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Fecture 1: SSEP in contact with reservoirs
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The dynamics:

e For N>1let Ay ={1,...,N —1}.

® We denote the process by {n; : t > 0} which has state space
Qn = {0, 1}AN.

» The infinitesimal generator Ly = L + Ly is given on
f:9ny — R, by

N—21
(Cxof)m) = X S(F0P+Y) = F@),
ap=il
Lnp) = 55 2 e @) (F0") - fm)
ze{1,N—-1}

where for x =1 and z = N — 1,
cr, (n(@)) = r2(1 = n(z)) + (1 = r2)n(z), r1 = « and
rN_1 = B.



Goal: analyse the impact of changing the strength of the

reservoirs (by changing ) on the macroscopic behavior of
the system.




Invariant measures:

If @« = 8 = p the Bernoulli product measures are
invariant (equilibrium measures): v,(n : n(z) =1) = p.

If o # [ the Bernoulli product measure is no longer
invariant, but since we have a finite state irreducible
Markov process there exists a UNIQUE invariant
measure: the stationary measure (non-equilibrium)
denoted by fiss.

By the matrix ansatz method one can get information
about this measure. (Not in the long jumps case.)



Reversibility:

For o = 3 = p the Bernoulli product measures v, are reversible.
To show it, fix two functions f,g: Qxy — R. We need to show
that

[ st v, = [ fnLxatmis,

Starting with the exchange dynamics we see that for fixed
x € Ay, by a change of variables & = n®**! we have

x,x+1
> gl ] . M’/p(f)-
ey g€y vp(8)
Since

Hp 1-¢(z)

TEAN



Reversibility:

e if £(z) =1 and £(z + 1) = 0, denoting by ¢ the
configuration § removing its values at x and = + 1 so that
§ = (§&(x),&(x + 1)), then v,(§) = v,(§)p(1 — p) and
vp(€77H) = 1, (€)(1 = p)p, so that

Vp(gm’zﬂ) .
T @

o if {(z) =0and {(z+ 1) =1, then v,(§) = v,(&)(1 — p)p
and v,(£571) = v,(€)p(1 — p), so that (1) is also true.

From this we get

/Q g F™™ v, = 30 g€ ) F(E)vo(€).

o 1SN

which proves the result for Ly . For the flip dynamics it is
analogous.



Hydrodynamic Limit:

& For n € Qy, let

Y (n,dg) = —— Z ez ()8, /v (dg),

be the empirical measure. (Diffusive time scaling!)

& Assumption: fix g: [0,1] — [0, 1] measurable and a
sequence of probability measures {ux}ny>1 such that for
every H € C(]0,1]),

wrt puy.



Hydrodynamic Limit:

& Assumption: fix g : [0,1] — [0, 1] measurable and a
sequence of probability measures {;x}ny>1 such that for
every H € C([0,1]),

wrt un.

& Then: for any ¢t > 0,

7N (1, dg) =N 100 p(t, q)dg,

wrt uy(t), where p(t,q) evolves according to a PDE, the



Hydrodynamic Limit:

.4

Theorem: Let g : [0,1] — [0,1] be a measurable function
and let {un}n>1 be a sequence of probability measures in
Qn associated with g(-). Then, forany 0 <t < T,

“N(‘N 1 ZH )Nz (2 /H p(t q)dq] > 5) —n 0,

TEAN

and p¢(-) is the UNIQUE weak solution of the heat equation
with different types of boundary conditions depending on the
range of the parameter 6 and with initial condition g(-).




Hydrodynamic equations:

Heat equation:
Bipi(q) = 502p:(q)-

& 6 > 1 Neumann b.c.:
Heat eq. & Robin b.c. Bpe(0) = 9ypy(1) = 0.
& 0 =1 Robin b.c.:

9qpi(0) = 7 (pe(0) — ),

9gpt(1) = ~(B — pe(1)).
& 0 <1 Dirichlet b.c.:

pt(o) = Q, pt(l) = .




Hydrostatic Limit:

Theorem: Let uss be the stationary measure for the process
{nt}t>0. Then, pss is associated to p : [0,1] — [0, 1] given
on g€ (0,1) by

(B—a)g+a;0<1,

”(f;“)q +o+

2+h’0_1

p(+) is a stationary solution of the hydrodynamic equation.




The proof:

How do we prove the results?

Two things to do:
& Tightness of Qn, where Qy is induced by IP,,, and the map

¥ . D([0,T], Qn) — D([0,T], M)

& Characterization of limit points: limit points are concentrated
on trajectories of measures that are absolutely continuous wrt
the Lebesgue measure and the density is a weak solution of
the corresponding PDE:

Q(m. : m(dq) = p(t, q)dg and p(q) is solution to the PDE) = 1.

Let us focus on last item.



The notion of weak solution:

Let g : [0,1] — [0, 1] be a measurable function. We say that
p:[0,7] x [0,1] — [0,1] is a weak solution of the HEDBC if:

& pc L2(0,T;HY);
& p satisfies the weak formulation:

/01 pe(a)Hi(q) — 9(a)Ho(q) dg

[ [ pua) (332 + 0. Hta) ds g
0 O s 2 q S S

+5 [ BOHL() ~ ad,H,(0) ds =0,

for all t € [0, 7] and any function H € Cy*([0,T] x [0,1]).



Other notion of solution:

Let g : [0,1] — [0, 1] be a measurable function. We say that
p:10,T] % [0,1] — [0,1] is a weak solution of the HEDBC if:

& pe L0, T;HY);
& p satisfies the weak formulation:

L 1
/ pe(@)He(q) dg — / 9(a)Ho(q) dq
v 0
t rl
B /0 /0 ps(4) (%83 e 83>HS(Q) dsdg =0,

for all t € [0, T] and any function H € C>2([0,T] x [0,1]);
& p:(0) =a and p(1) = 3, for t € (0, 7).



The notion of weak solution:

Let g : [0,1] — [0, 1] be a measurable function. We say that
p:[0,7] x [0,1] — [0,1] is a weak solution of the heat equation
with Robin b.c. if:

& pe L*(0,T;HY),

& p satisfies the weak formulation:
1
[ @ Bada ~ [ ota)Ho(a)da
//ps 82—1—8 H(q)dsdq
45 [0 H1) = s (0)0,H,(0)} ds
— 5 [ O @ = pu(0) + H(0)(5 — (1)} ds =0,

for all t € [0, T] and any function H € C%2([0,T] x [0,1]).




Characterizing limit points:

.4

Dynkin's formula: Let {n:};>0 be a Markov process with
generator £ and with countable state space E. Let F :
R* x E — R be a bounded function such that

oVneEF(,n) e C2(R+),
o there exists a finite constant C, such that
SUP (s, |02 F (s,m)| < C, for j =1,2.
For ¢ >0, let

ME =F(t,n) — F(0,m0) — /Ot(as + L)F(s,ns)ds.

Then, { M} }1>0 is a martingale wrt Fs = o(ns;s < t).




Characterizing limit points:

Let us fix a test function H : [0,1] — R and apply Dynkin’s
formula with

;| N-1
F(t,ny) = (xf ,H) = ~_1 > ﬁtN?(fE)H(]—ff)
r=1

Note that F' does not depend on time only through the process
7n.. A simple computation shows that

1
N2Ly(nl, H) = (v, = A H)

+ N'OH(NF)(8 — naya (N — 1))



0 € 0,1):

Take a function H : [0,1] — R such that H(0) = H(1) = 0 and
then we get

¢ 1
MY (H) = (xff, H) = () H) = [ (x5 AxcH)ds

1
2

If we can replace Nsn2(1) by a and nyn2(N — 1) by S (this will
be made rigorous ahead but only works for § < 1!) then above
we have

g 1
M (H) = (' H) = (' H) = [ (x5 AnH)ds

= ;/Ot VI H(0)a — VyH(1)Bds + O(NY).

Compare with the PDE (note that H does not depend on time).

V+H( Msn2(1) = VyH(D)nsn2(N — 1)ds + O(N

_9)'



Still 6 € |0, 1):

Take the expectation above to get

Y HE @ -Aw)- [ 5

~ 3 | ViH©)a - Vi HSds + O ) =0,

5o i

Z ANH(%) (z)ds

Assume that p () ~ ps(x/N) and take the limit in N to get

/Olpt(Q)H(Q) dq—// 5 (q)dqds

1 i
_ 5/0 8, H(0)a — 8, H(1)Bds = 0

Compare with the PDE (note that H does not depend on time).



O dlE

Recall that the previous error blows up when N — co. So now,
we take a function H : [0,1] — R with compact support and
then we get

z 1
MY (H) = (xl), ) = () H) = [ (a5 AncH)ds.

Again compare with the PDE but note that H does not depend
on time.

In this case we do not see the Dirichlet boundary conditions
and we need extra results to conclude.



Or=ill

Now, we take a function H : [0,1] — R and we get

t 1
MtN(H):<7T£NaH>_<7T(])V7H>_ i <W.£V=§AN-H>d5

1/t 2
—5 || VAEHOnx2(1) = V3 H(Unaws (V = 1)ds
— = [ H(3) @ = navea (D) + H () (8 = nows (N — 1))ds.
o N s s
If we can replace n,y2(1) (resp. n,n2(N — 1)) by its average in a
box around 1 (resp. N — 1) (this works for any 6 > 1):

1+eN N—-1—eN

75]\[2 = Z nSNQ WsNQ(N 1 Z nSNQ
z=N—-1

and noting that WSNQ ~ ps(0) (resp. 7;%2(N —1) ~ ps(1))
we would get the terms in the PDE (compare).



Ol

Again we take a function H : [0,1] — R and in this case the
terms from the boundary vanish. So we get

MY (H) = (¥ H) = (!, H) = [ Y, S AwH)ds

1

e V+H( Jsnz(1) = VyH(Lnsnz(N — 1)ds + O(N'~7)
As above, if we can replace nyn2(1) (resp. nan2(IN — 1)) by its
average in a box around 1 (resp. N — 1) and noting that

e, (1) ~ ps(0) (resp. 751\,2 — 1) ~ ps(1)) we would get the

sn2

terms in the PDE (compare).



Keystone ingredients: ...

Recall that we need to prove that

4

For any t > 0, we have that:
o forf <1

limsup E, U /Ot(nsNg(l) —a) ds”

N—o0

o ford>1

limsup E,, U /Ot(nsN2(1) -

N—oo

and the similar result for N — 1.



Replacing by a:

From entropy’s and Jensen’s inequality, the expectation is
bounded from above by

N
H(MN|Vh(.)) 1 {6BN| fot(nsN2(1)—a)dS|] )
h(-)

BN + BN logE, ~

Above B is a positive constant and h(-) is a profile to choose
later on. We remove the absolute value inside the exponential
since el?l < €% 4 =% and

lim sup log(ay + by)< max {lim sup log(ay ), lim sup log(bN)} g

N—o00 N—o00 N—o00
Note that if « < h(-) < 5, then:

H(pn|vi,y) < NC(a, B).



Apply FK formula:

Feynman-Kac's formula: Let £ be the generator of a Markov
process {n;}+>0 on a countable state space E. Let v be a
p.m. on E and V : [0,00) x E — R bounded. Let

sup  {(Vi, f2)u + (LS. )}
{£:llf1l2=1}

Then B, [els Vmlir] < oy T,

Then we have to estimate:

N
sup {(n(D) = Aoy, + FLaVE vy }

h(-)

where the supremum is over densities f with respect to V}]L\g_).



Controlling Dirichlet forms:

For a probability measure p on Qp, we define

DN(\/77 M) o= (DN,O ar DN,b)(\/77 ,U,)

where Dy o(V/, 1) = lZiv—_lz Low+1(v/f, 1), with
Lio+1(VF, 1) (\/f o@+1) \/f(n))2du and

Dis(VF,1) : = g (1 (VFo ) + IS (VF 1)

with I (v/F, 1) = [ e, (n(a)) (/TGP = /T ) d.



We claim that for any positive constant B if h(-) is a Lipschitz
function with h(0) = «, h(1) = 5 and locally constant at 0 and
1, then, there exists a constant C, g > 0 such that

N 4 Capih
E@N\/ﬁ\/ﬁy% _7DN\/>Vh( B}

4

Let T :n € Qn — T(n) € Qn be a transformation and
¢ :n — c(n) a positive local function. Let f be a density
with respect to a p.m. p on Q. Then:

(et




So far we have to bound

N

N Ca,,B,h
Sl}P {<77<1) -, f>y}]:€_) - EDN(\/fa Vh(y) + T}’

where the supremum is carried over densities f with respect to
Vﬁ.). To finish we use

.4

For any density f with respect to V,]l\é_) and any positive
constant A4, it holds

(1) = fly | S I /Fodly) + A+ (G = al,

The same result holds if « is replaced by 5 and 7n(1) with
n(N —1).

Now take A = BCN? 151 which is the final error and note
that it vanishes, as N — oo, if 6 < 1.



Fix an initial measure py in Qy. For z € Ay and t > 0, let

pr(z) = Epuylnnz()].
We extend this definition to the boundary by setting
pN(0) = aand pN(N) = 8, forallt>0.
A simple computation shows that p{¥(-) is a solution of
8ip; (z) = N*(Bnpi')(z), € AN, t20
where the operator By acts on functions f: Ay U{0, N} — R as

N2(Byf)(z) = ANf( ), forxze{2,---,N -2},

N2(Byf)(1) = N2(£(2) — f(1)) + 202 (f <o> F(Q)),

N2(By f)(N-1)=N>(f(N-2) — f(N-1))+ 522 (f(N) — f(N-1)).




The stationary solution of the previous equation is given by

pé\g(w) = ]EIJ/SS [77th (m)] = anN=x + bN

where ay = % and by = aN(N—e — 1) + a, so that

_ e
ngnoogel%ﬂpss z) = p(F) =0

where

is a stationary solution of the hydrodynamic equation.



Stationary correlations:

Let Viy = {(x,y) € {0,--- ,N}?:0 <z <y < N}, and its
boundary OV = {(z,y) € {0,--- ,N}?: 2 =0ory = N}.

N® & & & & »
N-6@eee®@®

s eee

s e

. @

:
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Stationary correlations:

For x < y € Vi, let ¢} (2,%) the two point correlation function
between the occupation sites at x < y € Vi is defined by
N N N
or (x,y) = By [(men2 () — o1 (2)) (menv2 (y) — o3 (1))]-
Doing some simple, but long, computations we see that o} is a

solution of

{5ssos(w,y) = AVos(z,y) + g (@,y) + fN(z,y), (z,9) € Vn,
= {0, (z,y) € OVn,

where the discrete laplacian A% : Vi U0V — R is defined by

(Agf)(a:,y) — N2(f($+1,y)+f(ﬂ?—1,y>+f(.f€,y—1)

+f(z,y+1) —4f(z,y)), for|z—yl>1,
(Agf)(x,x—l—l):N2(f(x—1,x+1)—|—f(x,x+2)—2f(x,:c+1))
(AN f)(z,y) =0, if (z,y) € V.



Stationary correlations:

Above

gt (z,y) = —(Vior (2))*0y=c+1,
Ve (z) = N(py (z + 1) — pf (z))

N2
fsN(x7 y) - (N2 — W)‘Piv(x, y)5{|yf:v|=1, z=1 or y=N—1}-

From simple, but long, computations we conclude that

(=B z+ NV —1)(N—y+N?—1)
Prs(,9) = @N9+ N —222N° + N —3) @)

from where it follows that

o(5z), o<1,
max|p(2,9)| = {O(F), 0=1, —now0.  (3)
O(ﬁ), 0>1,



Hydrostatics:

If pgs is the stationary measure for {n; : ¢ > 0} then we just
need to show that it is associated to the stationary profile
> 5) — 0.

p:[0,1] — [0,1]. That is, for any G continuous
By triangular and Markov’s inequalities, we bound the previous
probability from above by 1/6 times

B | 5= 2 G (10 @)

+‘N > G(%)pN(z /G dq‘

TEAN

a?GAN

s (neQN = = Z G (%) —/01 G(q)po(q)dq




The last term can be bounded from above by
1 .
7= 2 6@ (@ - a(7))]
1 1
x = T 7=
+‘m Z G () P(N) = /0 G(Q)P(Q)dQ‘~
TEAN
The 1st term in last expression is bounded by
— Al
— Z &%) [|e%@) = 5(%)| < G0 max
Applylng Cauchy—Schwarz the remaining term is bounded by

(32 X € @) B, () - X))

@) - (%)

TEAN
1
ty ZG% (%) ohi()°
:1:<y
CHGHOO N %
<(F3 = + 2 Gl max i@, )

All the terms vanish as N — oo from our previous bounds.
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