Gaussian random permutation and the free Bose gas

Pablo A. Ferrari, Universidad de Buenos Aires

We construct an infinite volume spatial random permutation (X, σ) , where $X \subset \mathbb{R}^d$ is a point process and $\sigma : X \to X$ is a permutation (bijection), associated to the formal Hamiltonian

$$H(\mathsf{X},\sigma) = \sum_{x \in \mathsf{X}} \|x - \sigma(x)\|^2,$$

proposed by Feynman (1953) for the free Bose gas. The measures are parametrized by the density ρ of points. Bose-Einstein condensation occurs at a critical point density ρ_c , meaning that infinite cycles of the permutation should appear above ρ_c . We show that for $\rho \leq \rho_c$, the unique Gibbs measure for the specification induced by H is a Gaussian loop soup. This is a Poisson process of finite random walk loops with Gaussian increments, analogous to the Brownian loop soup of Lawler and Werner (2004).

We also consider Gaussian random interlacements, a Poisson process of double-infinite trajectories of random walks with Gaussian increments analogous to the Brownian random interlacements of Sznitman (2010). For $d \ge 3$ and $\rho > \rho_c$ the Gibbs measure is a the superposition of independent realizations of the Gaussian loop soup at density ρ_c and the Gaussian random interlacements at density $\rho - \rho_c$. The resulting measure is called Gaussian random permutation at density ρ .

We show that the point marginal of the Gaussian random permutation is the boson point process introduced by Macchi (1975) in the subcritical case and by Tamura-Ito (2007) in the supercritical case. The boson point process is permanental for a kernel related to the Green function of the Gaussian random walk.

Joint work with Inés Armendáriz and Sergio A. Yuhjtman, arXiv:1906.11120.

