Scaling limits for symmetric exclusion with open boundary

Patrícia Gonçalves

YEP - Eindhoven August 2021

Lecture 2: Long jumps

Exclusion in contact with infinitely many reservoirs

The finite variance case

If jumps are arbitrarily big?

Let $p(\cdot)$ be a translation invariant transition probability given at $z\in\mathbb{Z}$ by

$$p(z) = \begin{cases} \frac{c_{\gamma}}{|z|^{\gamma+1}}, \ z \neq 0, \\ 0, \ z = 0, \end{cases}$$

where c_{γ} is a normalizing constant. Since $p(\cdot)$ is symmetric it is mean zero, that is:

$$\sum_{z\in\mathbb{Z}}zp(z)=0$$

and take (by now) $\gamma > 2$ so that its variance is finite

$$\sigma_{\gamma}^2 = \sum_{z \in \mathbb{Z}} z^2 p(z) < \infty.$$

The infinitesimal generator:

 $\mathcal{L}_N = \mathcal{L}_{N,0} + \mathcal{L}_{N,r} + \mathcal{L}_{N,\ell}$ where

$$\begin{aligned} (\mathcal{L}_{N,0}f)(\eta) &= \frac{1}{2} \sum_{\substack{x,y \in \Lambda_N \\ y \neq 0}} p(x-y) [f(\eta^{x,y}) - f(\eta)], \\ (\mathcal{L}_{N,\ell}f)(\eta) &= \frac{\kappa}{N^{\theta}} \sum_{\substack{x \in \Lambda_N \\ y \leq 0}} p(x-y) c_x(\eta;\alpha) [f(\eta^x) - f(\eta)], \\ (\mathcal{L}_{N,r}f)(\eta) &= \frac{\kappa}{N^{\theta}} \sum_{\substack{x \in \Lambda_N \\ y \geq N}} p(x-y) c_x(\eta;\beta) [f(\eta^x) - f(\eta)] \end{aligned}$$

where

$$c_x(\eta;\alpha) := (1 - \eta_x)\alpha + (1 - \alpha)\eta_x.$$

$$c_x(\eta;\beta) := (1 - \eta_x)\beta + (1 - \beta)\eta_x.$$

Hydrodynamic Limit:

Theorem: Let $g: [0,1] \rightarrow [0,1]$ be a measurable function and let $\{\mu_N\}_{N\geq 1}$ be a sequence of probability measures in Ω_N associated with $g(\cdot)$. Then, for any $0 \leq t \leq T$,

$$\mathbb{P}_{\mu_N}\Big(\Big|\frac{1}{N-1}\sum_{x\in\Lambda_N}H(\frac{x}{N})\eta_{t\Theta(N)}(x)-\int_0^1H(q)\rho_t(q)dq\Big|>\delta\Big)\to 0,$$

where the time scale is diffusive if $\theta \geq 2 - \gamma$ and $N^{\gamma+\theta}$ otherwise and $\rho_t(\cdot)$ is the UNIQUE weak solution of the corresponding hydrodynamic equation with initial condition $g(\cdot)$.

Heat eq. & Robin b.c. east eq. Heat eq. Φ , & Dirichlet b.c. $\theta = 2 - \theta$ THA & Dirichler $\Theta(N) = N^{\gamma + \epsilon}$ Reaction eq. & Dirichlet b.c.

Heat equation: $\partial_t \rho_t(q) = \frac{\sigma^2}{2} \partial_a^2 \rho_t(q)$ $\theta = 1$ Robin b.c.: $\begin{array}{l} \partial_q \rho_t(0) = \frac{2m\kappa}{\sigma^2} (\rho_t(0) - \alpha), \\ \partial_q \rho_t(1) = \frac{2m\kappa}{\sigma^2} (\beta - \rho_t(1)), \end{array}$ **Reaction-diffusion eq.:** $\partial_t \rho_t(q) = \frac{\sigma^2}{2} \partial_a^2 \rho_t(q)$ $+\kappa(V_0(q)-V_1(q)\rho_t(q))$ Reaction equation: $\overline{\partial_t \rho_t(q)} = \kappa(V_0(q) - V_1(q)\rho_t(q))$ Above

$$V_1(q) = rac{c_\gamma}{\gamma} \Big(rac{1}{q^\gamma} + rac{1}{(1-q)^\gamma} \Big)
onumber \ V_0(q) = rac{c_\gamma}{\gamma} \Big(rac{lpha}{q^\gamma} + rac{eta}{(1-q)^\gamma} \Big).$$

Stationary solutions:

Characterizing limit points:

A simple computation shows that

$$\Theta(N)\mathcal{L}_N(\langle \pi_s^N, H \rangle) = \frac{\Theta(N)}{N} \sum_{x,y \in \Lambda_N} p(y-x) \left[H(\frac{y}{N}) - H(\frac{x}{N}) \right] \eta_s(x) + \frac{\kappa \Theta(N)}{N^{1+\theta}} \sum_{x \in \Lambda_N} (Hr_N^-)(\frac{x}{N})(\alpha - \eta_s(x)) + \frac{\kappa \Theta(N)}{N^{1+\theta}} \sum_{x \in \Lambda_N} (Hr_N^+)(\frac{x}{N})(\beta - \eta_s(x)),$$

where for all $x \in \Lambda_N$

$$r_N^-(\tfrac{x}{N}) = \sum_{y \ge x} p(y), \quad r_N^+(\tfrac{x}{N}) = \sum_{y \le x-N} p(y).$$

Extend H to \mathbb{R} in such a way that it remains two times continuously differentiable, and the first term at the RHS is

$$\frac{\Theta(N)}{N} \sum_{x \in \Lambda_N} (K_N H)(\frac{x}{N}) \eta_s(x)$$
$$-\frac{\Theta(N)}{N} \sum_{x \in \Lambda_N} \sum_{y \le 0} \left[H(\frac{y}{N}) - H(\frac{x}{N}) \right] p(x-y) \eta_s(x)$$
$$-\frac{\Theta(N)}{N} \sum_{x \in \Lambda_N} \sum_{y \ge N} \left[H(\frac{y}{N}) - H(\frac{x}{N}) \right] p(x-y) \eta_s(x)$$

where $(K_N H)(\frac{x}{N}) = \sum_{y \in \mathbb{Z}} p(y-x) \left[H(\frac{y}{N}) - H(\frac{x}{N}) \right]$.

Let $H \in C^2_c(\mathbb{R})$, we have

$$\limsup_{N \to \infty} \sup_{x \in \Lambda_N} \left| N^2 K_N H\left(\frac{x}{N}\right) - \frac{\sigma^2}{2} \Delta H\left(\frac{x}{N}\right) \right| = 0.$$

For $\Theta(N)=N^{\theta+\gamma}$ and $\theta<2-\gamma$ the first term above vanishes as $N\to\infty.$

The infinite variance case

What about $\gamma \in (1,2)$?

For any $\kappa > 0$ and $\theta = 0$, we get a collection of fractional reaction-diffusion equations with Dirichlet boundary conditions given by

$$\partial_t \rho_t(q) = \mathbb{L}_{\kappa} \rho_t(q) + \kappa V_0(q).$$

The operator $\mathbb{L}_{\kappa} = \mathbb{L} - \kappa V_1$, where \mathbb{L} is the regional fractional laplacian and

$$V_1(q) = \frac{c_{\gamma}}{\gamma} \Big(\frac{1}{q^{\gamma}} + \frac{1}{(1-q)^{\gamma}} \Big)$$
$$V_0(q) = \frac{c_{\gamma}}{\gamma} \Big(\frac{\alpha}{q^{\gamma}} + \frac{\beta}{(1-q)^{\gamma}} \Big)$$

The operator \mathbb{L} :

Let $(-\Delta)^{\gamma/2}$ be the fractional Laplacian of exponent $\gamma/2$ which is defined on the set of functions $H: \mathbb{R} \to \mathbb{R}$ such that

$$\int_{-\infty}^{\infty} \frac{|H(q)|}{(1+|q|)^{1+\gamma}} du < \infty$$

by (provided the limit exists)

$$(-\Delta)^{\gamma/2}H(q) = c_{\gamma} \lim_{\varepsilon \to 0} \int_{-\infty}^{\infty} \mathbf{1}_{|u-q| \ge \varepsilon} \frac{H(q) - H(u)}{|u-q|^{1+\gamma}} du.$$

Let \mathbbm{L} be the regional fractional Laplacian on [0,1], whose action on functions $H\in C^\infty_c(0,1)$ is given by

$$\begin{split} (\mathbb{L}H)(q) &= -(-\Delta)^{\gamma/2} H\left(q\right) + V_1(q) H(q) \\ &= c_\gamma \lim_{\varepsilon \to 0} \int_0^1 \mathbf{1}_{|u-q| \ge \varepsilon} \, \frac{H(u) - H(q)}{|u-q|^{1+\gamma}} dy, \quad q \in (0,1). \end{split}$$

Fractional Sobolev space:

The Sobolev space $\mathcal{H}^{\gamma/2}$ consists of all square integrable functions $g:(0,1)\to\mathbb{R}$ such that $\|g\|_{\gamma/2}<\infty$, with

$$\|g\|_{\gamma/2} := \langle g, g \rangle_{\gamma/2} = \frac{c_{\gamma}}{2} \iint_{[0,1]^2} \frac{(g(u) - g(q))^2}{|u - q|^{1 + \gamma}} du dq.$$

The space $L^2(0,T;\mathcal{H}^{\gamma/2})$ is the set of measurable functions $f:[0,T] \to \mathcal{H}^{\gamma/2}$ such that $\int_0^T \|f_t\|_{\mathcal{H}^{\gamma/2}}^2 dt < \infty$ where $\|f_t\|_{\mathcal{H}^{\gamma/2}}^2 := \|f_t\|^2 + \|f_t\|_{\gamma/2}^2$.

The notion of weak solution:

Let $g: [0,1] \rightarrow [0,1]$ be a measurable function. We say that $\rho: [0,T] \times [0,1] \rightarrow [0,1]$ is a weak solution of the PDE above if:

$$\begin{array}{l} \clubsuit \hspace{0.1cm} \rho \in L^{2}(0,T;\mathcal{H}^{\gamma/2}) \hspace{0.1cm} \text{and} \\ \int_{0}^{T} \int_{0}^{1} \left\{ \frac{(\alpha - \rho_{t}(q))^{2}}{q^{\gamma}} + \frac{(\beta - \rho_{t}(q))^{2}}{(1 - q)^{\gamma}} \right\} dq \hspace{0.1cm} dt < \infty, \end{array}$$

 \clubsuit For all $t \in [0,T]$ and any function $H \in C_c^{1,\infty}([0,T] \times (0,1))$:

$$\begin{split} \int_{0}^{1} \rho_{t}(q) H_{t}(q) \, dq &- \int_{0}^{1} g(q) H_{0}(q) \, dq \\ &- \int_{0}^{t} \int_{0}^{1} \rho_{s}(q) \Big(\partial_{s} + \mathbb{L}_{\kappa}\Big) H_{s}(q) \, dq ds \\ &- \kappa \int_{0}^{t} \int_{0}^{1} V_{0}(q) H_{s}(q) dq \, ds = 0, \end{split}$$

Characterizing limit points:

$$N^{\gamma} \mathcal{L}_{N}(\langle \pi_{s}^{N}, H \rangle) = \frac{N^{\gamma}}{N} \sum_{x, y \in \Lambda_{N}} p(y-x) \left[H(\frac{y}{N}) - H(\frac{x}{N}) \right] \eta_{s}(x)$$
$$+ \frac{\kappa N^{\gamma}}{N} \sum_{x \in \Lambda_{N}} (Hr_{N}^{-})(\frac{x}{N})(\alpha - \eta_{s}(x)) + \frac{\kappa N^{\gamma}}{N} \sum_{x \in \Lambda_{N}} (Hr_{N}^{+})(\frac{x}{N})(\beta - \eta_{s}(x)).$$

For H with compact support in [a, 1-a] for $a \in (0, 1)$ we have

$$\begin{split} \lim_{N \to \infty} \left| N^{\gamma} \sum_{y \in \Lambda_N} p(y-x) \left[H(\frac{y}{N}) - H(\frac{x}{N}) \right] - (\mathbb{L}H)(\frac{x}{N}) \right| &= 0, \\ \lim_{N \to \infty} \left| N^{\gamma}(r_N^-)(\frac{x}{N}) - r^-(\frac{x}{N}) \right| &= 0, \\ \lim_{N \to \infty} \left| N^{\gamma}(r_N^+)(\frac{x}{N}) - r^+(\frac{x}{N}) \right| &= 0 \\ \text{uniformly in } [a, 1-a]. \end{split}$$

Characterizing limit points:

Thus, the first term on the right hand side above can be replaced by

$$\langle \pi_t^N, \mathbb{L}H \rangle \to \int_0^1 (\mathbb{L}H)(q) \rho_t(q) dq.$$

as N goes to ∞ . The other terms can be replaced by $\kappa \langle \alpha - \pi_t^N, Hr^- \rangle + \kappa \langle \beta - \pi_t^N, Hr^+ \rangle$ which converges to

$$\kappa \int_0^1 H(q) r^-(q) (\alpha - \rho_t(q)) dq + \kappa \int_0^1 H(q) r^+(q) (\beta - \rho_t(q)) dq = \kappa \int_0^1 H(q) V_0(q) dq - \kappa \int_0^1 H(q) V_1(q) \rho_t(q) dq,$$

as N goes to ∞ .

Uniqueness of weak solution:

To prove it we do the following. Let $\bar{\rho} = \rho^1 - \rho^2$, where ρ^1 and ρ^2 are two weak solutions starting from g. We have $\bar{\rho}_t(0) = \bar{\rho}_t(1) = 0$. Then,

$$\langle \bar{\rho}_t, H_t
angle - \int_0^t \langle \bar{\rho}_s, \left(\partial_s + \mathbb{L}
ight) H_s
angle ds + \kappa \int_0^t \langle V_1 H_s, \bar{\rho}_s
angle ds = 0.$$

Take now $H_N(s,q) = \int_s^t G_N(r,q) dr$ where $(G_N)_{N\geq 0}$ is a sequence of functions in $C_c^{1,\infty}([0,T]\times(0,1))$ converging to $\bar{\rho}$. Plug H_N in the equation and take $N \to \infty$ to get

$$\int_0^t \int_0^1 \bar{\rho}_s^2(q) \, dq ds + \frac{1}{2} \left\| \int_0^t \bar{\rho}_s ds \right\|_{\gamma/2}^2 + \frac{\kappa}{2} \left\| \int_0^t \bar{\rho}_s ds \right\|_{V_1}^2 = 0.$$

From this we conclude the uniqueness.

Open problems:

Heat eq. & Neumann b.c.

Conjecture:

For $\theta > 0$ small and $\gamma \in (1,2)$ the solution should correspond to the solution when $\kappa = 0$. Supported by the result:

Let $g:[0,1]\to [0,1]$ be a measurable function and let ρ^κ be the weak solution of

$$\partial_t \rho_t(q) = \mathbb{L}_{\kappa} \rho_t(q) + \kappa V_0(q),$$

with Dirichlet boundary conditions and initial condition $g(\cdot)$. Then ρ^{κ} converges strongly to ρ^{0} in $L^{2}(0,T;\mathcal{H}^{\gamma/2})$ as κ goes to 0, where ρ^{0} is the weak solution of the equation with $\kappa = 0$ and initial condition $g(\cdot)$.

Solved problem:

Stationary solutions:

Lecture **3**: Fluctuations

The space of test functions: Let S_{θ} denote the set of functions $H \in C^{\infty}([0,1])$ such that for any $k \in \mathbb{N} \cup \{0\}$ it holds that

$$\begin{split} & \text{for } \theta < 1: \ \partial_u^{2k} H(0) = \partial_u^{2k} H(1) = 0; \\ & \text{for } \theta = 1: \ \partial_u^{2k+1} H(0) = \partial_u^{2k} H(0) \text{ and } \\ & \partial_u^{2k+1} H(1) = -\partial_u^{2k} H(1); \\ & \text{for } \theta > 1: \ \partial_u^{2k+1} H(0) = \partial_u^{2k+1} H(1) = 0 \end{split}$$

The density fluctuation field \mathcal{Y}^N is the time-trajectory of linear functionals acting on functions $H \in S_{\theta}$ as

$$\mathcal{Y}_t^N(H) = \frac{1}{\sqrt{N-1}} \sum_{x=1}^{N-1} H(\frac{x}{N}) \Big(\eta_{tN^2}(x) - \mathbb{E}_{\mu_N}[\eta_{tN^2}(x)] \Big) \,.$$

For $\theta \geq 0$, let $-\Delta_{\theta}$ be the positive self-adjoint operator on $L^2[0,1]$, defined on $H \in \mathcal{S}_{\theta}$ by

$$\Delta_{\theta} H(u) \ = \ \begin{cases} \ \partial_{u}^{2} H(u) \,, & \text{if } u \in (0,1), \\ \ \partial_{u}^{2} H(0^{+}) \,, & \text{if } u = 0, \\ \ \partial_{u}^{2} H(1^{-}) \,, & \text{if } u = 1. \end{cases}$$

Let $\nabla_{\theta} : \mathcal{S}_{\theta} \to C^{\infty}([0,1])$ be the operator given by

$$\nabla_{\theta} H(u) = \begin{cases} \partial_{u} H(u), & \text{if } u \in (0,1), \\ \partial_{u} H(0^{+}), & \text{if } u = 0, \\ \partial_{u} H(1^{-}), & \text{if } u = 1. \end{cases}$$

Let $T_t^{\theta} : S_{\theta} \to S_{\theta}$ be the semigroup associated to the PDE with the corresponding boundary conditions with $\alpha = \beta = 0$.

Fluctuations: $\theta = 1$

the initial state?

• For each $N \in \mathbb{N}$, the measure μ_N is associated to a measurable profile $\rho_0 : [0, 1] \to [0, 1]$ (This is the same condition for hydrodynamics!).

• For $\overline{\rho_0^N(x)} = \mathbb{E}_{\mu_N}[\overline{\eta_0(x)}]$

$$\max_{x \in \Lambda_N} \left| \rho_0^N(x) - \rho_0(\frac{x}{N}) \right| \lesssim \frac{1}{N}$$

• For

$$\varphi_0^N(x,y) = \mathbb{E}_{\mu_N}[\eta(x)\eta(y)] - \rho_0^N(x)\rho_0^N(y)$$

it holds that

$$\max_{1 \le x < y \le N-1} \left| \varphi_0^N(x, y) \right| \lesssim \frac{1}{N}.$$

Examples - initial measures:

• If for a given measurable profile $\rho_0 : [0,1] \to [0,1]$, we take μ_N as the Bernoulli product measure given by

$$\mu_N\{\eta:\eta(x)=1\}=\rho_0(\frac{x}{N})$$

then all the conditions above are true.

• If μ_{ss} is the stationary measure, then all the conditions above are true, by choosing the profile ρ_0 as the stationary profile $\bar{\rho}$ given above. $\theta = 1$:

For each $N \geq 1$, let \mathbb{Q}_N be the probability measure on $\mathcal{D}([0,T], \mathcal{S}'_{\theta})$ induced by \mathcal{Y}^N and μ_N .

The sequence of measures $\{\mathbb{Q}_N\}_{N\in\mathbb{N}}$ is tight on $\mathcal{D}([0,T], \mathcal{S}'_{\theta})$ and all limit points \mathbb{Q} are p.m. concentrated on paths \mathcal{Y} . satisfying

$$\mathcal{Y}_t(H) = \mathcal{Y}_0(T_t^1H) + \mathcal{W}_t(H),$$

for any $H \in S_{\theta}$. Above $\mathcal{W}_t(H)$ is a mean zero Gaussian variable of variance $\int_0^t \|\nabla_1 T_{t-r}^1 H\|_{L^{2,1}(\rho_r)}^2 dr$, where $\rho(t, u)$ is the solution of the hydrodynamic equation. Moreover, $\mathbb{E}_{\mathbb{Q}}\left[\mathcal{Y}_0(H) \ \mathcal{W}_t(G)\right] = 0$ for all $H, G \in S_{\theta}$.

B

If $\{\mathcal{Y}_0^N\}_{N\in\mathbb{N}}$ converges, as $N\to\infty$, to a mean-zero Gaussian field \mathcal{Y}_0 with covariance given on $H,G\in\mathcal{S}_{\theta}$ by

$$\mathbb{E}\left[\mathcal{Y}_0(H)\mathcal{Y}_0(G)\right] := \sigma(H,G),$$

then, the sequence $\{\mathbb{Q}_N\}_{N\in\mathbb{N}}$ converges, as $N \to \infty$, to a generalized Ornstein-Uhlenbeck process, which is the formal solution of: $\partial_t \mathcal{Y}_t = \Delta_1 \mathcal{Y}_t dt + \sqrt{2\chi(\rho_t)} \nabla_1 \mathcal{W}_t$, where \mathcal{W}_t is a space-time white noise of unit variance. As a consequence, the covariance of the limit field \mathcal{Y}_t is given on $H, G \in \mathcal{S}_{\theta}$ by

$$\mathbb{E}\left[\mathcal{Y}_{t}(H)\mathcal{Y}_{s}(G)\right] = \sigma(T_{t}^{1}H, T_{s}^{1}G) + \int_{0}^{s} \langle \nabla_{1}T_{t-r}^{1}H, \nabla_{1}T_{s-r}^{1}G \rangle_{L^{2,1}(\rho_{r})} dr$$

Stationary $(\theta = 1)$:

Suppose to start the process from μ_{ss} with $\alpha \neq \beta$. Then, \mathcal{Y}^N converges to the centered Gaussian field \mathcal{Y} with covariance given on $H, G \in \mathcal{S}_{\theta}$ by:

$$\mathbb{E}_{\mu_{ss}}[\mathcal{Y}(H)\mathcal{Y}(G)] = \int_0^1 \chi(\overline{\rho}(u))H(u)G(u)\,du \\ -\left(\frac{\beta-\alpha}{3}\right)^2 \int_0^1 [(-\Delta_1)^{-1}H(u)]G(u)\,du$$

where $\overline{\rho}(\cdot)$ is the stationary solution of the PDE.

Associated martingales:

Let $H: [0,1] \to \mathbb{R}$ be a test function and note that

$$\mathcal{M}_t^N(H) := \mathcal{Y}_t^N(H) - \mathcal{Y}_0^N(H) - \int_0^t N^2 \mathcal{L}_N \mathcal{Y}_s^N(H) \, ds$$

is a martingale where

$$N^{2} \mathscr{L}_{N} \mathscr{Y}_{s}^{n}(H) = \frac{1}{\sqrt{N}} \sum_{x=1}^{N-1} \Delta_{N} H(\frac{x}{N}) \bar{\eta}_{sN^{2}}(x) + \sqrt{N} \left[\nabla_{N}^{+} H(0) - H(\frac{1}{N}) \right] \bar{\eta}_{sN^{2}}(1) + \sqrt{N} \left[H(\frac{N-1}{N}) + \nabla_{N}^{-} H(1) \right] \bar{\eta}_{sN^{2}}(N-1).$$

Note that the second term at the right hand side of the previous expression is $\mathcal{Y}_s^N(\Delta_N H)$. Above, we have used the notation $\nabla_N^+ H(x) = N \left[H(\frac{x+1}{N}) - H(\frac{x}{N}) \right], \ \nabla_N^- H(x) = N \left[H(\frac{x}{N}) - H(\frac{x-1}{N}) \right].$

$\Im he \ correlation \ estimate:$

For each $x, y \in V_N = \{(x, y); x, y \in \mathbb{N}, 0 < x < y < N\}$ and $t \in [0, T]$, let

 $\varphi_t^N(x,y) \;=\; \mathbb{E}_{\mu_N}[\eta_{tN^2}(x)\eta_{tN^2}(y)] - \rho_t^N(x)\rho_t^N(y) \,,$

and set $\varphi_t^N(x, y) = 0$, for x = 0 or y = N, we set

 ${\mathcal F}luctuations\,:\,\theta\neq 1$

 $\theta \neq 1$:

$$\begin{split} N^{2} \mathscr{L}_{N} \mathscr{Y}_{s}^{N}(H) = & \frac{1}{\sqrt{N}} \sum_{x=1}^{N-1} \Delta_{N} H\left(\frac{x}{N}\right) \left(\eta_{sN^{2}}(x) - \rho_{s}^{N}(x)\right) \\ & + \sqrt{N} \nabla_{N}^{+} H(0) \bar{\eta}_{sN^{2}}(1) - \sqrt{N} \nabla_{N}^{-} H(1) \bar{\eta}_{sN^{2}}(N-1) \\ & - \frac{N^{3/2}}{N^{\theta}} H\left(\frac{1}{N}\right) \bar{\eta}_{sN^{2}}(1) - \frac{N^{3/2}}{N^{\theta}} H\left(\frac{N-1}{N}\right) \bar{\eta}_{sN^{2}}(N-1). \end{split}$$

$$\mathbb{E}_{\mu_N}\Big[\Big(\int_0^t C_N^\theta(\eta_{sN^2}(x)-\rho_s^N(x))\,ds\Big)^2\Big]\lesssim (C_N^\theta)^2\frac{N^\theta}{N^2}.$$

Apply last result with $C_N^{\theta} = \sqrt{N} \mathbf{1}_{\{\theta < 1\}} + N^{3/2-\theta} \mathbf{1}_{\{\theta > 1\}}.$

The initial measures:

We fix an initial profile $\rho_0 : [0, 1] \to [0, 1]$ which is measurable and of class C^6 , and we assume that

$$\max_{x \in \Lambda_N} |\rho_0^N(x) - \rho_0(\frac{x}{N})| \lesssim \frac{1}{N}.$$

Moreover, we also assume that

$$\max_{y \in \Lambda_N} |\varphi_0^N(x, y)| \lesssim \begin{cases} \frac{N^{\theta}}{N^2}, \ \theta \le 1, \\ \frac{1}{N}, \ \theta \ge 1, \end{cases} \quad \text{for } x = 1, N - 1,$$

and that

$$\max_{(x,y)\in V_N} |\varphi_0^N(x,y)| \lesssim \frac{1}{N}.$$

$\underline{The \ correlation \ estimate}$

roposition

lf

$$\max_{y \in \Lambda_N} |\varphi_0^N(x, y)| \lesssim \begin{cases} \frac{N^{\theta}}{N^2}, \ \theta \le 1, \\ \frac{1}{N}, \ \theta \ge 1, \end{cases} \quad \text{for } x = 1, N - 1,$$

 $\max_{(x,y)\in V_N} |\varphi_0^N(x,y)| \lesssim \frac{1}{N},$

then,

$$\begin{split} \sup_{t \ge 0} \max_{y \in \Lambda_N} |\varphi_t^N(x, y)| \lesssim \begin{cases} \frac{N^{\theta}}{N^2}, \ \theta \le 1, \\ \frac{1}{N}, \ \theta \ge 1, \end{cases} \quad \text{for } x = 1, N - 1, \\ \sup_{t \ge 0} \max_{(x, y) \in V_N} |\varphi_t^N(x, y)| \lesssim \frac{1}{N}. \end{split}$$

$\mathcal{I}ngredients$ for correlations

Show that $\varphi_t^N(x, y)$ is solution of

 $\begin{cases} \partial_t \varphi_t^N(x,y) = N^2 \mathcal{A}_N^{\theta} \varphi_t^N(x,y) - (\nabla_N^+ \rho_t^N(x))^2 \delta_{y=x+1}, (x,y) \in V_N, \\ \varphi_t^N(x,y) = 0, (x,y) \in \partial V_N, \\ \varphi_0^N(x,y) = \mathbb{E}_{\mu_N}[\eta_0(x)\eta_0(y)] - \rho_0^N(x)\rho_0^N(y), (x,y) \in V_N \cup \partial V_N, \end{cases} \\ \text{where } \mathcal{A}_N^{\theta} \text{ acts on } f: V_N \cup \partial V_N \to \mathbb{R} \text{ as} \\ (\mathcal{A}_N^{\theta} f)(u) = \sum c_N^{\theta}(u,v)[f(v) - f(u)], \end{cases}$

and it is the infinitesimal generator of the RW in
$$V_N \cup \partial V_N$$

which is absorbed at ∂V_N . Above,

$$c_N^{ heta}(u,v) = \begin{cases} 1, & \text{if } \|u-v\| = 1 \text{ and } u, v \in V_N, \\ N^{- heta}, & \text{if } \|u-v\| = 1 \text{ and } u \in V_N, v \in \partial V_N, \\ 0, & \text{otherwise.} \end{cases}$$

$\mathcal{I}ngredients$ for correlations

Show that $\rho_t^N(\cdot)$ is a solution of

$$egin{array}{ll} \partial_t
ho_t^N(x) &= \left(N^2\mathfrak{B}_N^{ heta}
ho_t^N
ight)(x)\,, \;\; x\in\Lambda_N\,, \;\; t\geq 0\,, \
ho_t^N(0) &= lpha\,,
ho_t^N(N) \,=\, eta\,, \;\; t\geq 0\,, \end{array}$$

where \mathfrak{B}_N^{θ} acts on $f: \Lambda_N \cup \{0, N\} \to \mathbb{R}$ as

$$(\mathfrak{B}_N^{\theta}f)(x) = \sum_{y=0}^N \xi_{x,y}^{N,\theta}(f(y) - f(x)), \text{ for } x \in \Lambda_N$$

and it is the infinitesimal generator of the RW in $\overline{\Lambda}_N$ which is absorbed at the points $\{0, N\}$. Above

$$\xi_{x,y}^{N,\theta} = \begin{cases} 1, & \text{if } |y-x| = 1 \text{ and } x, y \in \Lambda_N, \\ N^{-\theta}, & \text{if } x = 1, y = 0 \text{ and } x = N-1, y = N, \\ 0, & \text{otherwise.} \end{cases}$$

$\mathcal{I}ngredients$ for correlations:

The stationary solutions of the equations above are given by

$$\varphi_{ss}^{N}(x,y) = -\frac{(\alpha - \beta)^{2}(x + N^{\theta} - 1)(N - y + N^{\theta} - 1)}{(2N^{\theta} + N - 2)^{2}(2N^{\theta} + N - 3)}$$

and $\rho_{ss}^{N}(x) = \mathbb{E}_{\mu_{ss}}[\eta_{tN^{2}}(x)] = a_{N}x + b_{N}$, where
 $a_{N} = \frac{\beta - \alpha}{2N^{\theta} + (N - 2)}$ and $b_{N} = a_{N}(N^{\theta} - 1) + \alpha$.

The time spent by the 1-d RW at the points x = 1 and x = N - 1 is of order $O(\frac{N^{\theta}}{N^2})$ (good bound when $\theta < 1$ but not when $\theta > 1$). When $\theta > 1$ we compare with the reflected RW and we prove that the time now is of order $O(\frac{1}{N})$. We need the same estimates in the 2-d setting for the time spent by the RW on the diagonal.

For the future:

- What about hydrostatics, for the long jumps case?
- Fluctuations?
- Other boundary conditions?

References:

1. R. Baldasso, O. Menezes, A. Neumann, R. Souza (2017): Exclusion process with slow boundary, JSP.

 C. Bernardin, B. Jiménez-Oviedo (2017): Fractional Fick's Law for the boundary driven exclusion process with long jumps, ALEA.

 C. Bernardin, P.G., B. Jiménez-Oviedo (2019): Slow to fasinfinitely extended reservoirs for the symmetric exclusion with long jumps, MPRF.

 C. Bernardin, C., P.G., B. Jiménez-Oviedo (2021): A microscopic model for a one parameter class of fractional laplacians with Dirichlet boundary conditions, ARMA.

5. P.G. (2018): Hydrodynamics for symmetric exclusion in contact with reservoirs, Springer Lecture Notes.

Thank you and...

References:

 C. Bernardin, P.G., M. Jara, S. Scotta (2021): Equilibrium fluctuations for diffusive symmetric exclusion with long jumps and infinitely extended reservoirs, AIHP, Prob and Stats.

 P.G., M. Jara, A. Neumann, O. Menezes (2020): Non-equilibrium and stationary fluctuations for a slowed boundary symmetric exclusion, SPA.

 T. Franco, P.G. A. Neumann, A. (2019): Non-equilibrium and stationary fluctuations for a slowed boundary symmetric exclusion process, SPA.

 C. Bernardin, P. Cardoso, P.G., S. Scotta (2021): Hydrodynamic limit for a boundary driven super-diffusive symmetric exclusion, submitted.

10. P.G., S. Scotta (2021): Diffusive to super-diffusive behavior in boundary driven exclusion, submitted.

Thank you and...

