Queues, stationarity, and stabilisation of last passage percolation
 Joint with
 Ofer Busani and Timo Seppäläinen

Márton Balázs

University of Bristol

Workshop YEP XVII:
Interacting Particle Systems
Eurandom, 2 September, 2021.

Last passage percolation

Stationarity

Results

Queues

Put it together

Last passage percolation

- Place ω_{z} i.i.d. $\operatorname{Exp}(1)$ for $z \in \mathbb{Z}^{2}$.
- The geodesic $\pi_{a, y}$ from a to y is the a.s. unique heaviest up-right path from a to y. Its weight is $G_{a, y}$.

$G_{0, y}$ is the time TASEP hole y_{1} swaps with particle y_{2} if started from 1-0 initial condition.

Coalescing: OK

But loops: not OK

Increments as new boundary

$$
I_{x}=G_{a, x}-G_{a, x-e_{1}} \quad J_{x}=G_{a, x}-G_{a, x-e_{2}}
$$

\rightsquigarrow Act as boundary weights for a smaller, embedded model.

Stationary LPP

Stationary LPP

Replace the boundary to $I \sim \operatorname{Exp}(\varrho), _\sim \operatorname{Exp}(1-\varrho)$ independent.

Then $J_{x} \sim \operatorname{Exp}(\varrho), I_{x} \sim \operatorname{Exp}(1-\varrho)$, independent.

Stationary LPP

Replace the boundary to $I \sim \operatorname{Exp}(\varrho), _\sim \operatorname{Exp}(1-\varrho)$ independent.

Then $J_{x} \sim \operatorname{Exp}(\varrho), I_{x} \sim \operatorname{Exp}(1-\varrho)$, independent.
The embedded model has the same structure.

Stationary LPP

Replace the boundary to $I \sim \operatorname{Exp}(\varrho), _\sim \operatorname{Exp}(1-\varrho)$ independent.

B., Cator, Seppäläinen '06: $\mathbb{P}\left\{\left|Z_{a, y}^{\varrho}\right| \geq \ell\right\} \leq$ box $^{2} / \ell^{3}$, good directional control.

Infinite geodesics

Even without the boundary:
$J \underset{a \rightarrow-\infty}{\longrightarrow}$ i.i.d. $\operatorname{Exp}(\varrho), I \underset{a \rightarrow-\infty}{\longrightarrow}$ i.i.d. $\operatorname{Exp}(1-\varrho)$, independent.

Infinite geodesics

Even without the boundary:
$J \underset{a \rightarrow-\infty}{\longrightarrow}$ i.i.d. $\operatorname{Exp}(\varrho), I \underset{a \rightarrow-\infty}{\longrightarrow}$ i.i.d. $\operatorname{Exp}(1-\varrho)$, independent.

Infinite geodesics

Even without the boundary: $J \underset{a \rightarrow-\infty}{\longrightarrow}$ i.i.d. $\operatorname{Exp}(\varrho), I \underset{a \rightarrow-\infty}{\longrightarrow}$ i.i.d. $\operatorname{Exp}(1-\varrho)$, independent.

Infinite geodesics

Even without the boundary:
$J \underset{a \rightarrow-\infty}{\longrightarrow}$ i.i.d. $\operatorname{Exp}(\varrho), I \xrightarrow[a \rightarrow-\infty]{\longrightarrow}$ i.i.d. $\operatorname{Exp}(1-\varrho)$, independent.

Result 1)

Result 1)

Result 1)

With probability at least $1-C C^{\frac{3}{8}}$, stationary and point-to-point paths already coalesce in the small box. (Busani, Ferrari '20)

Result 2)

Result 2)

Result 2)

$\left\{\begin{aligned} \mathbf{P}\{\boldsymbol{D} \leq \alpha \boldsymbol{N}\} & \leq \boldsymbol{C} \alpha^{2}, \\ \mathbf{P}\{\boldsymbol{N}-\boldsymbol{D} \leq \alpha \boldsymbol{N}\} & \leq \boldsymbol{C} \alpha^{\frac{2}{9}} .\end{aligned}\right\}$ (Basu, Sarkar, Sly '19; Zhang '20)

Result 3)

The Airy ${ }_{2}$ process minus a parabola is locally well approximated in total variation by Brownian motion.

Queues

What is an i.i.d. $\operatorname{Exp}(\lambda)$ boundary?

Queues

What is also an i.i.d. $\operatorname{Exp}(\lambda)$ boundary?
$x \quad x x \quad x y \longrightarrow P B i(\lambda)$ pr.

Queues

What is also an i.i.d. $\operatorname{Exp}(\lambda)$ boundary?
$x \quad x x \quad x x \longrightarrow P o i(\lambda)$ pr.

Queues

What is also an i.i.d. $\operatorname{Exp}(\lambda)$ boundary?

Queues

What is also an i.i.d. $\operatorname{Exp}(\lambda)$ boundary?

Queues

What is also an i.i.d. $\operatorname{Exp}(\lambda)$ boundary?
What is an i.i.d. $\operatorname{Exp}(\varrho)$ boundary?

Queues

What is also an i.i.d. $\operatorname{Exp}(\lambda)$ boundary?
What is an i.i.d. $\operatorname{Exp}(\varrho)$ boundary?

Queues

What is also an i.i.d. $\operatorname{Exp}(\lambda)$ boundary?
What is an i.i.d. $\operatorname{Exp}(\varrho)$ boundary?

Queues

What is also an i.i.d. $\operatorname{Exp}(\lambda)$ boundary?
What is an i.i.d. $\operatorname{Exp}(\varrho)$ boundary?

These two boundaries are jointly stationary;

Queues

What is also an i.i.d. $\operatorname{Exp}(\lambda)$ boundary?
What is an i.i.d. $\operatorname{Exp}(\varrho)$ boundary?

These two boundaries are jointly stationary; only differ when the queue empties. (Ferrari, Martin '06; Fan, Seppäläinen '20)

Queues

What is also an i.i.d. $\operatorname{Exp}(\lambda)$ boundary?
What is an i.i.d. $\operatorname{Exp}(\varrho)$ boundary?

These two boundaries are jointly stationary; only differ when the queue empties. (Ferrari, Martin '06; Fan, Seppäläinen '20)

Queues

What is also an i.i.d. $\operatorname{Exp}(\lambda)$ boundary?
What is an i.i.d. $\operatorname{Exp}(\varrho)$ boundary?

These two boundaries are jointly stationary; only differ when the queue empties. (Ferrari, Martin '06; Fan, Seppäläinen '20)

Queues

What is also an i.i.d. $\operatorname{Exp}(\lambda)$ boundary?
What is an i.i.d. $\operatorname{Exp}(\varrho)$ boundary?

These two boundaries are jointly stationary; only differ when the queue empties. (Ferrari, Martin '06; Fan, Seppäläinen '20)

Queues

What is also an i.i.d. $\operatorname{Exp}(\lambda)$ boundary?
What is an i.i.d. $\operatorname{Exp}(\varrho)$ boundary?

These two boundaries are jointly stationary; only differ when the queue empties. (Ferrari, Martin '06; Fan, Seppäläinen '20)

Queues

What is also an i.i.d. $\operatorname{Exp}(\lambda)$ boundary?
What is an i.i.d. $\operatorname{Exp}(\varrho)$ boundary?

These two boundaries are jointly stationary; only differ when the queue empties. (Ferrari, Martin '06; Fan, Seppäläinen '20)

Queues

What is also an i.i.d. $\operatorname{Exp}(\lambda)$ boundary?
What is an i.i.d. $\operatorname{Exp}(\varrho)$ boundary?

These two boundaries are jointly stationary; only differ when the queue empties. (Ferrari, Martin '06; Fan, Seppäläinen '20)

Queues

What is also an i.i.d. $\operatorname{Exp}(\lambda)$ boundary?
What is an i.i.d. $\operatorname{Exp}(\varrho)$ boundary?

These two boundaries are jointly stationary; only differ when the queue empties. (Ferrari, Martin '06; Fan, Seppäläinen '20)

Queues

What is also an i.i.d. $\operatorname{Exp}(\lambda)$ boundary?
What is an i.i.d. $\operatorname{Exp}(\varrho)$ boundary?

These two boundaries are jointly stationary; only differ when the queue empties. (Ferrari, Martin '06; Fan, Seppäläinen '20)

Queues

What is also an i.i.d. $\operatorname{Exp}(\lambda)$ boundary?
What is an i.i.d. $\operatorname{Exp}(\varrho)$ boundary?

These two boundaries are jointly stationary; only differ when the queue empties. (Ferrari, Martin '06; Fan, Seppäläinen '20)

Queues

What is also an i.i.d. $\operatorname{Exp}(\lambda)$ boundary?
What is an i.i.d. $\operatorname{Exp}(\varrho)$ boundary?

These two boundaries are jointly stationary; only differ when the queue empties. (Ferrari, Martin '06; Fan, Seppäläinen '20)

Queues

What is also an i.i.d. $\operatorname{Exp}(\lambda)$ boundary?
What is an i.i.d. $\operatorname{Exp}(\varrho)$ boundary?

These two boundaries are jointly stationary; only differ when the queue empties. (Ferrari, Martin '06; Fan, Seppäläinen '20)

Result 1): P-2-P is like stati path

Result 1): P-2-P is like stati path

Result 2): P-2-P paths coalesce soon

Result 2): P-2-P paths coalesce soon

Result 2): P-2-P paths coalesce soon

This can be boosted by pulling the small box left by αN.

Result 2): P-2-P paths don't coalesce soon

Coalescing too soon would mean stationary paths getting squeezed to each other too soon so they bend.

Result 2): P-2-P paths don't coalesce soon

Coalescing too soon would mean stationary paths getting squeezed to each other too soon so they bend.

Thank you.

