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Lecture 2: Long jumps



Exclusion in contact with
infinitely many reservoirs
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The finite variance case



If jumps are arbitrarily big?
Let p(·) be a translation invariant transition probability given at
z ∈ Z by

p(z) =


cγ
|z|γ+1 , z 6= 0,

0, z = 0,

where cγ is a normalizing constant. Since p(·) is symmetric it is
mean zero, that is: ∑

z∈Z
zp(z) = 0

and take (by now) γ > 2 so that its variance is finite

σ2
γ =

∑
z∈Z

z2p(z) <∞.



The infinitesimal generator:
LN = LN,0 + LN,r + LN,` where

(LN,0f)(η) =
1
2

∑
x,y∈ΛN

p(x− y)[f(ηx,y)− f(η)],

(LN,`f)(η) = κ

N θ

∑
x∈ΛN
y≤0

p(x− y)cx(η;α)[f(ηx)− f(η)],

(LN,rf)(η) = κ

N θ

∑
x∈ΛN
y≥N

p(x− y)cx(η;β)[f(ηx)− f(η)]

where
cx(η;α) := (1− ηx)α+ (1− α)ηx.

cx(η;β) := (1− ηx)β + (1− β)ηx.



Hydrodynamic Limit:

Theorem: Let g : [0, 1] → [0, 1] be a measurable function
and let {µN}N≥1 be a sequence of probability measures in
ΩN associated with g(·). Then, for any 0 ≤ t ≤ T ,

PµN
(∣∣∣ 1
N−1

∑
x∈ΛN

H( xN )ηtΘ(N)(x)−
∫ 1

0
H(q)ρt(q)dq

∣∣∣ > δ
)
→ 0,

where the time scale is diffusive if θ ≥ 2 − γ and Nγ+θ

otherwise and ρt(·) is the UNIQUE weak solution of the cor-
responding hydrodynamic equation with initial condition g(·).



θ = 0
γ = 2

θ = 1
γ = 2

Heat eq. &
reaction

term
&
Dirichlet b.c.

Heat eq. & Robin b.c.

Heat eq. & Neumann b.c.

Heat eq.
& Dirichlet b.c.

Θ(N) = Nγ+θ

Reaction eq.
& Dirichlet b.c.

θ = 2− γ

♣ Heat equation:
∂tρt(q) = σ2

2 ∂
2
qρt(q)

♣ θ = 1 Robin b.c.:
∂qρt(0) = 2mκ

σ2 (ρt(0)− α),
∂qρt(1) = 2mκ

σ2 (β − ρt(1)),
♣ Reaction-diffusion eq.:

∂tρt(q) = σ2

2 ∂
2
q ρt(q)

+ κ(V0(q)− V1(q)ρt(q))

♣ Reaction equation:
∂tρt(q) = κ(V0(q)− V1(q)ρt(q))

Above

V1(q) = cγ
γ

( 1
qγ

+ 1
(1− q)γ

)
V0(q) = cγ

γ

( α
qγ

+ β

(1− q)γ
)
.



Stationary solutions:
θ > 1

θ = 1

2− γ < θ < 1

θ = 2− γ

θ < 2− γ
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Figure: Profiles of the stationary solution of the hydrodynamic
equations according to the value of θ.



Characterizing limit points:
A simple computation shows that

Θ(N)LN (〈πNs , H〉) =
Θ(N)
N

∑
x,y∈ΛN

p(y − x)
[
H( yN )−H( xN )

]
ηs(x)

+
κΘ(N)
N1+θ

∑
x∈ΛN

(Hr−N )( xN )(α− ηs(x))

+
κΘ(N)
N1+θ

∑
x∈ΛN

(Hr+
N )( xN )(β − ηs(x)),

where for all x ∈ ΛN
r−N ( xN ) =

∑
y≥x

p(y), r+
N ( xN ) =

∑
y≤x−N

p(y).

Extend H to R in such a way that it remains two times
continuously differentiable, and the first term at the RHS is



Θ(N)
N

∑
x∈ΛN

(KNH)( xN )ηs(x)

−
Θ(N)
N

∑
x∈ΛN

∑
y≤0

[
H( yN )−H( xN )

]
p(x− y)ηs(x)

−
Θ(N)
N

∑
x∈ΛN

∑
y≥N

[
H( yN )−H( xN )

]
p(x− y)ηs(x)

where (KNH)( xN ) =
∑
y∈Z p(y − x)

[
H( yN )−H( xN )

]
.

Let H ∈ C2
c (R), we have

lim sup
N→∞

sup
x∈ΛN

∣∣∣N2KNH
(
x
N

)
− σ2

2 ∆H( xN )
∣∣∣ = 0.

For Θ(N) = N θ+γ and θ < 2 − γ the first term above
vanishes as N →∞.



The infinite variance case



What about γ ∈ (1, 2)?
For any κ > 0 and θ = 0, we get a collection of fractional
reaction-diffusion equations with Dirichlet boundary conditions
given by

∂tρt(q) = Lκρt(q) + κV0(q).

The operator Lκ = L− κV1, where L is the regional fractional
laplacian and

V1(q) = cγ
γ

( 1
qγ

+ 1
(1− q)γ

)
V0(q) = cγ

γ

( α
qγ

+ β

(1− q)γ
)
.



The operator L:
Let (−∆)γ/2 be the fractional Laplacian of exponent γ/2 which is
defined on the set of functions H : R→ R such that∫ ∞

−∞

|H(q)|
(1 + |q|)1+γdu <∞

by (provided the limit exists)

(−∆)γ/2H (q) = cγ lim
ε→0

∫ ∞
−∞

1|u−q|≥ε
H(q)−H(u)
|u− q|1+γ du.

Let L be the regional fractional Laplacian on [0, 1], whose action
on functions H ∈ C∞c (0, 1) is given by

(LH)(q) = −(−∆)γ/2H (q) + V1(q)H(q)

= cγ lim
ε→0

∫ 1

0
1|u−q|≥ε

H(u)−H(q)
|u− q|1+γ dy, q ∈ (0, 1).



Fractional Sobolev space:

The Sobolev space Hγ/2 consists of all square integrable
functions g : (0, 1)→ R such that ‖g‖γ/2 <∞, with

‖g‖γ/2 := 〈g, g〉γ/2 =
cγ

2

x

[0,1]2

(g(u)− g(q))2

|u− q|1+γ dudq.

The space L2(0, T ;Hγ/2) is the set of measurable functions
f : [0, T ] → Hγ/2 such that

∫ T
0 ‖ft‖2Hγ/2dt < ∞ where

‖ft‖2Hγ/2 := ‖ft‖2 + ‖ft‖2γ/2.



The notion of weak solution:
Let g : [0, 1]→ [0, 1] be a measurable function. We say that
ρ : [0, T ]× [0, 1]→ [0, 1] is a weak solution of the PDE above if:

♣ ρ ∈ L2(0, T ;Hγ/2) and∫ T
0
∫ 1

0

{
(α−ρt(q))2

qγ + (β−ρt(q))2

(1−q)γ
}
dq dt <∞,

♣ For all t ∈ [0, T ] and any function H ∈ C1,∞
c ([0, T ]× (0, 1)):∫ 1

0
ρt(q)Ht(q) dq −

∫ 1

0
g(q)H0(q) dq

−
∫ t

0

∫ 1

0
ρs(q)

(
∂s + Lκ

)
Hs(q) dqds

− κ
∫ t

0

∫ 1

0
V0(q)Hs(q)dq ds = 0,



Characterizing limit points:

NγLN (〈πNs , H〉) =
Nγ

N

∑
x,y∈ΛN

p(y − x)
[
H( yN )−H( xN )

]
ηs(x)

+
κNγ

N

∑
x∈ΛN

(Hr−N )( xN )(α− ηs(x)) +
κNγ

N

∑
x∈ΛN

(Hr+
N )( xN )(β − ηs(x)).

For H with compact support in [a, 1− a] for a ∈ (0, 1) we have

lim
N→∞

∣∣∣Nγ
∑
y∈ΛN

p(y − x)
[
H( yN )−H( xN )

]
− (LH)( xN )

∣∣∣ = 0,

lim
N→∞

∣∣∣Nγ(r−N )( xN )− r−( xN )
∣∣∣ = 0,

lim
N→∞

∣∣∣Nγ(r+
N )( xN )− r+( xN )

∣∣∣ = 0

uniformly in [a, 1− a].



Characterizing limit points:
Thus, the first term on the right hand side above can be
replaced by

〈πNt ,LH〉 →
∫ 1

0
(LH)(q)ρt(q)dq,

as N goes to ∞.
The other terms can be replaced by
κ〈α− πNt , Hr−〉+ κ〈β − πNt , Hr+〉 which converges to

κ

∫ 1

0
H(q)r−(q)(α− ρt(q))dq + κ

∫ 1

0
H(q)r+(q)(β − ρt(q))dq

=κ
∫ 1

0
H(q)V0(q)dq − κ

∫ 1

0
H(q)V1(q)ρt(q)dq,

as N goes to ∞.



Uniqueness of weak solution:
To prove it we do the following. Let ρ̄ = ρ1 − ρ2, where ρ1 and
ρ2 are two weak solutions starting from g. We have
ρ̄t(0) = ρ̄t(1) = 0. Then,

〈ρ̄t, Ht〉 −
∫ t

0
〈ρ̄s,

(
∂s + L

)
Hs〉ds+ κ

∫ t

0
〈V1Hs, ρ̄s〉ds = 0.

Take now HN (s, q) =
∫ t
s GN (r, q) dr where (GN )N≥0 is a

sequence of functions in C1,∞
c ([0, T ]× (0, 1)) converging to ρ̄.

Plug HN in the equation and take N →∞ to get∫ t

0

∫ 1

0
ρ̄2
s(q) dqds+

1
2

∥∥∥ ∫ t

0
ρ̄sds

∥∥∥2

γ/2
+
κ

2

∥∥∥ ∫ t

0
ρ̄sds

∥∥∥2

V1
= 0.

From this we conclude the uniqueness.



Open problems:
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Conjecture:
For θ > 0 small and γ ∈ (1, 2) the solution should correspond to
the solution when κ = 0. Supported by the result:

Let g : [0, 1]→ [0, 1] be a measurable function and let ρκ be
the weak solution of

∂tρt(q) = Lκρt(q) + κV0(q),

with Dirichlet boundary conditions and initial condition g(·).
Then ρκ converges strongly to ρ0 in L2(0, T ;Hγ/2) as κ goes
to 0, where ρ0 is the weak solution of the equation with κ = 0
and initial condition g(·).



Solved problem:
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Heat& Dir. b.c.
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γ
=

2

γ
=

1
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Stationary solutions:



Lecture 3: Fluctuations



The space of test functions: Let Sθ denote the set of func-
tions H ∈ C∞([0, 1]) such that for any k ∈ N ∪ {0} it holds
that
(1) for θ < 1: ∂2k

u H(0) = ∂2k
u H(1) = 0;

(2) for θ = 1: ∂2k+1
u H(0) = ∂2k

u H(0) and
∂2k+1
u H(1) = −∂2k

u H(1);
(3) for θ > 1: ∂2k+1

u H(0) = ∂2k+1
u H(1) = 0.

The density fluctuation field YN
· is the time-trajectory of

linear functionals acting on functions H ∈ Sθ as

YN
t (H) = 1√

N − 1

N−1∑
x=1

H( xN )
(
ηtN2(x)−EµN [ηtN2(x)]

)
.



Operators:
For θ ≥ 0, let −∆θ be the positive self-adjoint operator on
L2[0, 1], defined on H ∈ Sθ by

∆θH(u) =


∂2
uH(u) , if u ∈ (0, 1),

∂2
uH(0+) , if u = 0,
∂2
uH(1−) , if u = 1.

Let ∇θ : Sθ → C∞([0, 1]) be the operator given by

∇θH(u) =


∂uH(u) , if u ∈ (0, 1),
∂uH(0+) , if u = 0,
∂uH(1−) , if u = 1.

Let T θt : Sθ → Sθ be the semigroup associated to the PDE with
the corresponding boundary conditions with α = β = 0.



Fluctuations: θ = 1



the initial state?
For each N ∈ N, the measure µN is associated to a
measurable profile ρ0 : [0, 1]→ [0, 1] (This is the same
condition for hydrodynamics!).
For ρN0 (x) = EµN [η0(x)]

max
x∈ΛN

∣∣ ρN0 (x)− ρ0( xN )
∣∣ .

1
N
.

For
ϕN0 (x, y) = EµN [η(x)η(y)]− ρN0 (x)ρN0 (y)

it holds that

max
1≤x<y≤N−1

∣∣ϕN0 (x, y)
∣∣ .

1
N
.



Examples - initial measures:

If for a given measurable profile ρ0 : [0, 1]→ [0, 1], we take
µN as the Bernoulli product measure given by

µN{η : η(x) = 1} = ρ0( xN )

then all the conditions above are true.

If µss is the stationary measure, then all the conditions
above are true, by choosing the profile ρ0 as the stationary
profile ρ̄ given above.



θ = 1:
For each N ≥ 1, let QN be the probability measure on
D([0, T ],S′θ) induced by YN

· and µN .

The sequence of measures {QN}N∈N is tight on D([0, T ],S′θ)
and all limit points Q are p.m. concentrated on paths Y·
satisfying

Yt(H) = Y0(T 1
t H) + Wt(H) ,

for any H ∈ Sθ. Above Wt(H) is a mean zero Gaussian
variable of variance

∫ t
0 ‖∇1T

1
t−rH‖2L2,1(ρr)dr , where ρ(t, u)

is the solution of the hydrodynamic equation. Moreover,
EQ

[
Y0(H) Wt(G)

]
= 0 for all H,G ∈ Sθ.



If {YN
0 }N∈N converges, asN →∞, to a mean-zero Gaussian

field Y0 with covariance given on H,G ∈ Sθ by

E
[
Y0(H)Y0(G)

]
:= σ(H,G),

then, the sequence {QN}N∈N converges, as N → ∞, to a
generalized Ornstein-Uhlenbeck process, which is the formal
solution of: ∂tYt = ∆1Ytdt+

√
2χ(ρt)∇1 Wt, where Wt is a

space-time white noise of unit variance. As a consequence,
the covariance of the limit field Yt is given on H,G ∈ Sθ by

E [Yt(H)Ys(G)] = σ(T 1
t H,T

1
sG)

+
∫ s

0
〈∇1T

1
t−rH,∇1T

1
s−rG〉L2,1(ρr)dr.



Stationary (θ = 1):

Suppose to start the process from µss with α 6= β. Then, YN

converges to the centered Gaussian field Y with covariance
given on H,G ∈ Sθ by:

Eµss [Y(H)Y(G)] =
∫ 1

0
χ(ρ(u))H(u)G(u) du

−
(
β−α

3

)2 ∫ 1

0
[(−∆1)−1H(u)]G(u) du

where ρ(·) is the stationary solution of the PDE.



Associated martingales:
Let H : [0, 1]→ R be a test function and note that

MN
t (H) := YN

t (H)− YN
0 (H)−

∫ t

0
N2LNYN

s (H) ds

is a martingale where

N2LNYn
s (H) = 1√

N

N−1∑
x=1

∆NH( xN )η̄sN2(x)

+
√
N
[
∇+
NH(0)−H

( 1
N

)]
η̄sN2(1)

+
√
N
[
H(N−1

N ) +∇−NH(1)
]
η̄sN2(N − 1).

Note that the second term at the right hand side of the previous
expression is YN

s (∆NH). Above, we have used the notation

∇+
NH(x) = N

[
H(x+1

N )−H( xN )
]
, ∇−NH(x) = N

[
H( xN )−H(x−1

N )
]
.



The correlation estimate:
For each x, y ∈ VN = {(x, y) ; x, y ∈ N, 0 < x < y < N} and
t ∈ [0, T ], let

ϕNt (x, y) = EµN [ηtN2(x)ηtN2(y)]− ρNt (x)ρNt (y) ,

and set ϕNt (x, y) = 0, for x = 0 or y = N , we set

If
max
x,y∈VN

∣∣ϕN0 (x, y)
∣∣ .

1
N
,

then
sup
t≥0

max
(x,y)∈VN

|ϕNt (x, y)| . 1
N
.

Proposition:



Fluctuations : θ 6= 1



θ 6= 1:

N2LNYN
s (H) = 1√

N

N−1∑
x=1

∆NH
(
x
N

)(
ηsN2(x)− ρNs (x)

)
+
√
N∇+

NH(0)η̄sN2(1)−
√
N∇−NH(1)η̄sN2(N − 1)

−N
3/2

N θ
H
(

1
N

)
η̄sN2(1)− N3/2

N θ
H
(
N−1
N

)
η̄sN2(N − 1).

EµN
[( ∫ t

0
CθN (ηsN2(x)− ρNs (x)) ds

)2]
. (CθN )2Nθ

N2 .

For x ∈ {1, N − 1} and t ∈ [0, T ] it holds

Apply last result with CθN =
√
N1{θ<1} +N3/2−θ1{θ>1}.



The initial measures:
We fix an initial profile ρ0 : [0, 1]→ [0, 1] which is measurable
and of class C6, and we assume that

max
x∈ΛN

|ρN0 (x)− ρ0( xN )| . 1
N .

Moreover, we also assume that

max
y∈ΛN

|ϕN0 (x, y)| .
{
Nθ

N2 , θ ≤ 1,
1
N , θ ≥ 1,

for x = 1, N − 1,

and that
max

(x,y)∈VN
|ϕN0 (x, y)| . 1

N .



The correlation estimate:
If

max
y∈ΛN

|ϕN0 (x, y)| .
{
Nθ

N2 , θ ≤ 1,
1
N , θ ≥ 1,

for x = 1, N − 1,

max
(x,y)∈VN

|ϕN0 (x, y)| . 1
N ,

then,

sup
t≥0

max
y∈ΛN

|ϕNt (x, y)| .
{
Nθ

N2 , θ ≤ 1,
1
N , θ ≥ 1,

for x = 1, N − 1 ,

sup
t≥0

max
(x,y)∈VN

|ϕNt (x, y)| . 1
N .

Proposition:



Ingredients for correlations
Show that ϕNt (x, y) is solution of

∂tϕ
N
t (x, y) = N2AθNϕNt (x, y)− (∇+

Nρ
N
t (x))2δy=x+1, (x, y) ∈ VN ,

ϕNt (x, y) = 0, (x, y) ∈ ∂VN ,
ϕN0 (x, y) = EµN [η0(x)η0(y)]− ρN0 (x)ρN0 (y), (x, y) ∈ VN ∪ ∂VN ,

where AθN acts on f : VN ∪ ∂VN → R as

(AθNf)(u) =
∑
v∈VN

cθN (u, v)
[
f(v)− f(u)

]
,

and it is the infinitesimal generator of the RW in VN ∪ ∂VN
which is absorbed at ∂VN . Above,

cθN (u, v) =


1, if ‖u− v‖ = 1 and u, v ∈ VN ,
N−θ, if ‖u− v‖ = 1 and u ∈ VN , v ∈ ∂VN ,
0, otherwise.



Ingredients for correlations
Show that ρNt (·) is a solution of{

∂tρ
N
t (x) =

(
N2Bθ

Nρ
N
t

)
(x) , x ∈ ΛN , t ≥ 0 ,

ρNt (0) = α , ρNt (N) = β , t ≥ 0 ,

where Bθ
N acts on f : ΛN ∪ {0, N} → R as

(Bθ
Nf)(x) =

N∑
y=0

ξN,θx,y

(
f(y)− f(x)

)
, for x ∈ ΛN

and it is the infinitesimal generator of the RW in ΛN which is
absorbed at the points {0, N}. Above

ξN,θx,y =


1 , if |y − x| = 1 and x, y ∈ ΛN ,
N−θ , if x = 1, y = 0 and x = N − 1 , y = N,

0 , otherwise.



Ingredients for correlations:
The stationary solutions of the equations above are given by

ϕNss(x, y) = −(α− β)2(x+N θ − 1)(N − y +N θ − 1)
(2N θ +N − 2)2(2N θ +N − 3)

and ρNss(x) = Eµss [ηtN2(x)] = aNx+ bN , where

aN = β−α
2Nθ+(N−2) and bN = aN (N θ − 1) + α.

The time spent by the 1-d RW at the points x = 1 and
x = N − 1 is of order O(Nθ

N2 ) (good bound when θ < 1 but not
when θ > 1). When θ > 1 we compare with the reflected RW
and we prove that the time now is of order O( 1

N ). We need the
same estimates in the 2-d setting for the time spent by the RW
on the diagonal.



For the future:

What about hydrostatics, for the long jumps case?
Fluctuations?
Other boundary conditions?
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