Queues, stationarity, and stabilisation of last passage percolation

Joint with Ofer Busani and Timo Seppäläinen

Márton Balázs

University of Bristol

Workshop YEP XVII: Interacting Particle Systems EURANDOM, 2 September, 2021. Last passage percolation

Stationarity

Results

Queues

Put it together

Last passage percolation

- Place ω_z i.i.d. Exp(1) for $z \in \mathbb{Z}^2$.
- The *geodesic* $\pi_{a,y}$ from *a* to *y* is the a.s. unique heaviest up-right path from *a* to *y*. Its weight is $G_{a,y}$.

 $G_{0,y}$ is the time TASEP hole y_1 swaps with particle y_2 if started from 1-0 initial condition.

Coalescing: OK

But loops: not OK

у

$$I_x = G_{a,x} - G_{a,x-e_1}$$

у

a

$$I_x = G_{a,x} - G_{a,x-e_1} \qquad J_x = G_{a,x} - G_{a,x-e_2}$$

a

$$I_x = G_{a,x} - G_{a,x-e_1} \qquad J_x = G_{a,x} - G_{a,x-e_2}$$

~ Act as boundary weights for a smaller, embedded model.

Replace the boundary to $| \sim Exp(\varrho), _ \sim Exp(1 - \varrho)$ independent.

$$I_x = G_{a,x} - G_{a,x-e_1}$$
 $J_x = G_{a,x} - G_{a,x-e_2}$

Then $J_x \sim \text{Exp}(\varrho)$, $I_x \sim \text{Exp}(1 - \varrho)$, independent.

Replace the boundary to $| \sim Exp(\varrho), _ \sim Exp(1 - \varrho)$ independent.

$$I_x = G_{a,x} - G_{a,x-e_1} \qquad J_x = G_{a,x} - G_{a,x-e_2}$$

Then $J_x \sim \text{Exp}(\varrho)$, $I_x \sim \text{Exp}(1 - \varrho)$, independent. The embedded model has the same structure.

Replace the boundary to $| \sim Exp(\varrho), _ \sim Exp(1 - \varrho)$ independent.

B., Cator, Seppäläinen '06: $\mathbb{P}\{|Z_{a,y}^{\varrho}| \ge \ell\} \le box^2/\ell^3$, good directional control.

Result 1)

Result 1)

Result 1)

With probability at least $1 - Cc^{\frac{3}{8}}$, stationary and point-to-point paths already coalesce in the small box. (Busani, Ferrari '20)

Result 2)

Result 2)

Result 2)

Result 3)

The Airy₂ process minus a parabola is locally well approximated in total variation by Brownian motion.

What is an i.i.d. $Exp(\lambda)$ boundary?

What is also an i.i.d. $Exp(\lambda)$ boundary?

What is also an i.i.d. $Exp(\lambda)$ boundary?

What is also an i.i.d. $Exp(\lambda)$ boundary?

What is also an i.i.d. $Exp(\lambda)$ boundary?

These two boundaries are **jointly** stationary; (Ferrari, Martin '06; Fan, Seppäläinen '20)

Result 1): P-2-P is like stati path

Result 1): P-2-P is like stati path

Result 2): P-2-P paths coalesce soon

Result 2): P-2-P paths coalesce soon

Result 2): P-2-P paths coalesce soon

This can be boosted by pulling the small box left by αN .

Result 2): P-2-P paths don't coalesce soon

Coalescing too soon would mean stationary paths getting squeezed to each other too soon so they bend.

Result 2): P-2-P paths don't coalesce soon

Coalescing too soon would mean stationary paths getting squeezed to each other too soon so they bend.

Thank you.