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Nutshell introduction

I Models of interacting particle systems (IPS) are used to
understand systems of non-equilibrium statistical physics.

I Some of these IPS have extra structure which allows to
produce exact formulas for quantities such as density or
temperature profile, correlation functions.

I This extra structure comes (often) from a special property
called “duality” or “self-duality”, which enables to connect
the model of interest to another, simpler, dual one, via a
duality function.
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I The existence of and relation between a model and its dual
turn out to be two different representations of an abstract
element of a Lie-algebra.

I In this way, we can classify and constructively produce such
systems, starting from the underlying Lie-algebras. As a
consequence, IPS with duality properties come in families,
associated to Lie-algebras.

I This constructive Lie-algebraic approach is robust and enables
to find all the duality functions, including orthogonal ones.

I In the meanwhile this method has been applied to many more
Lie-algebras than the ones discussed in this talk, including e.g.
construction of multi-type asymmetric exclusion processes
(Jeffrey Kuan and collaborators).
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I For symmetric (=detailed balance in the bulk) systems, these
algebras generating families of models with duality are classical
Lie-algebras such as SU(2),SU(n),SU(1, 1), Heisenberg.

I The “correct” asymmetric companion model of the symmetric
models, can be found via q-deformation of these algebras, i.e.,
the corresponding quantum Lie algebras, where 0 < q < 1,
models the asymmetry.

I Duality and self-duality is strictly weaker than integrability,
the relation between these two concepts is not entirely clear.
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1. Basics of duality
I We consider two Markov processes {η(t), t ≥ 0},
{ξ(t) : t ≥ 0} on the state spaces Ω, resp. Ω̂.

I We denote their semigroups

St f (η) = Eηf (η(t)), Ŝt f (ξ) = Êξ(f (ξ(t))

I Generators

Lf (η) = lim
t→0

1

t
(St f (η)− f (η))

I Relation between St and L is “exponentiation” St = etL where
exponential should be defined appropriately. In finite state
space case it is simply the matrix exponential

etL =
∞∑
n=0

tnLn

n!

In more general cases it is defined via the Hille-Yosida
theorem via the resolvents.
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A measurable function D : Ω̂× Ω→ R is called a duality function
for duality between the processes {ξ(t) : t ≥ 0} and {η(t), t ≥ 0}
if for all t > 0, for all η ∈ Ω, ξ ∈ Ω̂ we have the duality relation

EηD(ξ, η(t)) = ÊξD(ξ(t), η)

Equivalently, for all t ≥ 0, for all η ∈ Ω, ξ ∈ Ω̂

StD(ξ, ·)(η) = ŜtD(·, η)(ξ)

In many cases also equivalently, for all η ∈ Ω, ξ ∈ Ω̂

LD(ξ, ·)(η) = L̂D(·, η)(ξ)

(generator duality) we write L̂ −→D L, thinking of it as a
“relation” between L̂, L parametrized by D.
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Remarks

1. Semigroup duality can be defined in more general context,
allowing e.g. Ŝt to be a general (not necessarily Markov)
semigroup. A simple example of this is St the semigroup of
Brownian motion and D(ξ, η) = e iξ.η then

StD(ξ, ·)(η) = Ee iξ(η+B(t)) = e iξηe−
1
2
ξ2t = ŜtD(·, η)(ξ)

2. The notation L̂ −→D L can be used for general operators, and
then satisfies

Â −→D A, B̂ −→D B implies ÂB̂ −→D BA

i.e., order of multiplication is reversed.
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2. Examples

2.1 Wright Fisher diffusion

Lf (η) = η(1− η)f ′′(η), η ∈ [0, 1]

L̂f (ξ) = ξ(ξ − 1)(f (ξ − 1)− f (ξ)), ξ ∈ N

{η(t), t ≥ 0} is a diffusion process on [0, 1], and {ξ(t), t ≥ 0} is a
jump process on N. Then with D(n, x) = ηξ we have

LD(ξ, ·)(η) = ξ(ξ − 1)(ηξ−1 − ηξ) = L̂D(·, η)(ξ)

Time dependent moments in the diffusion process can be
computed using the jump process, i.e.,

Eη(η(t)ξ) = Êξ(ηξ(t))
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2.2 Independent random walkers
Let {X (t), t ≥ 0} := {Xi (t) : t ≥ 0, i ∈ I} denote independent
random walkers on a graph with vertex set V . Assume symmetry,
i.e., pt(x , y) = pt(y , x) for all x , y ∈ V . Then the associated
configuration process

η(t) =
∑
i∈I

δXi (t)

is a Markov process. For x ∈ V , t ≥ 0 denote ηx(t) the number of
particles at x at time t. Consider

D(x , η) = ηx

then we prove that

EηD(x , η(t)) = ERW
x D(x(t), η)

which is called “self-duality with a single dual particle”.
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EηD(x , η(t)) = EX (
∑
i

I (Xi (t) = x))

=
∑
i

EX (I (Xi (t) = x))

=
∑
i

ERW
Xi (0)(I (Xi (t) = x))

=
∑
i

pt(Xi (0), x)

=
∑
i

pt(x ,Xi (0))

= ERW
x (

∑
i

I (Xi (0) = X (t)))

= ERW
x (ηX (t)(0))

We used “consistency” in the third equality to pass from EX to
EXi (0), and we used symmetry in fifth equality (which can be
generalized to reversibility).
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2.3 Symmetric exclusion

For V a finite set, let the configuration space be Ω = {0, 1}V . Let
p(x , y) = p(y , x) denote a symmetric function p : V × V → R+.
Denote ex the configuration with one particle at x and no particles
anywhere else. Then the generator writes as follows

Lf (η) =
∑

x ,y∈V
p(x , y)Lx ,y f (η)

with Lx ,y the “single edge generator”

Lx ,y f (η) = ηx(1− ηy )(f (η − ex + ey )− f (η))

Compute now for D(x , η) = ηx

LD(x , η) =
∑
y

p(y , x)ηy (1− ηx)−
∑
y

p(x , y)ηx(1− ηy )

=
∑
y

p(x , y)(ηy − ηx)
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then we see with L̂f (x) =
∑

y p(x , y)(f (y)− f (x))

L̂D(·, η)(x) = LD(x , ·)(η)

This implies
Eη(ηx(t)) = ERW

x (ηX (t)(0))

just as in the case of independent random walkers! From the
“graphical representation” one obtains consistency and one derives
the more general self-duality

EηD(ξ, η(t)) = EηD(ξ(t), η)

for
D(ξ, η) =

∏
x∈V

I (ξx ≤ ηx)

The particular case is then recovered by putting ξ = ex
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2.4 General model

Lf (η) =
∑

x ,y∈V
p(x , y)ηx(α + σηy )(f (η − ex + ey )− f (η))

where σ ∈ {−1, 0, 1}, p symmetric.

I For σ = −1, α ∈ N, this is SEP(α) with state space
{0, 1, . . . , α}V .

I For σ = 0 this is a system of independent random walkers
with state space NV .

I For σ = 0, α > 0 this is SIP(α) with state space NV .

These are the three basic particle systems where self-duality holds,
and where the algebraic formalism can be illustrated clearly and
simply. From the previous computation, it is now clear that for
these three models we already have

EηD(x , η(t)) = ERW (α)
x (ηX (t)(0))
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Basic properties of the general model
I Reversible product measures The reversible measures of these

processes are products of:

1. SIP: Negative binomials (discrete Gamma distributions):

ν
(α)
p (n) = pnΓ(α+n)

n!Γ(α) (1− p)α, 0 < p < 1.

2. SEP: Binomials: νp(n) =
(
α
n

)
(1− p)α−npn, 0 < p < 1,

n ∈ {0, . . . , α}.
3. IRW: Poisson: νθ = θn

n! e
−θ.

I Factorized “classical” self-duality functions The processes are
self-dual with D(ξ, η) =

∏
x∈V d(ξx , ηx) where d is given by

d(k , n) =
n!

(n − k)!

1

m(α, k)
I (k ≤ n)

with

m(α, k) =


Γ(α+k)

Γ(α) , for SIP
α!

(α−k)! , for SEP

1, for IRW
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I The “classical” self-duality functions and the reversible
product measures have the relation∫

D(ξ, η)ν(dη) = (

∫
D(δ0, η))|ξ|

it is therefore natural to parametrize the measures such that∫
D(ξ, η)νθ(dη) = θ|ξ|

I Notice that this relation also shows the invariance of the
measures νθ via∫

EηD(ξ, η(t))νθ(dη) =

∫
EξD(ξ(t), η)νθ(dη)

= Eξ(θ|ξ(t)|) = θ|ξ|

I This relation also allows to “recover” all the duality functions
from the “first one” D(e0, η).
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The structure of the duality functions is

D(ξ, η) =
∏
x

(
ηx
ξx

)
1

M(ξx)

where

M(k) =


k! for IRW(
α
k

)
for SEP

Γ(α+k
Γ(α)k! for SIP

M(ξ) =
∏

i M(ξi ) is a reversible weight, and therefore (as we will
see later) for the three models we have the same “intertwiner”∏

x

(
ηx
ξx

)
which expresses that choosing a random subconfiguration

commutes with the dynamics (consistency).
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2.5 Oldest example of duality
η(t) Brownian motion on [0,∞) reflected at 0, ξ(t) Brownian
motion on [0,∞) absorbed at 0. The transition densities of these
processes are explicit, with gt(x) = e−x

2/2t/
√

2πt

p±t (x , y) = gt(x − y)± gt(x + y)

From that one finds, by explicit computation

Pη(η(t) ≥ ξ) = P̂ξ(ξ(t) ≤ η)

in other words
EηD(ξ, η(t)) = ÊξD(ξ(t), η)

with D(ξ, η) = I (ξ ≤ η). In this example the duality function is
not in the domain of the generator. Neither does this example
seem to fit in the algebraic formalism very well.
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3. Duality and symmetries
Let us for simplicity assume that the processes are on finite state
spaces, and thus the generators are matrices. The matrix form of
duality reads as follows:

L̂D(·, η)(ξ) =
∑
ξ′

L̂(ξ, ξ′)D(ξ′, η)

= (L̂D)ξ,η

= LD(ξ, ·)(η)

=
∑
η′

L(η, η′)D(ξ, η′)

=
∑
η′

D(ξ, η′)LT (η′, η)

= (DLT )ξ,η

So duality in matrix notation reads

L̂D = DLT
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Two generators L1 and L2 are intertwined with intertwiner Λ12 if

L1Λ12 = Λ12L2

If L1 = L2 and Λ12 = S then we say that S is a symmetry of L, i.e.,

SL− LS = [S , L] = 0

We then have the following basic, simple, and very useful
properties.

1. “Cheap self-duality” from a reversible weight. If M is a
reversible weight, i.e.,

M(ξ)L(ξ, η) = M(η)L(η, ξ)

for all η, ξ, then

D(ξ, η) =
1

M(ξ)
δξ,η

is a self-duality function.
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2. New dualities from combining dualities with intertwiners.
If L1, L2, L3 are three generators and we have the intertwining

L1Λ12 = Λ12L2

and the duality
L2D23 = D23L

T
3

then D13 = Λ12D23 is a duality function between L1 and L3,
i.e.,

L1D13 = L3D
T
13

As a consequence if D is a self-duality for L and S commutes
with L, then SD is a self-duality for L as well.
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3. Dualities from intertwiners. If M2 is a reversible measure
for L2 and the intertwiner Λ12 is in kernel operator form, i.e.,

Λ12f (x1) =
∑
x2

D12(x1, x2)M(x2)f (x2)

then the kernel D12 is a duality function between L1 and L2,
i.e.,

L1D12 = D12L
T
2

As a consequence if S is a symmetry of L in kernel operator
form Sf (η) =

∑
ξ D(ξ, η)M(η)f (η) with M a reversible

weight for L, then D is a self-duality function for L.
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4. Algebraic properties of generators with dualities
4.1 Wright-Fisher example
Define the following operators on f : N→ R (where we also define
f (−1) = 0)

af (n) = nf (n − 1)

a†f (n) = f (n + 1) (1)

these operators satisfy the so called dual (or conjugate) Heisenberg
commutation relation:

[a, a†] = −I
Consider on the other hand the operators working on functions
f : [0, 1]→ R

Af (x) = f ′(x)

A†f (x) = xf (x) (2)

these satisfy the Heisenberg commutation relations, i.e.,

[A,A†] = I
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I We have the following dualities with D(n, x) = xn

a −→D A, a† −→D A† (3)

I Now the jump process generator
L̂f (n) = n(n − 1)(f (n − 1)− f (n)) is equal to a2a†I (I − a†),
whereas the Wright-Fisher diffusion generator is equal to
A†(I − A†)A2. Now we see that these are dual via (3).

I More generally, a “word” composed of a, a† such as e.g.
aaa†a†a is dual to the “reversed” word AA†A†A2 So we see
that the duality between between the generators extends
actually to a duality between two algebras.
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4.2 Independent random walkers: self-duality

L12f (η) = η1[f (η − e1 + e2)− f (η)] + η2[f (η − e2 + e1)− f (η)]

can be rewritten in terms of the operators from (1)

L12 = −(a1 − a2)(a†1 − a†2)

From this form we infer symmetries S = a1 + a2, S† = a†1 + a†2.
Indeed,

[(a1 − a2)(a†1 − a†2), a1 + a2] = (a1 − a2)[a†1 − a†2, a1 + a2]

= (a1 − a2)(I − I ) = 0

We have the reversible weight

M(η) =
1

η1!

1

η2!

with corresponding cheap duality Dch(ξ, η) = η1!η2!δξ1,η1δξ2,η2 Now
we claim

eS
†
D(·, η)(ξ) =

η1!

(η1 − ξ1)!

η2!

(η2 − ξ2)!

Frank Redig DIAM, Delft University of Technology The algebraic approach to duality: an overview



ea
†
δ·,n(k) =

∞∑
r=0

(a†)r

r !
δ·,n(k)

=
(a†)n−k

(n − k)!
δ·,n(k)

=
1

(n − k)!
Ik(≤ n)

So we obtain the self-duality function
D(ξ, η) =

∏
x

ηx !
(ηx−ξx )! I (ξx ≤ ηx)
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4.3 Independent random walkers: duality
Consider

L12f (x1, x2) = −(x1 − x2)(∂x1 − ∂x2)

this is the generator of the deterministic process

ẋ1(t) = x2(t)− x1(t) = −ẋ2(t)

then by the duality between the representations (1) and (2) we

know that this process with generator −(A†1 −A†2)(A1 −A2) is dual
to the process with generator

−(a1 − a2)(a†1 − a†2)

in other words

Eη(x
η1(t)
1 x

η2(t)
2 ) = x1(t)η1x2(t)η2
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4.4 Algebraic structure of SIP

L12f (η1, η2) = η1(α + η2)(f (η − e1 + e2)− f (η))

+ η2(α + η1)(f (η − e2 + e1)− f (η))

Introduce

K+f (n) = (α + n)f (n + 1)

K−f (n) = nf (n − 1)

K 0f (n) = (
α

2
+ n)f (n) (4)

These operators satisfy the commutation relations of the dual
(conjugate) algebra of SU(1, 1), i.e.,

± K± = [K±,K 0]

2K 0 = [K+,K−] (5)

and we have

L12 = K+
1 K−2 + K−1 K+

2 − 2K 0
1K

0
2 +

α2

2
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As a consequence, L12 commutes with Ku
1 + Ku

2 with
u ∈ {+,−, 0} Let us do one commutator

[K+
1 K−2 + K−1 K+

2 − 2K 0
1K

0
2 ,K

+
1 + K+

2 ]

= [K−1 ,K
+
1 ]K+

2 − 2[K 0
1 ,K

+
1 ]K 0

2

+ K+
1 [K−2 ,K

+
2 ]− 2K 0

1 [K 0
2 ,K

+
2 ]

= −2K 0
1K

+
2 + 2K+

1 K 0
2 − 2K+

1 K 0
2 + 2K 0

1K
+
2 = 0

A cheap self-duality function derived from a reversible weight is
given by

Dch(ξ, η) =
∏
x

ηx !
Γ(α)

Γ(α + ηx)
δξx ,ηx

One then has

eK
+
1 +K+

2 Dch(·, η)(ξ) =
∏
x

ηx !Γ(α)

(ηx − ξx)!Γ(α + ξx)

which follows via eK+δ·,n(k) = Γ(α+n)
Γ(α+k) I (k ≤ n)
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4.4 Coproduct
We define

∆(Ku) = Ku
1 + Ku

2

and extend this to an algebra homomorphism between A and
A⊗A. This is well defined via linearity and ∆(a)∆(b) =: ∆(ab)
because ∆ preserves the commutation relations, i.e.,

[∆(Ku),∆(K v )] = ∆([Ku,K v ])

for u, v ∈ {+,−, 0}.
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Let us verify this for u = +, v = −:

∆(K+K−) = (K+
1 + K+

2 )(K−1 + K−2 )

= K+
1 K−1 + K+

2 K−1 + K+
1 K−2 + K+

2 K−1

∆(K−K+) = K−1 K+
1 + K−2 K+

2 + K−1 K+
2 + K−2 K+

1

so we see

∆([K+,K−]) = [K+
1 ,K

−
1 ] + [K+

2 ,K
−
2 ] = 2K 0

1 + 2K 0
2 = ∆[2K 0]

whereas

[∆(K+),∆(K−)] = [K+
1 + K+

2 ,K
−
1 + K−2 ]

= [K+
1 ,K

−
1 ] + [K+

2 ,K
−
2 ] = 2K 0

1 + 2K 0
2
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Coproduct of the Casimir
The operator

C = (K 0)2 − 1

2
(K+K− + K−K+)

is called the Casimir and is central, i.e., commutes with
K+,K−,K 0. We then have the following

∆(−C ) = K+
1 K+

2 + K+
2 K−1 − 2K 0

1K
0
2 − C1 − C2

Because C1,C2 are central in A⊗A the symmetries of ∆(−C ) are
the same as those of K+

1 K+
2 + K+

2 K−1 − 2K 0
1K

0
2 , which are ∆(Ku),

u ∈ {+,−, 0}, because preserves commutators.
So we have understood that the generator of SIP(α) is up to
central elements the coproduct of the Casimir, and therefore, we
have that it commutes with Ku

1 + Ku
2 , u ∈ {+,−, 0} automatically.
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This outlines a general procedure to construct generators with
“many” symmetries.

I Start from a central element C .

I Apply a coproduct ∆(C ) to turn it into an operator working
on two variables.

I If (in a representation) this operator is a generator with a
reversible measure, then this generator has several
self-dualities, coming from the symmetries ∆(A).

This procedure has been succesfully applied to construct several
new processes with self-dualities such as ASEP(q, j),ASIP(q, k)
and multi species models (works of Jeffrey Kuan and
collaborators).
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5. Charlier polynomial duality
Remember the representation (1)

a†f (n) = f (n + 1)

af (n) = nf (n − 1)

which satisfies the dual Heisenberg commutation relation
[a, a†] = −I . Now assume that we have a pair A,A† satisfying the
Heisenberg commutation relation [A,A†] = I , and a duality
function D such that

a† −→D A†, a −→D A (6)

then we have

−(a2 − a1)(a†2 − a†1) −→D −(A†2 − A†1)(A2 − A1)

We will consider three such cases, which are moreover such that

(A†2 − A†1)(A2 − A1) = (a2 − a1)(a†2 − a†1) (7)
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I Case 1: cheap self-duality

A†f (n) = af (n),Af (n) = a†f (n)

with D(k , n) = n!δk,n.

I Case 2: classical self-duality

A†f (n) = af (n) = nf (n−1),Af (n) = a†f (n)−f (n) = f (n+1)−f (n)

then we have (6) with this time D(k , n) = n!
(n−k)! I (k ≤ n).

I Case 3: orthogonal self-duality

A†f (n) = f (n)− n

λ
f (n − 1),Af (n) = λf (n)− λf (n + 1)

This case is special because A∗ = λA† in L2(νλ) with νλ the
Poisson measure, and additionally, A1 = 0. The duality
function is Dλ(k, n) = (A†)k1 = eλCk(n) with Ck the k-th
order Charlier polynomial.
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Let us see that these are orthogonal in L2(νλ). By the
commutation relations we have

[A, (A†)n] = n(A†)n−1

so we get (put λ = 1 for simplicity)

〈(A†)k+11, (A†)k1〉 = 〈(A†)k1,A(A†)k1〉
= 〈(A†)k1, (A†)kA1〉+ 〈(A†)k1, [A, (A†)k ]1〉
= k〈(A†)k1, 〈(A†)k−11〉
= . . . = k(k − 1)...〈1,A1〉 = 0

This representation yields orthogonal polynomial self-duality (in
L2(νλ)).
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6. Derived models

Starting from the SIP(α) generator

L12f (η1, η2) = η1(α + η2)(f (η − e1 + e2)− f (η))

+ η2(α + η1)(f (η − e2 + e1)− f (η))

we can consider the following “derived” generators

I Diffusion limit. Put ηi = bxiNc, xi ∈ (0,∞) and let N →∞,
then in the limit N →∞ the process xi (t) has generator

L12 = x1x2(∂x1 − ∂x2)2 − α(x2 − x1)(∂x2 − ∂x1)

From self-duality of SIP(α) one then finds duality between
this generator and the SIP(α) generator.
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I Thermalization

L12f (η) = lim
t→∞

(etL12 − I )f (η)

this is a discrete mass redistribution model where (at random
times) the initial mass is redistributed as
(η1, η2)→ (U, η1 + η2 − U) with U a beta binomial random
variable. This model is self-dual with the same self-duality
function as SIP.

I Diffusion limit + thermalization. This yields continuum mass
redistribution model of KMP type, i.e., initial mass (x1, x2) is
redistributed as (x1 + x2)U, (x1 + x2)(1− U) with U Beta
distributed. This model is dual to the thermalized SIP.
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Non-equilibrium version

L =
N∑
i=1

Li ,i+1 + LρL1 + LρRN

0 N
Ρ" Ρ#

1 1
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Ldual =
N∑
i=1

Li ,i+1 + L1,0 + LN,N+1

where L1,0,LN,N+1 describe rate one hopping from 1 to 0 (resp. N
to N + 1), both 0 and N + 1 are absorbing. Duality functions

D(ξ, η) = ρξ0

L ρ
ξN+1

R

N∏
i=1

d(ξi , ηi )

The duality then allows to reduce computations of n-point
correlations to computation of absorption probabilities for n
particles. E.g. for the “profile” we only need one dual particle:

EµρL,ρR (D(ex , η)) = ρLPx(X (∞) = 0) + ρRPx(X (∞) = N + 1)
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7. Orthogonal Polynomial (self)-duality
7.1 Definition and easy consequences

EηDρ(ξ, η(t)) = EξDρ(ξ(t), η)

where Dρ(ξ, ·) is a collection of orthogonal polynomials (of degree
|ξ|) in L2(νρ), where νρ is a reversible (product measure). More
precisely ∫

Dρ(ξ, η)Dρ(ξ′, η)νρ(dη) = δξ,ξ′aρ(ξ)

with aρ(ξ) = ‖Dρ(ξ, ·)‖2
L2(νρ) We have the following basic easy

properties
I Positivity and decay of time dependent stationary correlations∫

Dρ(ξ′, η)EηD(ξ, η(t))νρ(dη) = pt(ξ, ξ
′)aρ(ξ′) ≥ 0

I Decay of time dependent variance

Varνρ(StDρ(ξ, η)) = aρ(ξ)p2t(ξ, ξ)

I aρ(ξ) satisfies detailed balance
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Proof: use reversibility

Varνρ(StDρ(ξ, η)) = 〈StDρ(ξ, η),StDρ(ξ, η)〉
= 〈Dρ(ξ, η), S2tDρ(ξ, η)〉
= p2t(ξ, ξ)aρ(ξ)

∫
StDρ(ξ, η)Dρ(ξ′, η)νρ(dη) = pt(ξ, ξ

′)aρ(ξ′)

=

∫
Dρ(ξ, η)StDρ(ξ′, η)νρ(dη)

= pt(ξ
′, ξ)aρ(ξ)
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7.2 Obtaining orthogonal duality functions from classical ones
Let us call D(ξ, ·) denote the classical duality functions, and fix a
reversible measure νρ. Let us call

Vn = cl(vct{D(ξ, ·) : |ξ| ≤ n})

where the closure is in L2(νρ) then Vn is an increasing sequence of
closed subspaces. Because of self-duality we have that elements of
Vn are mapped to elements of Vn: indeed, if |ξ| ≤ n then, because
of conservation of the number of particles

StD(ξ, η) =
∑
ξ′

pt(ξ, ξ
′)D(ξ′, η) ∈ Vn

Then we have the following
I The semigroup commutes with PVn , the orthogonal projection

on Vn.
I The semigroup commutes with the orthogonal projection on

Vn+1 ∩ V⊥n .
I The Gramm-Schmidt orthogonalization of the classical

self-duality functions are self-duality functions.
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Proof (due to Stefan Wagner)
Let f ∈ L2(νρ). Because StPVn f ∈ Vn, we have
StPVn = PVnStPVn f . Now decompose

St f = St(PVn f + PV⊥
n
f )

then we show that
StPV⊥

n
f ∈ V⊥n

which implies PVnStPV⊥
n
f = 0. Let g ∈ Vn then, using that

Stg ∈ Vn and reversibility we have

〈StPV⊥
n
f , g〉 = 〈PV⊥

n
f , Stg〉 = 0

As a consequence

PVn(St f ) = PVnStPVn f = StPVn

which shows the commutation property. To see point 2:
PVn+1∩V⊥

n
= PVn+1 − PVn
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Relation between classical dualities and orthogonal dualities
The abstract orthogonalisation takes a simple form for the three
systems SIP,SEP, IRW. For ξ =

∑n
i=1 δxi we have

Dθ(ξ, η) =
∑
ξ′≤ξ

(−θ)|ξ|−|ξ
′|
(
ξ

ξ′

)
D(ξ′, η)

=
∑
I⊂[n]

(−θ)n−|I |D

(∑
i∈I

δxi , η

)

With [n] = {1, . . . , n}. Or in the alternative notation:

Dθ(x1, . . . , xn; η) =
∑
I⊂[n]

(−θ)n−|I |D ((xi )i∈I ; η)
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8. Macroscopic limits

From now on we work on the vertex set V = Zd , and assume
p(x , y) translation invariant. For a local function f (i.e., a
functions only depending on a finite number of occupancy
numbers) we define its fields on scale N as follows

I Hydrodynamic field

XN(f , η)[φ] =
1

Nd

∑
x

φ( x
N )τx f (η)

If f (η) = q0(η) = η0 this is called the density field.

I Fluctuation field

1

Nd/2

∑
x

φ( x
N )[τx f (η)− Eνρ(τx f )]

If f (η) = q0(η) = η0 this is called the density fluctuation field.
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Expectation of density field: one dual particle
Notice that D(ex , η) = Cηx , to looking at the density field is
equivalent with looking at

1

Nd

∑
x

φ( x
N )D(ex , η)

Let us now rescale time diffusively, and assume that at time zero η
is distributed according to a measure µN with
µN(D(ex , η) = ρ(x/N), and compute, using duality with a single
dual particle, using also the notation

z(t) = lim
N→∞

X (N2t)

N

with X (t) a single dual particle starting at 0.
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EµN

(
1

Nd

∑
x

φ( x
N )D(ex , η(N2t))

)
=

1

Nd

∑
x ,y

φ( x
N )ptN2(x , y)EµND(ey , η)

=
1

Nd

∑
x ,y

φ( x
N )ptN2(x , y)ρ( y

N )

=
1

Nd

∑
x ,y

φ( x
N )ptN2(0, z)ρ( x

N + z
N )

−→
∫
φ(x)Eρ(x + z(t))dx
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We obtain that the expectation of the density field converges to∫
φ(x)ρ(t, x)dx with ρ(t, x) the solution of the PDE

∂tρ(t, x) = Lρ(t, x)

with L the generator of z(t). This is called the hydrodynamic
equation.
Usually, z(t) = B(Dt) so this is the heat equation.
We can generalize this and look at the so-called higher order
hydrodynamic fields (cf. Chen, Sau, MPRF to appear)

1

Nkd

∑
x

φ( x1
N , . . . ,

xk
N )D(x1, . . . , xk ; η(N2t))

where D(x1 + . . . xk , η) = D(ex1 + . . . exk , η) and one proves that
these converge to

∫
Rdk φ(x)ρ(t, x) where ρ(t, x) satisfies

∂tρ(t, x) = (⊗kL)ρ(t, x)
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8.2 Propagation of local equilibrium
For θ : Zd → R+ consider the inhomogeneous product measure

νθ = ⊗x∈Zdνθ(x)

then we have ∫
D(x1, . . . , xk ; η)νθ(dη) =

k∏
i=1

θ(xi )

and hence by self-duality at later times t ≥ 0∫
Eη (D(x1, . . . , xk ; η(t))) νθ(dη) = Ex1,...,xk

(
k∏

i=1

θ(xi (t))

)

Problem is that this does not factorize in general (unless σ = 0),
and so these product measures are not reproduced in time.
However, if θ varies slowly and time is rescaled diffusively, then we
will have approximate factorization.
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Let ρ : Rd → [0,∞) We call a family of measures µN a local
equilibrium with profile ρ (LEQ(ρ)) if for all x ∈ Rd ,
x1, . . . , xk ∈ Zd we have

lim
N→∞

∫
D(bxNc+ x1, . . . bxNc+ xk ; η)µN(dη) = ρ(x)k

Important example
µN = ⊗x∈Zdνρ(

x
N )

(8)

Propagation of local equilibrium then means that

µN = LEQ(ρ) implies µNS(N2t) = LEQ(ρt)

where ρt solves the hydrodynamic equation.
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Let us see how this propagation arrises when we start from (8).∫
EηD (bxNc+ x1, . . . bxNc+ xk ; )

= EbxNc+x1,...bxNc+xk

(
k∏

i=1

ρ

(
Xi (N

2t)

N

))

≈
k∏

i=1

EbxNc+xiρ

(
Xi (N

2t)

N

)

≈
k∏

i=1

EbxNcρ
(
Xi (N

2t)

N

)
≈ ρ(t, x)k

Frank Redig DIAM, Delft University of Technology The algebraic approach to duality: an overview



The most important step is the first approximation which comes
from the fact that k dual particles Xi (t) can be coupled to k
independent random walkers X̃i (t) (starting at the same positions)
such that

|Xi (t)− X̃i (t)| = o(
√
t)

this can be done due to the locality and symmetry of the
interaction, combined with the fact that a random walk spend at
most order

√
t at a fixed location.
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8.3 The Boltzmann-Gibbs principle and orthogonal
polynomial duality

If one considers the fluctuation field of a local function f

YN(f , η) =
1

Nd/2

∑
x∈Zd

φ( x
N )(τx f (η)− Eνρ(f ))

then the Boltmann Gibbs principle tells that this can be
approximated by the density field times a constant (depending on
f , ρ) in the following sense. There exists C (f , ρ) such that

lim
N→∞

Eνρ
(∫ T

0
YN(f − C (f , ρ)q0, η(N2s)ds

)2

= 0 (9)

which expresses that in the sense of (9)

YN(f , η(N2t)) ≈ C (f , ρ)YN(q0, η(N2t))

C (f , ρ) = [ d
dθνθ(f )]θ=ρ.
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I The density fluctuation field corresponds to the field of the
orthogonal duality polynomial Dρ(e0, ·).

I Therefore, another way of seeing the Boltzmann-Gibbs
principle is to say that the fluctuation fields of all higher order
orthogonal duality polynomials are negligeable in the sense of
(9).

I Let us understand this fact by starting with a simple example
of the fluctuation field of the orthogonal duality polynomial
Dρ(2e0, ·), and showing that is indeed negligible in the sense
(9).
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So we want to estimate

1

Nd

∑
x

∑
y

φ(x/N)φ(y/N)

∫ T

0
dt

∫ T

0
ds (

Eνρ(Dρ(x , x ; η(N2t)D(y , y ; η(N2s))
)

1

Nd

∑
x

∑
y

φ(x/N)φ(y/N)

∫ T

0
dt

∫ t

0
ds (

Eνρ(Dρ(x , x ; η(N2(t − s)D(y , y ; η(0))
)

=
2C (ρ)

Nd

∑
x

∑
y

φ(x/N)φ(y/N)

∫ T

0
dt

∫ t

0
dspN2(t−s)(x , x ; y , y)

≤ 2C (ρ)

Nd

∑
x

|φ(x/N)|
∫ T

0
dt

∫ t

0
ds (

Ex ,x(|φ|(X (N2(t − s)))I (X (N2(t − s) = Y (N2(t − s)))
)

Frank Redig DIAM, Delft University of Technology The algebraic approach to duality: an overview



Putting Z (t) = X (t)− Y (t), and changing to τ = N2(t − s) this
can be estimated further by

2C (ρ)T‖φ‖∞
Nd

∑
x

|φ(x/N)| 1

N2

∫ N2T

0
EZ

0 (I (Z (τ) = 0))dτ

Now the order of
∫ N2T

0 EZ
0 (I (Z (s) = 0))ds is dimension dependent

and this gives that the quantity of interest is of order 1/N in
d = 1, log(N)/N in d = 2, 1/N2 in d ≥ 3.
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For the more general case

Eνρ

(∫ T

0

1

Nd/2

∑
x

φ(x/N)Dρ(x + x1, . . . , x + xn, η(N2s)

)2

we find an upperbound of the form

2TCn(ρ)
1

Nd

∑
x

|phi(x/N)|‖phi‖∞

∑
σ∈Sn

∫ T

0
Ex+x1,...,x+xn I (X1(N2r)− xσ(1) = . . . = Xn(N2r)− xσ(n))dr

leading to similar estimates.
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Open problems

I Perturbation theory around systems with duality

I Duality beyond Markov processes

I Link integrability duality
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