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Overview of Lecture 1

• Our first KCM: the FA-2f model

• More examples: the most popular KCM

• Motivations from physics: the liquids/glass transition

• A related deterministic dynamics: Bootstrap Percolation

• Ergodicity and mixing for KCM

• Spectral gap, persistence and mean infection time

• A first tool to upper bound time-scales: the BC technique
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Overview of Lecture 2

• East model:scaling for q ↓ 0

• FA-1f model: scaling for q ↓ 0

• The general definition of KCM

• Universality results in d = 2:
• universality classes and results for BP
• universality classes and results for KCM
• open issue: the case of sub-critical KCM and BP models
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Overview of Lecture 3

• Sharp threshold for FA-2f
• results
• heuristics
• sketch of the proof

• Out of equilibrium
• key questions
• results for East model
• partial results for FA-1f
• open issues
• more on East model: aging
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Fredrickson Andersen 2 spin facilitated model (FA-2f)

An interacting particle system on {0, 1}Zd , d ≥ 2.

0=empty, 1=occupied.

Dynamics: birth and death of particles

• Fix a parameter q ∈ [0, 1]

• at rate 1 each site gets a proposal to update its state to
empty at rate q and to occupied at rate 1− q.

• the proposal is accepted iff the site has at least 2 empty
nearest neighbours = iff the kinetic constraint is satisfied

C.Toninelli Kinetically constrained models



Fredrickson Andersen 2 spin facilitated model (FA-2f)

An interacting particle system on {0, 1}Zd , d ≥ 2.

0=empty, 1=occupied.

Dynamics: birth and death of particles

• Fix a parameter q ∈ [0, 1]

• at rate 1 each site gets a proposal to update its state to
empty at rate q and to occupied at rate 1− q.

• the proposal is accepted iff the site has at least 2 empty
nearest neighbours = iff the kinetic constraint is satisfied

C.Toninelli Kinetically constrained models



FA-2f: properties

• Reversible w.r.t. Bernoulli(1-q) product measure, µq

• non attractive dynamics
→ injecting more vacancies can help filling more sites
→ coupling and censoring arguments fail

• There exist blocked configurations
→ ergodicity issues, several invariant measures
→ relaxation is not uniform on the initial condition
→ worst case analysis is too rough and coercive inequalities fail

• cooperative dynamics ∼ finite empty regions cannot expand

→ subtle relaxation mechanism

→ sharp slowdown for q ↓ 0

Several IPS tools fail→ new tools needed!
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Let’s change the constraint: other popular KCM

x can be updated iff . . .

• FA-jf:
. . . there are at least j empty sites in {x± ~e1, . . . , x± ~ed}

• East model:
. . . there is at least 1 empty site in {x+ ~e1, . . . , x+ ~ed}

• North-East model (d = 2):
. . . both x+ ~e1 and x+ ~e2 are empty

• Duarte model (d = 2):
. . . there are at least 2 empty sites in {x+ ~e2, x− ~e1, x− ~e2}
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KCM: motivations from physics

Introduced in the ’80’s to model the liquid/glass transition

• major open problem in condensed matter physics;
• sharp divergence of timescales;
• no significant structural changes.

⇒ kinetic constraints of KCM dynamics mimic cage effect :
if temperature is lowered free volume shrinks (q ↔ e−1/T )

⇒ trivial equilibrium and yet sharp divergence of timescales
when q ↓ 0, aging, heterogeneities, . . .→ glassy dynamics

⇒ Key question: how do KCM time-scales diverge for q ↓ 0 ?

⇒ Sharp divergence→ numerical simulations do not give
clear-cut answers, some of the conjectures were wrong!
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Some notation

• Ω := {0, 1}Zd is the configuration space

• for σ ∈ Ω and x ∈ Zd, σx is the occupation variable at x

• for Λ ⊂ Zd, ΩΛ := {0, 1}Λ and σΛ is the restriction of σ to Λ

• µ := µ(q)= Bernoulli (1− q) product measure on Zd

• µΛ := µ
(q)
Λ = Bernoulli (1− q) product measure on Λ

• for f : Ω→ R, we let µΛ(f) : ΩZd\Λ → R be the mean of f
w.r.t. µΛ with the other variable held fixed

• analogous definition for VarΛ(f)
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Formal definition of the Markov process

The generator acts on local functions f : Ω→ R as

Lf(σ) :=
∑
x∈Zd

cx(σ)(µx(f)− f(σ)) =

=
∑
x∈Zd

cx(σ)(qσx + (1− q)(1− σx))(f(σx)− f(σ))

with

σx(y) :=

{
σ(y) if y 6= x
1− σ(x) if y = x

cx(σ) :=

{
1 if there constraint is satisfied at x
0 otherwise

The corresponding Dirichlet form is:

D(f) := −µ(f · Lf) =
∑
x∈Zd

µ (cxVarx(f)) .
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Focus questions

Q. Is µ ergodic for the infinite volume process? Is it also mixing?
And if so, how fast does converge to equilibrium in L2(µ) occur?

Recall that, if we denote by Pt is the Markov semigroup,

• µ is ergodic if for all f ∈ L2(µ) the condition
Ptf = f ∀t ≥ 0 implies f constant a.s. in µ

• µ is mixing if ∀f, g ∈ L2(µ) it holds
limt→∞ µ(fPtg) = µ(f)µ(g).

Thus mixing is stronger than ergodicity.

⇒ To answer the above questions we should first introduce a
related model: Bootstrap Percolation (BP)
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2-neighbour Bootstrap Percolation

• At time t = 0 sites are i.i.d., empty with probability q,
occupied with probability 1− q

• At time t = 1
• each empty site remains empty
• each occupied site is emptied iff it has at least 2 empty n.n.

• Iterate

⇒ Final configuration: completely empty or ∃ clusters of
mutually blocked particles

.

• BP blocked clusters↔ blocked particles under FA-2f
• BP is a discrete time deterministic monotone dynamics
→ easier to study
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Critical density and Infection time

• Will the whole lattice become empty?

→ Yes ∀q > 0 (Van Enter ’87)

• qc := inf{q ∈ [0, 1] : µq(origin is emptied eventually) = 1}

→ qc = 0

• How many steps are needed to empty the origin?

• τ BP(q) := µq(first time at which origin is empty)

for q ↓ 0 w.h.p. τ BP
0 = exp

(
λ(d)

q1/(d−1)
(1− o(1))

)
• scaling (Aizenmann, Lebowitz ’88)
• λ(2) = π2/18 (Holroyd ’08)
• λ(d) = . . . d > 2 (Balogh, Bollobas, Duminil-Copin, Morris

’12)
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Bootstrap percolation

• Define analogously the BP processes corresponding to the
constraints of FA-jf, Duarte, North-East and East

• qc = 0 for East, Duarte and FA-jf ∀j ∈ [1, d]

• qc = 1− pOPc for North-East

• for q ↓ 0, w.h.p. τ BP
0 ∼ q−1/d for FA-1f and East

• the scalings for FA-jf with j > 1 and for Duarte model are
more complicate and diverge more rapidly as q ↓ 0
(see Lecture 2)
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KCM: ergodicity and mixing

Theorem (Cancrini, Martinelli, Roberto, C.T. ’08)

(i) ∀q > qc, µ is mixing (and therefore ergodic);

(ii) ∀q < qc , µ is not ergodic (and therefore not mixing).

Sketch of the proof
• for q > qc we prove that 0 is a simple eigenvalue of L.

Key ingredient: fix x ∈ Zd and σ ∼ µ, then µ-a.s. there
exists a legal path from σ to σx;

• for q < qc blocked structures percolate
→ f := 1E is left invariant by the dynamics and it is not
constant a.s. w.r.t. µ where

E := {η : the origin cannot be emptied by BP}.
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Spectral gap and relaxation time

gap := inf
f∈Dom(L)
Var(f) 6=0

D(f)

Var(f)

i.e. gap = T−1
rel , where Trel is the smallest constant such that

Var(f) ≤ TrelD(f) ∀f

Thus, if gap > 0, it holds

Var (Ptf) = µ(fPtf)−µ(f)2 ≤ exp(−2 t gap)Var(f) ∀f ∈ L2(µ)

Theorem (Cancrini, Martinelli, Roberto, C.T. ’08)

For FA-jf, East, North-East and Duarte models it holds

gap > 0 ∀q > qc
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Persistence function

F (t) :=

∫
dµ(σ)Pσ(σs(0) = σ(0) ∀s ≤ t)

Recall that ∀A ⊂ Ω it holds

Pµ(τA > t) ≤ exp(−tλA)

with τA the hitting time of A, and

λA := inf
{
D(f) : µ(f2) = 1, f ≡ 0 on A

}
.

Thus

F (t) = P(τ{σ(0)=1} > t)+P(τ{σ(0)=0} > t) ≤ e(−(1−q) tgap)+e(−q tgap)
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Mean infection time

Eµ(τ0) with τ0 = hitting time of {σ(0) = 0}.
The upper bound on F (t) implies

Eµ(τ0) ≤ (1 + o(q))
Trel

q

An easy lower bound

For any KCM there exists δ > 0 s.t. for q small enough it holds

Eµ(τ0) ≥ δτBP(q)

General but usually very far from the correct scaling.

Key idea: BP features only infecting moves while KCM has both
infecting and healing moves→ BP infects the origin at least as
fast as the corresponding KCM.
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East model in d = 1: gap > 0 via the BC technique

• gap:=spectral gap for East on Z

• for Λ ⊂ Z, gapΛ := spectral gap for East on Λ with 0 b.c.

• Λk := [0, 2k] and γk := 1/gapΛk

• gap ≥ infk gapΛk

→ if we prove

γk ≤ akγk−1 with
∞∏
k0

ak <∞ for a finite k0

we have proven gap > 0
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First idea

• Devide Λk into two B1, B2 each of the form Λk−1

• define an auxiliary block dynamics: . . .

• → Trel,Λk ≤ T block
rel maxTrel,B1Trel,B2

• T block
rel = 1 (product measure)→ γk ≤ γk−1

• . . . so easy?!

• maxTrel,B1Trel,B2 =∞!
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A general two-site constrained Poincaré inequality

Lemma

• (X1, ν1) and (X2, ν2) = finite probability spaces
• (X, ν) = the associated product space
• H ⊂ X2 with ν2(H) > 0.

Then, for any f : X→ R, it holds

Varν(f) ≤
(

1−
√

1− ν2(H)
)−1

ν
(

1{X2∈H}Varν1(f) + Varν2(f)
)
.

• Let ~X := (X1, X2). The inequality is an upper bound on Trel

for the Markov process reversible w.r.t. ν with generator:

Lf( ~X) = 1{X2∈H}

[
ν1(f)− f( ~X)

]
+
[
ν2(f)− f( ~X)

]
• easy proof via direct calculation on eigenvectors
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East model in d = 1: gap > 0 via the BC technique

B1 B2

I

Λk = [0, 2k] = B1tB2, B1 := [0, 2k−1− 1], B2 := [2k−1, 2k],

I := [2k−1, 2k−1+2k/3], H ⊂ ΩB2 := {η : ∃ at least one zero in I}

Use the two-site constrained Poincaré inequality to get

VarΛk
(f) ≤ εkµΛk

(
1HVarB1(f) + VarB2(f)

)

with εk =

(
1−

√
(1− q)2k/3

)−1
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East model in d = 1: gap > 0 via the BC technique

Our goal: upper bound the r.h.s with ak(gap[0,2k−1])
−1DΛk(f)

r.h.s. := εk µΛk (1H VarB1(f) + VarB2(f))

Via the Poincaré inequality (i.e. the definition of gap) for East:

µΛk(VarBi(f)) ≤ (gap(LBi))−1
∑
x∈Bi

µΛk (cx,BiVarx(f))

cx,Bi(σ) :=

{
1− σx+1 if x 6= rightmost site of Bi
1 otherwise

cx,B2(σ)=x,Λk(σ), but cx,B1(σ)≥ cx,Λk(σ) !

→ r.h.s. 6= εk γk−1 µ(DB1(f) +DB2(f)) = εk γk−1DΛk(f)
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East model in d = 1: gap > 0 via the BC technique

B1 B2

C

I

”Enlarge” VarB1 by convexity to the random interval C:=. . .

cx,C(σ)1H= cx,Λk(σ)1H ∀x ∈ C, σ ∈ ΩΛk

⇒ µΛk(1HVarB1 ≤ gap−1
Λ1

∑
x∈B1∪I

µΛk (cx,ΛkVarx(f))

⇒ VarΛk ≤ εkγk−1DΛk +
∑
x∈I

µΛk (cx,ΛkVarx(f))

• Technical point: ”move” I and average over its positions
• use the variational definition of the spectral gap

⇒ γk ≤ akγk−1 with
∞∏
k0

ak <∞ for a finite k0
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East model in d = 1: gap > 0 via the BC technique

Theorem (Cancrini, Martinelli, Roberto, C.T ’08)

For all δ > 0 there exists Cδ s.t.

Trel =
1

gap
≤ Cδ exp

(
| log q|2

(2− δ) log 2

)

Remark

• The conjectures in physics were incorrect, claiming

Trel ∼ exp

(
| log q|2

log 2

)
• The additional factor 1/2 is due to the fact that

(unexpectedly!) energy and entropy contributions are of
the same order (more on Lecture 2)
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• The additional factor 1/2 is due to the fact that

(unexpectedly!) energy and entropy contributions are of
the same order (more on Lecture 2)
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Can BC be used to upper bound Trel for all KCM?

Consider FA-2f on Z2

B1

I

B2

Λk := [1, 2k]× [1, 2k]

I := [2k−1, 2k−1 + 2k/3]× [1, 2k]

H := {η : ∃ top-bottom empty crossing in I}

Following the lines of the proof for East on Z we get

γk := gap −1
Λk
≤ ak γk−1

with ak :=
(

1−
√

1− µ(H)
)−1

→
∏∞
k0
ak < 1 iff q > qsite perc.

c

→ BC cannot be used (alone) to upper bound Trel for all q > 0 !
Renormalisation + other tools. . .
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East model d = 1: combinatorics

Constraint = to update a site we need its right neighbour empty

• If we start from a single vacancy
x

and we can create 1 zero we reach only
x

• if we can create up to 2 simultaneous additional zeros we
reach also:

x x x

• if we can create up to n simultaneous additional zeros
• one of the configurations that we can reach has its leftmost

vacancy at x− (2n − 1);
• all the others have leftmost vacancy in [x, x− (2n − 1)]

⇒ the East model has logarithmic energy barriers
[Evans Sollich ’99, see also Chung Diaconis Graham ’01]
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East model d = 1: scaling for q ↓ 0

• The first vacancy at the left of origin is at ` ∼ 1/q

• Trivially, τ BP
0 (q) ∼ 1/q

• Eµq(τ0) ∼ time to create log2(`) empty sites

• → Eµq(τ0) = 1/qΘ(1)| log q| [Aldous, Diaconis JSP ’02 ]

• Sharp result (taking entropy into account) in d ≥ 1

lim
q→0

logEµq(τ0)

| log q|2
= (2d log 2)−1

[Cancrini, Martinelli, Roberto, C.T. PTRF ’08] for d = 1

[Chleboun, Faggionato, Martinelli AoP ’16] for d ≥ 2
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FA-1f: scaling for q ↓ 0

Constraint = to be update we need an empty nearest neighbour

x x x

• a vacancy can move of one step by creating one additional
vacancy → ∼ r.w. of rate q−1 → non-cooperative!

→ d = 1 Eµq(τ0) ∼ q−1(1/q)2 = q−3;

→ d = 2 q−2 ≤ Eµq(τ0) ≤ q−2| log q|;

→ d ≥ 3 Eµq(τ0) ∼ q−1(1/q1/d)
d

= q−2

[Cancrini, Martinelli, Roberto, C.T. PTRF ’08 + Shapira JSP ’20]
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KCM: the general definition

Configurations : η ∈ Ω := {0, 1}Zd , 0 = empty, 1 = occupied

Fix a density parameter q ∈ [0, 1] and an update family U with

U = {U1, . . . , Um}, Ui ⊂ Zd \ 0, |Ui| <∞, m <∞

i.e. U is a finite collection of local neighbourhoods of the origin

Fix η ∈ Ω and x ∈ Zd: ”the constraint is satisfied at x” iff at
least one of the translated sets Ui + x is completely empty

Dynamics: each site with the constraint satisfied is updated to
empty at rate q and to occupied at rate 1− q

C.Toninelli Kinetically constrained models



Our examples

• FA-jf model:
U = all sets containing j nearest neighbours of the origin

• East model: U = {~e1, . . . , ~ed}

• North-East model: U = {U1} with U1 = {(0, 1), (1, 0)}

• Duarte model: U = {U1, U2, U3} with

xxx

U1 U2 U3
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Universality class of U in d = 2

We need the notion of stable and unstable directions

• Fix a direction ~u

• Start from a configuration which is
• completely empty on the half plane perpendicular to ~u in

the negative direction (Hu)
• filled otherwise

• Run the bootstrap dynamics
H_u

u

~u is
{

stable if no other site can be emptied
unstable otherwise
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Stable and unstable directions: examples

Of course, the stability of a direction depends on U

Ex. East model:

~u = −~e1 is stable; ~u = ~e1 + ~e2 is unstable

directionStable

direction

Unstable

Instead :
• both directions are unstable for 1-neighbour bootstrap
• both directions are stable for North East
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How to easily identify all stable and unstable directions

Draw the half planes Hu and Z2 \Hu so that the separation line
contains the origin. ~u is unstable iff Ui ⊂ Hu for at least one i

x

U1

+

x

U2

+

x

U3

=

R+R=R

G+G=G

G+R=G

Easy-to-use criterion to determine the class of any U
(m simple geometric checks, m= # of rules)
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Supercritical universality class

U is supercritical iff there exists an open semicircle C which does
not contain stable directions.

A supercritical model is{
• rooted if it has at least 2 non opposite stable directions
• unrooted otherwise

FA-1f
Unrooted

East
Rooted
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Critical universality class

U is critical if it is not supercritical and there exists an open
semicircle C with only a finite number of stable directions

A critical model is{
• finitely critical if it has a finite number of stable directions
• infinitely critical otherwise

FA-2f
Finitely critical

Duarte
Infinitely critical
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Subcritical universality class

Two equivalent definitions

U is subcritical iff it is neather supercritical nor critical

or

U is subcritical iff each open semicircle has infinite stable
directions

⇒ qc > 0: blocked clusters percolate at q < qc

Example: North East model
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BP universality results in d = 2

Theorem [Bollobás, Smith, Uzzell ’15 + Balister, Bollobás,
Przykucki, Smith ’16 + Bollobás, Duminil-Copin, Morris, Smith ’16]

• Supercritical: qc = 0, τ BP
0 (q) = 1/qΘ(1) w.h.p. as q ↓ 0

• Critical: qc = 0, τ BP
0 (q) = exp(| log q|O(1)/qα) w.h.p. as

q ↓ 0

• Subcritical: qc > 0

Definition of the ”difficulty”, α

α = minC max~u∈C d(~u) with

d(~u) = minimal number of empty sites to unstabilize ~u
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Difficulty: examples

FA-2f :

• ~e1 is stable and d(~e1) = 1
• same for −~e1 and ±~e2

• all other directions are unstable

→ α = 1 for FA-2f
Exercice: check that Duarte model also has difficulty α = 1
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KCM: universality results in d = 2

Theorem [Martinelli,Morris,C.T. ’19; Marêché,Martinelli,C.T. ’20,
Marêché, Hartarsky, Toninelli ’20, Hartarsky, Martinelli, C.T.’21]

1 Supercritical unrooted: τ(q) = 1
qΘ(1) and τ BP

0 ∼ 1
qΘ(1) (FA-1f)

2 Supercritical rooted: τ0(q) = 1
qΘ(1)| log q| � τ BP

0 = 1
qΘ(1) (East)

3 Finitely critical: τ0(q) and τ BP
0 ∼ exp

(
Θ(1)(log q)Θ(1)

qν

)
(FA-2f)

4 Infinitely critical:
τ(q) = exp

(
(log q)c

q2ν

)
� τ BP

0 = exp
(

(log q)c

qν

)
(Duarte)

−→ For supercritical rooted and infinitely critical models
Eµq(τ0)� τ BP

0 (q)ν for all ν.

Hartarsky Marêché ′21+: log corrections !
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Supercritical models

• Unrooted: large empty droplet can move back and forth

→ renormalise to an FA-1f with effective density qeff = qΘ(1)

→ Eµq
(τ0) ∼ q−Θ(1)

• Rooted: any empty droplet can move only inside a cone

=⇒ logarithmic energy barriers as for East
[Marêché ’20]

→ renormalise to an East with effective density qeff = qΘ(1)

→ Eµq
(τ0) ∼ qΘ(| log qeff |)

eff = eΘ(log q)2
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Duarte model: heuristics

Constraint at x: at least 2 vacancies in {x− ~e1, x+ ~e2, x− ~e2}

: OK MOVE to the LEFT : NOMOVE to the RIGHT

An empty segment of length ` = 1/q | log q| can (typically)
create an empty segment to its right, but never to its left!

→ it is a mobile droplet with East-like dynamics and

density qeff = q` = e−Θ(log q)2/q
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Duarte model: heuristics

• nearest empty droplet to the origin is at distance L ∼ q−1
eff

→ T BP ∼ L = exp
(

Θ(1)| log q|2
q

)
[Mountford ’95]

• Duarte droplets move East like→ to empty the origin we
have to create log(L) simultaneous droplets

→ Eµq(τ0) ∼ q− logL
eff ∼ exp

(
Θ(1)| log q|4

q2

)
� T BP

[Martinelli, Morris, C.T. ’19 + Marêché, Martinelli, C.T. ’20]
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The general critical case

• Droplets are empty regions with model dependent shape
of size ` = q−α| log q| and density qeff = q`

• For infinitely critical KCM the droplet motion is East like

→ τ0 ∼ qΘ(| log qeff |)
eff = exp

(
| log q|O(1)

q2α

)

• For finitely critical KCM the droplet motion is a subtle
combination of East on mesoscopic scales

(
L ∼ q−Θ(1)

)
and

FA-1f on macroscopic scales ( ∼ q−1
eff )

→ τ0 ∼ qΘ(logL)
eff = exp

(
| log q|O(1)

qα

)
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Upper bound: main obstacles and tools

• droplets move only on a good environment
• the environment evolves and can ”lose its goodness”
• no monotonicity→ we cannot ”freeze” the environment
• the motion of droplets is not random walk like
• it is very difficult to use canonical path arguments

→ a very flexible long range Poincaré inequality
[Martinelli, C.T. ’19]

→ renormalisation

→ Matryoshka Dolls: a new technique to compare Dirichlet
forms avoiding canonical paths
[Martinelli, Morris, C.T. ’19]
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Lower bound

• Key idea: construct a bottleneck involving log(L) droplets
• Main difficulty: droplets are not ”rigid objects”!
• Solution: an algorithmic identification of droplets and of

an efficient cut-set...
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More on the upper bound: the case of FA-2f

• renormalise on `× ` boxes, ` = 1/q log(1/q)

• auxiliary long range block dynamics:
put equilibrium on box Bx at rate 1 iff it belongs to a good
cluster with two droplets at distance at most
L = exp(1/q log(1/q)2)

=good box

−

=B_x

=contains droplet

• establish a general long range Poincaré inequality that
yields T auxrel = O(1)

• use canonical paths for reversible Markov chains or better
repeat the same game inside the path on a smaller scale:
now the renormalised sites are the columns of the box
. . . Matryoshka Dolls!
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FA2f: sharp treshold

Theorem [Hartarsky, Martinelli, C.T. ’20]

As q ↓ 0, w.h.p. for the stationary FA-2f model on Zd it holds

τ0 = exp

(
d× λ(d)

q1/(d−1)
(1− o(1))

)
, d ≥ 2

the same result holds for Eµq(τ0). Thus, w.h.p. τ0 = (τ BP
0 )d+o(1).

Remark

• This is not a corollary of the BP result:
the emptying/occupying mechanism of FA-2f has no
counterpart in BP!

• We settle contrasting conjectures in physics literature
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High level ideas

• Relaxation is driven by the motion of unlikely large patches
of empty sites, the mobile droplets

• droplet density ρD := exp
(
−d×λ(d)

q1/d−1 (1 + o(1))
)

droplet length LD := poly(q)

• Mobile droplets move in any direction . . .

contradiction with ”finite empty regions cannot expand”?!
• Motion requires few additional empty sites→ this good

environment is very likely for large droplets (q ↓ 0)
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High level ideas

• τ0 ∼ time for the mobile droplet to arrive near the origin

• motion of droplets ∼ coalescing + branching + SSEP

→ τ0 ∼ 1/ρD

• τ BP
0 ∼ distance of mobile droplet to origin

→ τ BP
0 ∼ 1/ρ

1/d
D ∼ τ0

1/d
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How do droplets look like? the d=2 case

• Multi-scale construction: empty core of size 1/
√
q + empty

sites that allow to move the core anywhere inside without
creating a larger empty interval

`3 . . . `N`1 `2

• the black square has no double raws fully occupied and one
raw with no consecutive filled sites→ it is emptiable

• vertical arrow = no double raws fully occupied
• horizontal arrow = no double columns fully occupied
• `n := en

√
q/
√
q, N = 8| log q|/√q → `N = LD = poly(q)
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More precisely...

A multi-scale definition
• `n := en

√
q/
√
q, N = 8| log q|/√q → `N = LD = poly(q)

• a rectangle R is of class n if
• R is a single site for n = 0;
• R = `m × h with h ∈ (`m−1, `m] for n = 2m;
• R = w × `m with w ∈ (`m, `m+1] for n = 2m+ 1

• Super-good (SG) rectangles:
• a rectangle of class 0 is SG if it is empty;
• a rectangle of class n is SG if it contains a SG rectangle R’ of

class n− 1 (the core) AND it satisfies traversability conditions
elsewhere, i.e. no double column/raw fully occupied.

Droplets are defined as `N × `N SG rectangles
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elsewhere, i.e. no double column/raw fully occupied.

Droplets are defined as `N × `N SG rectangles
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More precisely...

A multi-scale definition
• `n := en

√
q/
√
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How does droplet motion look like?

A droplet can

• coalesce with a nearby droplet on time scale of order 1

• create a new droplet nearby on time scale ρ−1
D

• swap its position with a neighboring box on time scale

T ∼ exp

(
| log q|3

q1/(2d−2)

)
� ρ−1

D ∼ exp

(
d× λ(d)

q1/(d−1)

)
Coalescing + Branching + Simple Exclusion→ g-CBSEP

g for ”generalized” (not just 0/1)
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From heuristics to proof: hints for the upper bound

• Hitting times↔ Dirichlet eigenvalues
• renormalize on the droplet size

→ τ0 ≤ T FA-2f,D
rel T g-CBSEP

rel

T FA-2f, D
rel = relaxation time of the FA-2f chain inside a droplet
T g-CBSEP

rel = relaxation time of the g-CBSEP chain
• establish the following Poincaré inequalities

→ T FA-2f,D
rel ≤ eO(log q)/q1/(2d−2)

T g-CBSEP
rel ≤ ρ−1

D log ρD

→ τ0 ≤ exp

(
d× λ(d)

q1/(d−1)
(1− o(1))

)
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Thanks for your attention!
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The g-CBSEP chain

• G = (V,E) : finite connected graph
• (S, π) : finite probability space
• S = S0 t S1 and ρ = π(S1)

• given σ ∈ SV , x ∈ V is occupied iff σx ∈ S1

• g-CBSEP is defined on Ω+ := {σ with at least one particle }

• Dynamics: at rate one each edge e = (x, y) with at least one
particle is refreshed w.r.t.
πx ⊗ πy(· | ∃ at least one particle in e )

→ Reversible w.r.t. ⊗πx(· |Ω+)

→ the projected variables {ωx = 1σx∈S1}x∈V evolve as
SSEP + branching + coalescing

Theorem [Hartarsky, Martinelli, C.T. ’20]

As ρ ↓ 0, T g-CBSEP
rel ≤ O(ρ−1 log(1/ρ))
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FA-jf model

• for jn-BP for all d ≥ j ≥ 2, w.h.p. it holds

τ BP
0 ∼ expj−1

(
λ̃(d, j)

q1/(d−j+1)

)

expk = exponential iterated k times (Balogh, Bollobas,
Duminil-Copin, Morris ’12)

Same scaling for τ0 (Hartarsky, Martinelli, C.T. in progress)

• j = 1: τ BP
0 = 1/q1/d, τ0 = 1/qν(d),

ν(1) = 3, ν(d) = 2 d ≥ 2 (log corrections in d = 2)
(Cancrini, Roberto, Martinelli, C.T. ’08 + Shapira ’20)

• d < j: τ0 = τ BP
0 =∞ w.h.p. for q → 0
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Finitely critical U : an example

x x x x

U1 U2 U3 U4

C log(1/q)/q2

C
q log(1

q )

To move of one step towards ~e2 the droplet has to move East-like
to the right till reaching the first infected pair of empty sites
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Finitely critical U : an example

C
q2 log(1

q )
C
q2 log(1/q)

The move of one step in the −~e1 direction the droplet has to
move in the direction ~e2 until reaching the first infected pair of
empty sites. A subtle hierarchical combination of East paths. . .
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East model: why a log barrier?

Start with a single vacancy at the origin

S= configs reacheable via paths with ≤ n simultaneous 0’s;
L(n)= distance from the origin of leftmost 0 maximized on S

S1= configurations in S and with only one vacancy in [−∞,−1];
L1(n)= distance from the origin of leftmost 0 maximized on S1

1 optimal path proceeds via stepping-stones: create isolated
vacancy at −L1(n); restart from it to create an isolated
vacancy at −L1(n)− L1(n− 1); . . .
→ L(n) = L1(n) + L1(n− 1) + . . .L1(1)

2 to put an isolated 0 at −L1(n) we should have a 0 at
−L1(n) + 1 and remove it using at most n− 1 vacancies
→ L1(n) = L(n− 1) + 1

⇒ L(n) = 2n − 1
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A general long-range constrained Poincaré inequality

Lemma [Martinelli, C.T. ’19]

• (X, ν)= finite probability space

• (Ω̃, µ̃) = (XZd ,⊗x∈Zdνx)
• for x ∈ Zd let

• Zdx,↑ := x+ {y : y1 + . . . yd > 0}
• ∆x ⊂ Zdx,↑ be a finite set
• Ax be an event depending only on {ω(y)}y∈∆x

Assume supz
∑

x∈Zd
x∪∆x3z

(1− µ(Ax)) < 1/4, then

Var(f) ≤ 4
∑
x∈Zd

µ (1AxVarx(f)) ∀f local

More general oriented neighborhood and product of
characteristic functions possible . . .
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