0),
that

lim
x↓0

1

x

∫ x

0
Ee−α2Z2(T1(y))dy = lim

x↓0
Ee−α2Z2(T1(x)) = 1 . (46)

Using (45), this implies that

lim
x↓0

1

ET1(x)
E

∫ T1(x)

0
e−α

TZ(s)ds =
ϕ′1(0)(α1 + α2 − ψ1(α2))

ϕ(α1 + α2, α2)
, (47)

where the right hand side converges to 1 as (α1, α2)→ (0, 0). By the conti-
nuity theorem for LST's we have that necessarily the right hand side is an
LST of a nonnegative random vector (for any α2 ≥ 0 and α1 ≥ −α2).
This also implies that for α1, α2 ≥ 0, with W (s) = (W1(s),W2(s)) :=
(Z1(s), Z2(s)− Z1(s)),

lim
x↓0

1

ET1(x)
E

∫ T1(x)

0
e−α

TW (s)ds =
ϕ′1(0)(α1 − ψ1(α2))

ϕ(α1, α2)
, (48)

so that this is also an LST. For the compound Poisson case, this implies that
this is the LST of a version of this process such that, whenever Z1(t) = 0,
any quantity available in queue 2 is lost. For this case, this interpretation
was discovered in [2] and it continues to be valid if X1 is a compound Poisson
process with a negative drift and X2 is a general subordinator (X1, X2 can
be dependent).

Remark 1. To obtain moments of W ∗1 ,W
∗
2 or Z∗1 = W ∗1 , Z

∗
2 = W ∗1 +W ∗2

requires slightly tedious but straightforward calculations. Firstly, cf. (40),

E(e−α1W ∗1 ) =
φ′1(0)α1

φ(α1, 0)
(49)

yields

EW ∗1 =
φ′′1(0)

2φ′1(0)
=

VarX1(1)

−2EX1(1)
. (50)

Secondly, again from (40),

E(e−α2W ∗2 ) = −ϕ
′
1(0)ψ1(α2)

ϕ(0, α2)
· (1− ψ

′
1(0))α2

α2 − ψ1(α2)
(51)

yields

EW ∗2 =

d2

dy2
φ(0, y)

2 d
dyφ(0, y)

|y=0 −
ψ′′1(0)

2ψ′1(0)
− ψ′′1(0)

2(1− ψ′1(0))
, (52)
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which term by term corresponds to (cf. (41) and (42))

EW ∗2 = −Eξ∗2 + Eξ1∗2 + EW 1∗
2 . (53)

Insertion of

d

dy
φ(0, y)|y=0 = −EX2(1),

d2

dy2
φ(0, y) = VarX2(1), (54)

ψ′1(0) = −
EX2(1)

EX1(1)
, (55)

ψ′′1(0) = −φ
′′
1(0)

φ′1(0)
(ψ′1(0))

2 −
d2

dy2
φ(0, y)|y=0

φ′1(0)
− 2

d2

dxdy
φ(x, y)|x=y=0

ψ′1(0)

φ′1(0)

=
VarX1(1)

EX1(1)
(
EX2(1)

EX1(1)
)2 +

VarX2(1)

EX1(1)

− 2cov(X1(1), X2(1))
EX2(1)

(EX1(1))2
, (56)

allows one to express the moments ofW ∗1 andW ∗2 into the �rst two moments
and covariance of X1(1) and X2(1). Compared to Formula (4.6) of [6], the
expression for EW ∗2 contains an extra term that includes cov(X1(1), X2(1)).

Workload decomposition for the n-dimensional case

The above argument may be repeated for the n-dimensional case. Indeed,
it follows from (21), (19) and (33) that for α such that

∑n
i=k αi ≥ 0 for all

k = 1, . . . , n,

Ee−α
TZ∗ =

ϕ′1(0) (
∑n

i=1 αi − ψ1(α2 + . . .+ αn, . . . , αn−1 + αn, αn))

ϕ̃(α)

· E exp

(
−

n∑
i=2

αiZ
1∗
i

)
, (57)

or equivalently, introducing αi := αi − αi+1 for 1 ≤ i ≤ n − 1, we have for
αi ≥ 0 for i = 1, . . . , n,

Ee−α
TW ∗ =

ϕ′1(0) (α1 − ψ1(α2, . . . , αn−1, αn))

ϕ(α)

· E exp

(
−

n∑
i=2

αiW
1∗
i

)
. (58)

By induction, the right hand side may be written as a product of n (joint)
LST's where for 1 ≤ k ≤ n− 1 the kth multiple is(

1− ∂ψk−1

∂αk
(0)
)
(αk − ψk(αk+1, . . . , αn))

αk − ψk−1(αk, . . . , αn)
, (59)
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and the last one is
(1− ψ′n−1(0))αn
αn − ψn−1(αn)

. (60)

From (11) it follows that for 2 ≤ k ≤ n,

1− ∂ψk−1
∂αk

(0) =
ϕ′1(0)−

∑k
i=2 η

′
i(0)

ϕ′1(0)−
∑k−1

i=2 η
′
i(0)

=
−EYk(1)
−EYk−1(1)

, (61)

where for k = 2, the empty sum in the denominator is de�ned to be zero.
For the case where X1 is a subordinator minus a drift and X1, . . . , Xn

are independent, it seems that this decomposition can be inferred from more
general results reported in Theorem 6.1 of [4].

Finally, the ideas that led to (48) may be repeated to conclude that each
multiplicative factor participating in this decomposition is indeed a (joint)
LST.

Remark 2. The results of this section are also of immediate relevance for a
tandem �uid model, viz., a model of n stations in series, in which material
or work leaves each station as a �uid. Such a connection between parallel
stations and stations in series was already pointed out in [6]. Tandem �uid
models were introduced in [10]. The following n-station tandem �uid model
is introduced and studied in that paper. The input process of the �rst sta-
tion is a nondecreasing Lévy process and the j-th station receives the output
of the (j−1)-st station at a constant rate rj−1, as long as that station is not
empty. It was assumed that r1 ≥ · · · ≥ rn to avoid the trivial case that a
station is always empty. That tandem �uid model was generalized in [6] by
allowing additional external inputs to stations 2, . . . , n. Those inputs were
assumed to be subordinators and, for most of the results, they were assumed
to be independent from each other and from the input to station 1. It was
observed in [6] that there is a direct connection between the workloads in
this tandem �uid model and the workloads in a model of n parallel stations.
The same observation, but for the case of compound Poisson inputs (and al-
lowing dependence between the input processes) was also made in [2]. That
connection also extends to the case of dependent external Lévy inputs. More
precisely, letX1, . . . , Xn be the external inputs to stations 1, . . . , n of the tan-
dem �uid model, with X2, . . . , Xn being subordinators, and let W1, . . . ,Wn

denote their bu�er content level processes. Then we can identify Wj(t) with
Zj(t)−Zj−1(t), 1 ≤ j ≤ n (hence W1(t) + · · ·+Wj(t) = Zj(t)), where Zj(t)
as before denotes the bu�er content level of station j in the system of parallel
stations studied in the present paper, and Z0(t) ≡ 0.

Remark 3. In [6] an equivalence between the tandem �uid model and a par-
ticular single server priority queue is also pointed out. Assume a compound
Poisson input vector X of customer classes 1, . . . , n. Class i has preemptive

13



resume priority over class j if i < j; the total workload in the �rst j classes
can now be identi�ed with Z∗j .

In [2] a multivariate duality relation is established between (i) the model
of n parallelM/G/1 queues with simultaneous arrivals, with stochastic order-
ing of the n service times of each arriving batch and (ii) a Cramér-Lundberg
insurance risk model featuring n insurance companies with simultaneous
claim arrivals and stochastic ordering of those claims. In particular, when
the arrival processes in both systems have the same distribution, the joint
steady-state workload distribution P(V1 ≤ x1, . . . , Vn ≤ xn) in the queueing
model equals the survival probability for all companies, with initial capital
vector (x1, . . . , xn). This is a generalization of a well-known duality that is
discussed, e.g., on p. 46 of [1]. Using the sample path argument presented
there, one should also be able to generalize this duality to the case of the
Lévy input process of the present paper, thus also obtaining the survival
probability for n insurance companies with the same n-dimensional input
process as the n parallel stations of the present paper.
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sions.

References

[1] Asmussen, S. and H. Albrecher (2010). Ruin Probabilities, 2nd ed. World
Scienti�c, Hackensack, NJ.

[2] Badila, E.S., Boxma, O.J., Resing, J.A.C. and E.M.M. Winands. (2014).
Queues and risk models with simultaneous arrivals. Adv. Appl. Probab.
46, 812-831.

[3] Boxma, O.J., and A.P. Zwart (2018). Fluid �ow models in performance
analysis. Computer Communications 131, 22-25.

[4] Debic�ki, K., Dieker, A. B. and T. Rolski. (2007). Quasi-product forms
for Lévy-driven �uid networks. Math. Oper. Res. 32, 629-647.

[5] Debic�ki, K. and M.R.H. Mandjes (2015). Queues and Lévy Fluctuation

Theory. Springer, New York.

[6] Kella, O. (1993). Parallel and tandem �uid networks with dependent
Lévy inputs. Ann. Appl. Prob. 3, 682-695.

[7] Kella O. (1996). An exhaustive Lévy storage process with intermittent
output. Stochastic Models. 14, 979-992.

[8] Kella, O. (2006). Re�ecting thoughts. Stat. Prob. Let. 76, 1808-1811.

14



[9] Kella, O. and W. Whitt. (1996). Stability and structural properties of
stochastic �uid networks. J. Appl. Probab. 33, 1169-1180.

[10] Kella, O. and W. Whitt (1992). A tandem �uid network with Lévy in-
put. In: Queueing and Related Models, eds. U.N. Bhat and I.V. Basawa,
Oxford University Press, Oxford.

[11] Kella, O. and W. Whitt (1999). Linear stochastic �uid networks. J.
Appl. Probab. 36, 244-260.

[12] Kulkarni, V.G. (1997). Fluid models for single bu�er systems. In: J.H.
Dshalalow (ed.), Frontiers in Queueing, CRC Press, Boca Raton (Fl.),
pp. 321-338.

[13] Kyprianou, A.E. (2006). Introductory Lectures on Fluctuations of Lévy

Processes with Applications. Springer, Berlin.

15


