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ZLecture 2: Long jumps




Exclusion in contact with
infinitely many reservoirs
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The finite variance coade




If jumps are arbitrarily big?

Let p(-) be a translation invariant transition probability given at
z € 7, by

where ¢ is a normalizing constant. Since p(-) is symmetric it is
mean zero, that is:

Z zp(z) =0

Z€7Z

and take v > 2 so that its variance is finite

0'3, = Z 22p(2) < oo.
Z2€Z




The infinitesimal generator:

Ly = ﬁN,o aF ﬁN,r aF ['N,Z where

(Lnof)(n Z p(x = y)[f (™) = F(n)),
:CyEAN
(‘CNZf 9 Z px— Cm 777 )[f(77 ) f(n)]v
TEAN
y<0

(Lnrf)0) =375 22 Pl = Y)ealm B (1) — £(n)]

where



Hydrodynamic Limit:

.4

Theorem: Let g : [0,1] — [0,1] be a measurable function
and let {un}n>1 be a sequence of probability measures in
Qp associated with g(-). Then, forany 0 <¢ < T,

MN(‘N 1ZH N)me /H q)pi(q dQ‘>5)—>0
TEAN

where the time scale is diffusive if § > 2 — v and N7+¢
otherwise and p;(-) is the UNIQUE weak solution of the cor-
responding hydrodynamic equation with initial condition g(-).




& Heat equation:
2
Oipi(q) = %@?Pt(Q)
& 0=1 Robln b.c.:

9qpi(0) = =25 (p:(0) — ),
Heat eq. & Robin b.c. 9qpt(1 ): § = (0 —p:(1)),

& Reaction-diffusion eq.:

Op(q ): 702 pu(q)

& Reaction equation:

Above
cy 1 1
@ =G )
W= 25+ o)

+ 1 (Vo(g) = Vi(a)p(9))

opi(q) =+ (Volg) — Vi(g)pe(q))



Stationary solutions:




Characterizing limit points:

A simple computation shows that

(M) Ln((rd H) =2 S py ) [H() ~ H(Z)] mele)
z,YEAN
+% 5 () (e
e X GG -6,

where for all z € Ay
E(N):Zp(y% TN (%) = Z p(y
y>x y<z—N

Extend H to R in such a way that it remains two times
continuously differentiable, and the first term at the RHS is



Let H € C%(R), we have

o2
lim sup sup ‘NQKNH<%) — 7AH(%) =0.

N—oo zEAN

For O(N) = N7 and § < 2 — v the first term above
vanishes as N — 00.




The infinite variance cade




What about v € (1,2)?

For any + > 0 and 6 = 0, we get a collection of fractional
reaction-diffusion equations with Dirichlet boundary conditions
given by

Ope(a) =L pe(q) +  Vo(q).
The operator I, =1L — V4, where L is the regional fractional
laplacian and

cy 1 1
o =2G =)

Cry [ @ I}
%(Q):$(5+(1—Q)7>



The operator L:

Let (—A)Y/2 be the fractional Laplacian of exponent ~/2 which is
defined on the set of functions H : R — R such that

SR Vil () |
[ arate<es

by (provided the limit exists)

o H(Q) = H(u)
» )
(—A)“’/ H(q) = &, 21_1)% b, 1|u_q|25 W

Let L be the regional fractional Laplacian on [0, 1], whose action
on functions H € C2°(0, 1) is given by

(LH)(q) = —(~A)"H (g )+V1( )H(q)

) H(q)
BE CV;%/ 1|u q\>5 q’H"Y SRS UL g < (071)



Fractional Sobolev space:

.4

The Sobolev space H7/? consists of all square integrable
functions g : (0,1) — R such that ||g]|, /2 < oo, with

c (9(u) = g(q))
||g||'y/2 = <gvg>'y/2 = ?’Y —lﬂdudq.
o [

The space L?(0,T;H7/?) is the set of measurable functions

£ [0,T] — H/? such that [ | filf

%_H/Zdt < 00 where
el = £l + W1 £2l13 o




The notion of weak solution:

Let g : [0,1] — [0, 1] be a measurable function. We say that
p:[0,T] x [0,1] — [0,1] is a weak solution of the PDE above if:

& p € L2(0,T; H?/?) and
ST 3 {lazea® | Bonl@l®) gy gt < oo,

& For all t € [0, T] and any function H € C1°°([0,T] x (0,1)):

/Olpt(Q)Ht(Q) dg — /Olg(q)Ho(Q) dgq
—/t/lps q ds + L )Hs(q)dqu
/ / Volq q)dgds =0,



Characterizing limit points:

N Lx( H) = X Y by - 2) [HE) - B m)
T, YEAN
N7 ' N7
b 3 EHR)E) e~ m(@) + 5 X HE(E)E — n(@))
TEAN TEAN
For H with compact support in [a,1 — a] for a € (0,1) we have
Jm [NV Y ply - 2) [H(E) - HE)] - LE)E)| =0
yEAN
Iim [NGR)() - ()] =0,
Jim (NG (F) = (F)| =0

uniformly in [a, 1 — a].



Characterizing limit points:

Thus, the first term on the right hand side above can be
replaced by

(¥, LH) — /OI(LH)(Q)Pt(Q)d%

as N goes to oco.
The other terms can be replaced by
k(o — ¥, Hr™) + {8 — w}¥, Hr*) which converges to

[ #@r @~ pdada+ [ Hart @@ - pia)dg
0 0

_ /Olmq)vo(q)dq— [ HVi(@pi(a)da

as N goes to oco.



Uniqueness of weak solution:

To prove it we do the following. Let p = p' — p?, where p' and
p? are two weak solutions starting from g. We have
71(0) = p(1) = 0. Then,

t t
(p1, Hy) —/0 (P> (s + L) Hy)ds + /0 (ViHy, ps)ds = 0.
Take now Hy(s,q) = [/ Gn(r,q) dr where (Gn)n>o is a

sequence of functions in CL>°([0, 7] x (0, 1)) converging to p.
Plug Hy in the equation and take N — oo to get

t rl il t 2 t
/0/()5§(Q)dqu+§u/o pstHV/QngH/O psds

From this we conclude the uniqueness.

=0

2
%1



Open problems:




Conjecture:

For 8 > 0 small and v € (1, 2) the solution should correspond to
the solution when = = 0. Supported by the result:

Let g : [0,1] — [0, 1] be a measurable function and let p* be
the weak solution of

Ope(q) = Lipe(q) + ~Vo(q),

with Dirichlet boundary conditions and initial condition g(-).
Then p* converges strongly to p° in L2(0, T; H/?) as  goes
to 0, where pY is the weak solution of the equation with x = 0
and initial condition g(-).




Solved problem:

g(ﬁteumann b.c.

Frac. Diﬂé.

Heat & Rob. b.c.

Eil)c Dll)ﬁc Eeﬂfir b.c.

R(%action & Dir. b.c.




Stationary solutions:

1¢y¢2, 0>y -1
0¢yct, 050
1¢y¢2, 0=y -1
14y¢2, 0<0cy~1
1¢y<2, 0=0
0¢yct, 0=0

0¢y<2, 6<0




Yectuwre 3: Fluctuations
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.4

The space of test functions: Let Sy denote the set of func-

tions H € C*°([0,1]) such that for any k € NU {0} it holds
that

for 6 < 1: 902*H(0) = 92*H(1) = 0;

for 0 = 1: 92*+1H(0) = 92*H (0) and
ORFHU(1) = —ORFH (1)

for 0 > 1: 92F1H(0) = 92F+1H(1) = 0.

The density fluctuation field %" is the time-trajectory of
linear functionals acting on functions H € 8y as

YN (H) = H(%) (mix2 (@) = By o2 2)]) -




Operators:

For 6 > 0, let —Ay be the positive self-adjoint operator on
L?[0,1], defined on H € 8y by

O2H (u), if ue(0,1),
NgH(u) = { 92H(0Y), if u=0,
10 T BT

Let Vg : Sg — C*°([0, 1]) be the operator given by
OuH(u), if ue(0,1),

VoH (u) = < on BB = 0,

O HORI v = 1.

Let Tte : 8y — Sy be the semigroup associated to the PDE with
the corresponding boundary conditions with a = g = 0.



Fluctuations: 0 =1




{ he tnitial dtate?

® For each N € N, the measure py is associated to a
measurable profile pg : [0,1] — [0, 1] (This is the same
condition for hydrodynamics!).

e For plY (z) = E,, [no(z)]

N . z\|l <
;rel%ﬁlpo(w) po(F)| <

® For
@) (x,y) = Euy In(@)n(y)] — 08 ()00 (y)
it holds that

N <
aE |0 (z,9)] S o



Examples - tnitial measures:

¢ If for a given measurable profile py : [0,1] — [0, 1], we take
pn as the Bernoulli product measure given by

T

pn{n :n(x) =1} = po(F)
then all the conditions above are true.
® If ugs is the stationary measure, then all the conditions

above are true, by choosing the profile pg as the stationary
profile p given above.



Or=ill

For each NV > 1, let Qx be the probability measure on
D([0,T),84) induced by YN and uy.

. 4

The sequence of measures {Q x } nen is tight on D([0, T, Sp)
and all limit points @ are p.m. concentrated on paths Y.
satisfying

Ye(H) = Yo(T; H) + Wy(H),

for any H € 8y. Above W;(H) is a mean zero Gaussian
variable of variance [J ||V11},1,TH||%2,1(plﬂ)dr, where p(t,u)
is the solution of the hydrodynamic equation. Moreover,

Eq [Yo(H) Wi(G)| = 0 for all H,G € S,.




4

If {G%N}NGN converges, as N — oo, to a mean-zero Gaussian
field Yy with covariance given on H, G € Sy by

E [%o(H)%(G)| = o(H,G),

then, the sequence {Qy}nen converges, as N — oo, to a
generalized Ornstein-Uhlenbeck process, which is the formal
solution of: Y = A1 Ydt + /2x(pt) V1iW;, where T is a
space-time white noise of unit variance. As a consequence,
the covariance of the limit field %, is given on H,G € 8y by

E [%(H)Ys(G)] = o(T; H, T, G)

+/ <v1Tt1—rH’ VlTsl—rG>L2’l(Pr)dr'
0



Stationary (0 = 1):

.4

Suppose to start the process from piss with a # 3. Then, YV
converges to the centered Gaussian field % with covariance
given on H,G € §y by:

By, YY) = [ X(P@)H @G du
- (5%)" [ 1A H@IGwW du

where p(+) is the stationary solution of the PDE.



Associated martingales:

Let H : [0,1] — R be a test function and note that

() = Y ) =Y ) — [ N )

is a martingale where

N2ENYMH Z ANH (% )nsn2()
+ VN [vaHm) — H(§)|fan2(1)

+ VN [H(EZ) + VR H(1)| oy (N - 1),

Note that the second term at the right hand side of the previous
expression is YN (AxH). Above, we have used the notation

ViH(z) = N |HESL-H(%)|, VyH() = N [HE)-H(E).



I he correlation estimate:

For each z,y € Vy = {(z,y); 2,y €N, 0 <z <y < N} and
t € 10,7, let

or (z,y) = Euylnne(@)nnve)] — of (@)pF ()

and set o} (z,y) =0, for x =0 or y = N, we set

1
Ny, . < -
zg}ggleo (z,y)| S —

1
N <

Sup max x, S ==

t>g (z,y)eVN ’wt ( y)| N




Fluctuations : 6 # 1




0 4 1:

Nngcys Z ANH( )(nsNQ( i, pév(x))
+\/NVNH<0>77$N2< ) = VNV H1)fsn2(N — 1)
3/2
B (4 awel0) = 2o B (%) 7Y - ).

Apply last result with C%, = \/Nl{kl} 4F N3/2_91{9>1}.



I he tnitial measures:

We fix an initial profile pg : [0,1] — [0, 1] which is measurable
and of class C%, and we assume that

Nip) — po(2) < L
max |og () — po(F)| S w-

Moreover, we also assume that

NP
<1
N < N2> = 4y
max xT, PN
max | (2, ) {#921,

forx =1,N — 1,

and that

N < 1
max |@g (T, N
(x,y)EVN| (0] ( y)| N



I he correlation estimate:

NG
N < N2>
max [y (@, y)| S {%’

max T
R MEACHY S

then,

, 0<1,
sup max |¢ (z,7)| SJ{ forr=1,N—1

>0 yEAN L o>1,

1
sup max T =
t>0 (z,9)€EVN ‘(’Ot @9l S N




Ingredients for correlations

Show that ¢} (z,v) is solution of

Aol (z,y) = N2AL ol (z,y) — (VE oY (2))28y=211, (z, 1) € Vv,
of (x,y) =0, (z,y) € OV,
o (z,y) = By no(@)no )] — pb ()pd (1), (z,y) € Vv U OV,

where A‘?V actson f: VyUdVy — R as
(AV N W) = > Klw,v)[f(v) = F(w)],
IS%

and it is the infinitesimal generator of the RW in Vi U0V
which is absorbed at V. Above,

it! if lu—v|=1and u,ve Vy,
A(u,w) = N0 if lu—v||=1and ue Vy, vedVy,

0, otherwise.



Ingredients for correlations

Show that p¥(-) is a solution of

Ao (z) = (N?B40))(z), z€ Ay, t>0,
PR(0) = o, p(N) = B, t=0,

where 8%, acts on f: Ay U{0,N} — R as
N
(BYN)(@) = D& (fy) - f(2)), forz €Ay
y=0

and it is the infinitesimal generator of the RW in Ay which is
absorbed at the points {0, N}. Above

1, if ly—xz|=1and z,y € Apn,

:]B\’]:Zj@: N_e’ lfl‘:]_,y:oa/Ild‘:L‘:_Z\ffl’y:j\f7

0, otherwise.



Ingredients for correlations

The stationary solutions of the equations above are given by

N (oy) = - @ BP@H N~ (N —y+ N° — 1)
s (2N + N — 2)2(2N9 + N — 3)

and pN(z) = E,,, [n,n2(2)] = ayz + by, where

an = %&_2) and by =any(N?—1) +a.
The time spent by the 1-d lQRVV at the points z = 1 and
z =N —1is of order O(§z) (good bound when 6 < 1 but not
when 6 > 1). When 6 > 1 we compare with the reflected RW

and we prove that the time now is of order O(%) We need the
same estimates in the 2-d setting for the time spent by the RW
on the diagonal.




For the future:

® What about hydrostatics, for the long jumps case?
® Fluctuations?

e Other boundary conditions?
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