
EURANDOM PREPRINT SERIES

2019-015

December 2, 2019

Scaling analysis of an extended machine-repair model

L. van Kreveld, J.-P. Dorsman, O. Boxma, M. Mandjes
ISSN 1389-2355

1



Scaling analysis of an extended machine-repair model

L.R. van Kreveld

l.r.vankreveld@uva.nl

University of Amsterdam

O.J. Boxma

o.j.boxma@tue.nl

Eindhoven University of Technology

J.L. Dorsman

j.l.dorsman@uva.nl

University of Amsterdam

M.R.H. Mandjes

m.r.h.mandjes@uva.nl

University of Amsterdam

ABSTRACT

We consider an extension of the classic machine-repair model,

where we explicitly model the fact that machines, apart from requir-

ing service from a single repairer, also supply service themselves to

products. Due to this dual role of the machines, the system exhibits

an intricate relation between the processing rate of products and

the performance of the repairer. To characterize this relation, we

analyze this model under a Halfin-Whitt inspired scaling regime,

where we amplify the arrival rate of products, the repair speed of

the repairer and the number of machines appropriately. The result-

ing limiting stationary distribution is elegant, allows for a closed-

form expression and provides intuition on the system’s behavior

resulting from the machines’ dual role. With numerical results we

illustrate the convergence, and assess under which conditions the

limiting distributions lead to accurate approximations. Next to this

valuable insight, the analysis in this paper can be viewed as a first

step towards a unifying scaling analysis for more general queueing

networks.
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1 INTRODUCTION

In this paper we consider a manufacturing model, where machines

are subject to breakdown. When broken down, machines wait in

a single-server repair queue to be repaired. This model is known

as the machine-repair model, which has been studied extensively;

see e.g. [11, 15] and references therein. In the literature, the feature

that machines may also process products themselves is oftentimes
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ignored. Therefore, we extend the machine-repair model by adding

a queue of products, which is served by the machines when they do

not reside in the repair queue. This allows us to study the impact

of breakdowns on the processing of the products. The resulting

model, which is depicted in Figure 1, can be interpreted as a layered

queueing network (cf. [1, 2, 7] and references therein), where the

machines fulfill a dual role. They act as customers in the second

layer, which forms the machine-repair part of the model. In the

first layer, however, they are servers to a single queue of products.

We assume that products do not enter the system when there is

no machine available, hence the first layer can be interpreted as

an Erlang loss model. While both the Erlang loss model and the

machine-repair model have incited much research effort, layered

queueing networks such as these have received fairly little attention.

This is mainly due to the intricate interaction between the layers

of these networks, making exact analysis involved even for small

models.

Our model, though, possesses a helpful structural property. As will

be pointed out later, the blocking mechanism of the first layer en-

sures that the states of all machines, being either idle, occupied

(i.e. processing a product), or broken, can be viewed as objects in

a closed queueing network. This gives access to the large body of

literature on conventional queueing networks (see e.g. [5] for an

overview), from which it follows that under relatively mild condi-

tions, the joint stationary distribution of our model has a known

product form. Although this distribution allows for numerical eval-

uation, explicitly deriving the corresponding marginal distributions

from it is not straightforward. Therefore, it is challenging to get a

handle on quantifying the correlation between the lengths of the

product queue and the repair queue, or ultimately, to identify the

interaction between the two layers of the model. A particular com-

plication concerns the evaluation of the normalization constant,

which is often done using asymptotic methods (e.g. [4, 13]).

To overcome the difficulties posed above, we consider the behavior

of the stationary distribution under a specific scaling. The one we

propose, which amplifies the arrival rate, the repair speed, and the

number of machines, is reminiscent of the Halfin-Whitt scaling

regime [10]. Our scaling allows the explicit calculation of perfor-

mance measures, which are otherwise hard to obtain. In particular,

we derive elegant expressions for the limiting distributions, namely

that the number of occupied and broken machines follow a normal

and exponential distribution respectively, where one of the two

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 1: The extended machine-repair model.

(depending on the specific values of the scaling parameters) is trun-

cated. Furthermore, we identify the dependence structure between

the number of occupied and broken machines. This dependence

structure reveals that under our scaling, for nearly all parameter

values, the two layers of the model become uncorrelated, which

allows for the derivation of approximations of the complete system.

Lastly, by means of numerical experiments, we assess the accuracy

of such approximations. Although many variants of the Halfin-

Whitt regime have been studied for single-station queues, less is

known about larger queueing networks [12]. Hence, the analysis

presented in this paper can be seen as a step towards developing a

scaling analysis in more general product-form networks.

The paper is organized as follows: in Section 2 we describe our

model in more detail and discuss the general behavior of the model

as well as our scaling framework. Our main theorem and its proof

are then given in Sections 3 and 4, respectively. Sections 5 and

6 focus on two special cases of our scaling that require special

attention. Lastly, in Section 7 we discuss numerical experiments.

2 MODEL AND PRELIMINARIES

In this section we describe the model, present some preliminary

results and introduce the scaling that we impose.

2.1 Model

As depicted in Figure 1, the extended machine-repair model that

we consider constitutes a manufacturing facility with C machines.

Products arrive according to a Poisson(λ) process and require an

exponentially(µ) distributed amount of service. If upon arrival of

a product all C machines are occupied (i.e. processing another

product) or broken, then the product is rejected and immediately

leaves the system. In the remaining case, it is immediately taken

into service by an idle machine. When machines are processing

products, they are subject to breakdown. Such a breakdown occurs

at an exponential rate ξ , after which the machine is immediately

sent to a single-server repair queue. The product processing is

halted, and the product waits until its machine is repaired. The time

it takes for the repairer to repair any machine is exponentially(ν )

Figure 2: An equivalent closed queueing network.

distributed. Once repaired, the machine immediately returns to the

product it was processing at the moment of breakdown.

In the sequel, we let the number of occupied (busy) machines be B,
and D denotes the number of broken (down) machines. Apart from

Figure 1, there is a different way of viewing our model. Because

of the blocking mechanism in the first layer, we may as well keep

track of the number of idle machines I , rather than the number of

products in progress. Note that at all times I + B + D = C , so that

the system can be viewed as a closed queueing network depicted

in Figure 2. Because of this constraint, it suffices to keep track

of only two of the three variables, in our case B and D. It is also
worth noting from Figure 2 that the system is highly symmetric:

when λ = ν and µ = ξ , it is immediate that I and D have the same

stationary distribution. Finally, ρ1 := λ/µ and ρ2 := ν/ξ represent

the ‘workloads’ in each of the two layers, and σ := ρ1/ρ2 their

ratio.

For the stationary distribution presented below, we assume that

repair times are unknown, so that the repairer cannot serve ma-

chines in an order based on individual repair times. Then we have

by standard results on closed queueing networks (e.g. [3]) that the

stationary distribution of the model satisfies, for b + d 6 C ,

pb,d := P(B = b,D = d ) = p0 ·
ρb
1

b!
· σd , (1)

where p0 is a normalization constant. While the earlier-mentioned

exponential assumptions were made for ease of exposition, it is

worth emphasizing that (1) holdsmore generally. In fact, the product

form of this equation is also guaranteed when the three queues

in isolation are so-called quasi-reversible (see e.g. [14, Chapter

10] for more background). However, even quasi-reversibility is

not necessary. For example, the model considered in [8] does not

consist of quasi-reversible queues, since it assumes non-exponential

service times of products that are resumed upon the return of a

machine, rather than repeated. For this case, [8] shows that (1)

still holds. In the scaling analysis of this paper, (1) functions as a

starting point. Hence, the results in the rest of the paper are valid

for every extended machine-repair model that satisfies (1), even

non-exponential ones.

The normalization constant p0 in (1) can be computed as follows.

Note that since B + D 6 C , we have

p−1
0
=

C∑
b=0

ρb
1

b!

C−b∑
d=0

σd . (2)
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We recognize the right sum as a geometric series. Writing out its

explicit solution (assuming for now that ρ1 , ρ2), we obtain

p−1
0
=

C∑
b=0

ρb
1

b!

1 − σC−b+1

1 − σ
=

1

1 − σ
*.
,

C∑
b=0

ρb
1

b!
− σC+1

C∑
b=0

(ρ1/σ )
b

b!
+/
-

=
1

1 − σ
*.
,
eρ1

C∑
b=0

e−ρ1
ρb
1

b!
− eρ2σC+1

C∑
b=0

e−ρ2
ρb
2

b!
+/
-
. (3)

Therefore, the calculation of p0 requires the evaluation of two Pois-

son distribution functions:

p−1
0
=

1

1 − σ

(
eρ1Q (C,ρ1) − e

ρ2σC+1Q (C,ρ2)
)
, (4)

where Q (C,x ) is the distribution function of a Poisson random

variable with mean x ∈ R≥0 evaluated at C ∈ N:

Q (C,x ) :=
C∑
k=0

e−x
xk

k!
.

The case ρ1 = ρ2 can be dealt with by letting σ → 1 in (3) using

L’Hôpital’s rule.

In the sequel we use the convention that a geometric random vari-

able has support {0,1,2, ...}; if the success probability is p, we write
G (p). By P (µ ) we denote a Poisson random variable with mean

µ . Finally, for sequences fn and дn , we write fn ∼ дn if fn/дn → 1

as n → ∞. Also, ‘=
d
’ and ‘→

d
’, respectively, mean equality in

distribution and convergence in distribution.

2.2 System behavior with many machines

We proceed by considering the system’s behavior as the number of

machines C grows. By (1), there is dependence between the layers:

B and D are correlated due to the constraint B + D 6 C . However,
it also suggests that when C grows large, this dependence becomes

weaker. We comment on this phenomenon, distinguishing between

ρ1 < ρ2, ρ2 < ρ1, and ρ1 = ρ2.

For ρ1 < ρ2, we conclude from (3) that p0 → (1 − σ )e−ρ1 as

C → ∞. Inserting this into (1), we indeed conclude that B and

D become independent, with B =
d

P (ρ1) and D =
d

G (1 − σ ).
Since I = C − B − D, the number of idle machines I will tend to

infinity.

Using the symmetry of the model, the queue size distributions for

ρ1 > ρ2 follow similarly: as C → ∞, we find that B and D are

asymptotically independent. More particularly, B =
d

P (ρ2) and
I =

d
G (1 − 1/σ ), and the number of broken machines D will tend

to infinity.

Finally, when ρ1 = ρ2, it also follows from (1) that B =
d

P (ρ1) =
P (ρ2) as C → ∞. Moreover, by the symmetry of the model and

the fact that the stationary distribution (1) only depends on the

system parameters through ρ1 and ρ2, we have that I and D must

have the same distribution. Since B remains finite in the limit, this

means that I and D will tend to infinity as C → ∞.

So far we have not discussed stability of the model. To this end,

realize that it permits only a finite number of products, making it

stable without imposing any conditions. As C → ∞ this is not the

case anymore. As in our scaling the number of machines tends to

infinity, we henceforth assume that ρ1 < ρ2.

2.3 Scaling

As motivated in Section 1, we consider our model under a specific

scaling, which we now introduce. Scaling limits are a common

tool to analyze stochastic systems in an asymptotic regime, and

are particularly useful when non-tractable systems in the limit

simplify. Loosely speaking, scaling means that a subset of the model

parameters is parametrized by n, after which n is sent to ∞. It is

often not a priori clear how this parametrization should be done;

finding a scaling that leads to useful and meaningful results in the

limit is an art on its own.

In their celebrated 1981 paper, Halfin and Whitt [10] introduced

an important new scaling for many-server queues. The asymptotic

regime considered corresponds to letting the workload ρ and the

number of serversC grow to infinity in such a way that (C − ρ)/
√
ρ

converges to β > 0. For the Erlang loss model in particular, a

normalized version of the queue size then asymptotically behaves

as a normal random variable truncated at β [10, Thm. 3].

The scaling we impose is inspired by the Halfin-Whitt regime, in

that we scale the parameter ρ1 and the number of machinesC . Our
system, however, distinguishes itself from a multi-server queue by

having an additional layer with breakdowns and repairs. In order

to preserve stability, we should therefore scale ρ2 as well.

We now give a precise definition of the scaling we impose in this

paper. Let γn := nα
n+nα . Then, for α ∈ R, β > 0,

◦ we replace λ by µn (such that ρ1 becomes n);
◦ we replace ν by ξ (n + nα ) (such that ρ2 becomes n + nα );
◦ we replaceC byCn , where we defineCn as ⌊n+ β/γn⌋ if α <

1

2
,

and as ⌊n + β
√
n⌋ if α ≥ 1

2
.

Along with the system parameters, the numbers of occupied ma-

chines B and broken machines D depend on n. Let Bn and Dn re-

spectively denote these random variables under the scaling regime.

We are now interested in their behavior as n → ∞. Since their

means may become arbitrarily large with n, we consider their ap-
propriately normalized versions

B̄n :=
Bn − n
√
n

and D̄n := γnDn .

Our choice for Cn can be motivated as follows. It turns out that, to

get non-degenerate limits,C should be picked such that it equals the

mean of B increased by a constant β times the largest of the standard

deviations of B andD. As argued in Section 2.2, forC large and ρ1 <
ρ2, B behaves as P (ρ1) =P (n), which has standard deviation

√
n.

In addition, D behaves as G (1 − σ ) = G (γn ), which has standard

deviation

√
1 − γn/γn . Note that the standard deviation of B is

larger than that of D when α > 1

2
, and vice versa if α < 1

2
. In the

latter case, observe that

√
1 − γn/γn ∼ 1/γn . These observations

lead to our choice of Cn .

Before concluding this section, we discuss the intuition behind each

value of the scaling parameter α .
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◦ Case α < 1

2
(slow repair regime): ρ2 is only slightly larger than

ρ1, causing the repair queue size (right queue in Figure 2) to

be large, and in particular, to fluctuate much more than the

product queue size (middle queue in Figure 2).

◦ Case α = 1

2
(moderate repair regime): ρ2 is larger than ρ1 in

such a way that the repair queue size fluctuates just as much

as the product queue size.

◦ Case
1

2
< α < 1 (fast repair regime): ρ2 is much larger than ρ1,

causing the repair queue size to fluctuate much less than the

product queue size.

◦ Case α > 1 (nearly-instantaneous repair regime): similar to the

fast repair regime, but with very small repair queue size.

As such, the parameter α controls the level at which the queue sizes

fluctuate (deviate from their mean). This in turn has impact on the

parameter Cn .

3 MAIN RESULTS

In this section, we derive the asymptotic joint distribution of B̄n and

D̄n for α < 1, by means of their joint Laplace-Stieltjes transform

(LST). The case α ≥ 1 will be studied in Section 6.

Define, for s,t > 0,

Pn (s,t ) = E
(
e−s B̄ne−t D̄n

)
=

∑
b+d6Cn

e
−s b−n√

n e−tγndp
(n)
b,d (5)

as the joint Laplace-Stieltjes transform of B̄n and D̄n . Furthermore,

for a normally distributed random variable, we write

Ψ(s ) =
Φ(s )

1√
2π

e−
1

2
s2

for its Mills ratio, i.e. its distribution function divided by its density

function. The following theorem, to be proven in Section 4, gives an

explicit expression for the limit of Pn (s,t ) as n → ∞, from which

we can directly derive the asymptotic distribution of

(
B̄n ,D̄n

)
.

Theorem 1. The two-dimensional LST of
(
B̄n ,D̄n

)
satisfies, as n →

∞,

Pn (s,t ) →




e
1

2
s2 1

1+t
1−e−β (t+1)
1−e−β

if α < 1

2
,

e−sβ 1

1+t
Ψ(β+s )−Ψ(β+s−t−1)

Ψ(β )−Ψ(β−1) if α = 1

2
,

e
1

2
s2 1

1+t
Φ(β+s )
Φ(β ) if 1

2
< α < 1.

Unless α = 1

2
, the asymptotic distributions of B̄n and D̄n immedi-

ately follow from Theorem 1. This is summarised in the following

corollary. The interpretation of the joint LST in case α = 1

2
is more

intricate, and will be studied in Section 5. To state the next corol-

lary, we let N denote a standard-normal random variable, while

E stands for an exponential random variable with rate 1.

Corollary 1. For α < 1

2
, as n → ∞,

B̄n →d
N and D̄n →d

(E | E 6 β ) . (6)

For 1

2
< α < 1, as n → ∞,

B̄n →d
(N |N 6 β ) and D̄n →d

E . (7)

In both of these two cases, B̄n and D̄n are asymptotically independent.

Proof. We recognize the expressions of Theorem 1 as known

Laplace-Stieltjes transforms. Let X be a random variable and let

f (u) := E(e−uX ) be its LST. Then we can check by straightforward

calculations that

◦ f (u) = e
1

2
u2

if X =
d

N ,

◦ f (u) = e
1

2
u2 Φ(β+u )

Φ(β ) if X =
d
(N |N 6 β ),

◦ f (u) = 1

1+u if X =
d

E , and

◦ f (u) = 1

1+u
1−e−β (u+1)
1−e−β

if X =
d
(E | E 6 β ).

The statement now follows from Theorem 1 in combination with

Lévy’s convergence theorem [16, Thm. 18.1]. �

This corollary generalizes the Halfin-Whitt result [10, Thm. 3],

which states that under a similar regime the number of customers

in an Erlang loss system has a truncated normal distribution. That

result is covered by ours by letting α → ∞. Repairs are then in-

stantaneous, so that the system behaves as if breakdowns never

occur.

Since the normal and exponential distributions can be seen as

the continuous counterparts of the Poisson and geometric dis-

tributions, the limiting distributions of B̄n and D̄n have a natu-

ral connection with the Poisson and geometric distributions of

Section 2.2. Specifically, suppose that B =
d

P (ρ1) = P (n) and
D =

d
G (1 − σ ) = G (γn ) as was the case for ρ1 < ρ2 if C → ∞.

In that case, we would have B̄n →d
N and D̄n →d

E as n → ∞.
However, in Section 2.2 the total number of machines C was in-

finitely large compared to B and D, which is not the case under

our scaling. It is essentially the limitation of Bn +Dn to {0, . . . ,Cn }
that causes the truncations in Corollary 1. If α < 1

2
, then Dn has

the largest variance so its support is noticeably limited by Cn . The
same goes for Bn when α > 1

2
.

4 PROOF OF THEOREM 1

To prove Theorem 1, we first rewrite the right-hand side of (5) in

Lemma 1. The resulting expression is then split into three factors:

the LST of a normal distribution, the LST of an exponential distri-

bution, and a term related to the truncation. For each of these terms

separately, we derive an asymptotic expression. This is straight-

forward for the first two terms, but the last term requires careful

asymptotic analysis, where we must distinguish between various

regimes of α . Lemmas 3 and 4 are devoted to this, and build on an

important observation presented in Lemma 2.

In order to keep expressions concise throughout, we introduce the

following notation. Recalling that Q (C,x ) = P(P (x ) ≤ C ),

fn (s ) := Q
(
Cn ,ne

− s√
n

)
, s ≥ 0,

дn (s,t ) := Q
(
Cn , (n + n

α )e
− s√

n etγn
)
, s,t ≥ 0, and

hn (s,t ) := exp

((
n + nα

)
e
− s√

n etγn − ne
− s√

n

)
×

(
(1 − γn ) e

−tγn
)Cn+1

, s,t ≥ 0.
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Using this notation, Lemma 1 provides an alternative expression

for the LST of

(
B̄n ,D̄n

)
.

Lemma 1. The two-dimensional LST of
(
B̄n ,D̄n

)
satisfies

Pn (s,t ) = e−n+s
√
n+ne

− s√
n γn
1 − (1 − γn )e−tγn

×
fn (s ) − дn (s,t )hn (s,t )

fn (0) − дn (0,0)hn (0,0)
. (8)

Proof. The ideas underlying this proof resemble those underlying

the calculation of the normalization constant; cf. Equations (2) and

(3). Noting that Bn + Dn 6 Cn , and using (1), we obtain

Pn (s,t ) =
∑

b+d6Cn

e
−s b−n√

n e−tγndp
(n)
b,d

= p
(n)
0

es
√
n
Cn∑
b=0

(
ne
− s√

n

)b
b!

Cn−b∑
d=0

(
(1 − γn ) e

−tγn
)d
.

We recognize sums similar to those in (2), but where C is replaced

by Cn , ρ1 is replaced by n exp(−s/
√
n) and ρ2 is replaced by (n +

nα ) exp(−s/
√
n)etγn . Sinceγn =

nα
n+nα , it follows that σ = ρ1/ρ2 is

replaced by (1 − γn ) e
−tγn

. Analogous to (4) we find, with δn (t ) :=
(1 − γn )e

−tγn
,

Pn (s,t ) = p
(n)
0

es
√
n 1

1 − δn (t )
× *
,
ene

− s√
n
Q

(
Cn ,ne

− s√
n

)
− δn (t )

Cn+1e (n+n
α )e

− s√
n e tγnQ

(
Cn , (n + n

α )e
− s√

n etγn
)
+
-

= p
(n)
0

es
√
n+ne

− s√
n fn (s ) − дn (s,t )hn (s,t )

1 − δn (t )
. (9)

To examine the behavior of p
(n)
0

as n → ∞, we take s = t = 0 in (9)

and realize that Pn (0,0) = 1 to find

p
(n)
0
= e−nγn

(
fn (0) − дn (0,0)hn (0,0)

)−1
.

Substituting this back in (9) then gives the desired result. �

As mentioned at the start of this section, the expression for Pn (s,t )
in Lemma 1 is a product of three terms, each playing an intuitively

appealing role in relation to Corollary 1. More specifically, our

analysis reveals that the first two terms correspond to the normal

and exponential distribution, respectively, as n → ∞. In addition,

we show that the third term, which is significantly more subtle to

analyze in the limiting regime n → ∞, immediately relates to the

truncation at β .

Let us start with the leftmost term of (8). Applying a standard Taylor

expansion to exp(−s/
√
n) around s = 0, we obtain

e−n+s
√
n+ne

− s√
n
= e
−n+s

√
n+n

(
1− s√

n
+ s

2

2n +O
(
n−

3

2

))
. (10)

As n → ∞, this converges to exp( 1
2
s2), which can be recognized

as the LST of a standard-normal random variable. For the middle

term, we can apply the same strategy: for α < 1, as n → ∞, we

have γn → 0 so that we can apply a Taylor expansion to exp(−tγn ).
Therefore,

γn
1 − (1 − γn )e−tγn

=
γn

1 − (1 − γn )
(
1 − tγn +O

(
γ 2n

))
=

γn

γn (1 + t ) +O
(
γ 2n

) . (11)

As n → ∞, this converges to 1

1+t , which is the LST of an exponen-

tially distributed random variable with rate 1. Hence, to prove the

theorem it remains to analyze the second fraction of (8) in various

regimes of α . To this end, we inspect the behavior of the func-

tions fn (s ), дn (s,t ) and hn (s,t ) in the limiting regime separately

for different values of α . In doing this, we rely on the following

lemma.

Lemma 2. Suppose xn → ∞ as n → ∞. If (Cn − xn )/
√
xn → M ,

then Q (Cn ,xn ) → Φ(M ) as n → ∞.

Proof. Observe that a Poisson random variable with mean xn ≥ 1

can bewritten as a sum of ⌊xn⌋ Poisson random variables withmean

xn/⌊xn⌋. Therefore, with (Yk )k ∈N i.i.d. copies of P (xn/⌊xn⌋),

Q (Cn ,xn ) = P
*.
,

⌊xn ⌋∑
k=1

Yk 6 Cn
+/
-

= P
*.
,

1

√
xn

⌊xn ⌋∑
k=1

(
Yk −

xn
⌊xn⌋

)
6

Cn − xn
√
xn

+/
-
.

The lemma now follows from the central limit theorem. �

We now explicitly analyze the asymptotic behavior of the functions

fn (s ), дn (s,t ) and hn (s,t ) for the cases α <
1

2
, α > 1

2
, and α = 1

2
.

Lemma 3 covers most of these results, while Lemma 4 provides the

remaining analysis for дn (s,t ) and hn (s,t ) in case α > 1

2
.

Lemma 3. Let n → ∞. Then,

◦ for α < 1

2
, fn (s ),дn (s,t ) → 1 and hn (s,t ) → e−β (t+1) ;

◦ for α > 1

2
, fn (s ) → Φ (β + s );

◦ for α = 1

2
, fn (s ) → Φ (β + s ), дn (s,t ) → Φ (β + s − 1 − t ) and

hn (s,t ) → e−
1

2
(β+s−1−t )2− 1

2
(β+s )2 .

Proof. We start with the case α < 1

2
. Note that in this case Cn =

⌊n + β/γn⌋. To prove fn (s ) → 1, we apply Lemma 2 with xn =

n exp(−s/
√
n) = n − s

√
n + o

(√
n
)
(so that M = ∞). Along the

same lines, it can be shown that дn (s,t ) → 1.

For the limit of fn (s ) in case α > 1

2
, an application of Lemma 2

with xn = n exp(−s/
√
n) and Cn = ⌊n + β

√
n⌋ leads to

M = lim

n→∞

Cn − xn
√
xn

= lim

n→∞

(β + s )
√
n + o

(√
n
)

√
n − s

√
n + o

(√
n
) = β + s .

Hence, if α > 1

2
, then fn (s ) → Φ (β + s ).
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Next, for дn (s,t ) as α =
1

2
, an application of Lemma 2 to xn =

(n +
√
n) exp(−s/

√
n) etγn and Cn = ⌊n + β

√
n⌋ leads to

M = lim

n→∞

Cn − xn
√
xn

= lim

n→∞

(β + s − 1 − t )
√
n + o

(√
n
)

√
n − (s − 1 − t )

√
n + o

(√
n
) = β + s − 1 − t .

We conclude that if α = 1

2
, then дn (s,t ) → Φ (β + s − 1 − t ).

For hn (s,t ) when α 6 1

2
, we explicitly consider the two compo-

nents of hn (s,t ) separately. In the proceeding calculations, terms

vanishing as n → ∞ will be integrated into o(1). From the first

component of hn (s,t ), we extract the leading terms by applying

Taylor expansions. With sn := 1 − s/
√
n, this component equals

exp

((
n + nα

)
e
− s√

n etγn − ne
− s√

n

)
= exp

(
nα e
− s√

n etγn + ne
− s√

n
(
etγn − 1

))
= exp

(
nα sn (1 + tγn ) + nsn

(
tγn +

1

2

t2γ 2n

)
+ o(1)

)
= exp

((
n + nα

)
tγn + n

α − s
(
nα−

1

2 +
√
ntγn

)
+
1

2

nt2γ 2n + o(1)
)

= exp

(
(t + 1)nα − s (1 + t ) nα−

1

2 +
1

2

nt2γ 2n + o(1)
)
. (12)

Likewise, defining ηn (t ) := 1 − e−tγn + γne
−tγn

, we have for the

second component of hn (s,t ) that(
(1 − γn )e

−tγn
)Cn+1

=
(
(1 − γn ) e

−tγn
)
exp (Cn ln (1 − ηn (t )))

= exp

(
−Cnηn (t ) −

1

2

Cnηn (t )
2 + o(1)

)
= exp

(
−Cn

(
tγn −

1

2

t2γ 2n + γn − tγ
2

n +
1

2

(t + 1)2γ 2n

)
+ o(1)

)
= exp

(
−Cn

(
(t + 1)γn +

1

2

γ 2n

)
+ o(1)

)
. (13)

Multiplying the two components (12) and (13), we conclude that

hn (s,t ) = exp(Hn (s,t ) + o(1)) as n → ∞, with

Hn (s,t ) = (t + 1)
(
nα −Cnγn − sn

α− 1

2

)
+
1

2

γ 2n
(
nt2 −Cn

)
. (14)

If α < 1

2
, many of these terms vanish; noticing nα − nγn → 0,

hn (s,t ) = exp

(
(t + 1)

(
nα −Cnγn

)
+ o(1)

)
= exp

(
(t + 1)

(
nα − nγn − β

)
+ o(1)

)
→ exp (−β (t + 1)) .

If on the other hand α = 1

2
, then with (14), hn (s,t ) equals

exp

(
(t + 1)

(
√
n −

n
√
n + βn

n +
√
n
− s

)
+
1

2

γ 2n
(
nt2 − n

)
+ o(1)

)
→ exp

(
−(t + 1) (β + s − 1) +

1

2

(
t2 − 1

))
= exp

(
1

2

(β + s − t − 1)2 −
1

2

(β + s )2
)
.

This completes the proof of Lemma 3. �

The analysis of the remaining functions, i.e. дn (s,t ) and hn (s,t )
for α > 1

2
, requires a more subtle reasoning. Since дn (s,t ) → 0

and hn (s,t ) → ∞ as n → ∞, we must analyze the product of

the two functions before taking the limit, which can be done by a

change-of-measure argument.

Lemma 4. Let n → ∞. If α > 1

2
, then дn (s,t ) hn (s,t ) → 0.

Proof. Let xn (s,t ) = (n + nα )e
− s√

n etγn ; in the sequel we write

just xn for brevity. In this proof, our first objective is to identify the

asymptotics of дn (s,t ) = P(P (xn ) 6 Cn ). To this end, let Q be an

alternative measure under which the Poisson random variable has

mean Cn , such that

дn (s,t ) = EP ( 1{P ≤ Cn }) = EQ (L1{P ≤ Cn }) ,

with L denoting the likelihood ratio or Radon-Nikodym derivative

L =
dP

dQ
=

(
e−xn (xn )

P

P !

) / (
e−Cn (Cn )

P

P !

)
= eCn−xn

(
xn
Cn

)P
.

We thus arrive at

дn (s,t ) = eCn−xnEQ
(
(xn/Cn )

P
1{P ≤ Cn }

)
.

Define P̄ := (P − Cn )/
√
Cn and recall that, by the central limit

theorem, the distribution of P̄ converges to a standard-normal dis-

tribution in the limit. In terms of this new random variable, we

have

дn (s,t ) = eCn−xn
(
xn
Cn

)Cn
qn , (15)

where

qn = EQ

((
(xn/Cn )

√
Cn

) P̄
1{P̄ ≤ 0}

)
.

We now replace P̄ for n large by a standard-normal random variable,

which can be formally justified by applying the Berry-Esseen bound,

precisely following the lines of the proof of [6, Thm. 3.7.4]. Hence

we obtain, with dn :=
√
Cn ln(xn/Cn ), that

qn ∼

∫
0

−∞

*.
,

(
xn
Cn

) √Cn +/
-

y
1

√
2π

e−y
2/2

dy

=

∫
0

−∞

1

√
2π

exp

(
ydn −

y2

2

)
dy.

Completing the square in the exponent now leads to

qn = exp

(
d2n
2

) ∫
0

−∞

1

√
2π

exp

(
−
1

2

(y − dn )
2

)
dy

= exp

(
d2n
2

)
Φ(−dn ) = exp

(
d2n
2

)
(1 − Φ(dn ))

(16)

using the symmetry of the normal distribution. A known property

of the tail of the normal distribution is

ex
2/2 (1 − Φ(x )) ∼

1

x
√
2π

(17)

as x → ∞ (cf. [9, p. 175]). To use this property it is necessary to

verify that dn goes to∞ as n → ∞. This can be seen by relying on

a Taylor expansion, and recalling that α > 1

2
:

√
Cn ln

xn
Cn
=

√
⌊n + β

√
n⌋ · ln *.

,

(n + nα )e
− s√

n etγn

⌊n + β
√
n⌋

+/
-
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=
√
n + o(n) · ln

(
1 + ω

(
n−

1

2

))
= ω (1) → ∞

as n → ∞, where ω (wn ) denotes a sequence vn for which it holds

that limn→∞vn/wn = ∞. Using property (17) in (16), and substi-

tuting the result in (15), we thus obtain that, as n → ∞,

дn (s,t ) ∼ eCn−xn
(
xn
Cn

)Cn
1

dn
√
2π
.

Multiplying with hn (s,t ), and using (1−γn )e
−tγnxn = ne

−s/
√
n
, it

holds that

дn (s,t ) hn (s,t )

∼ eCn−xn
(
xn
Cn

)Cn
1

dn
√
2π
· exn−ne

− s√
n (

(1 − γn )e
−tγn

)Cn+1
6

1

dn
eCn−ne

− s√
n *.
,

ne
− s√

n

Cn

+/
-

Cn

.

The stated result now follows fromwriting all terms in the exponent

and applying the Taylor expansion to the logarithm:

дn (s,t ) hn (s,t )

6
1

dn
exp

*.
,
Cn − ne

− s√
n +Cn ln

*.
,
1 +

*.
,

ne
− s√

n −Cn
Cn

+/
-

+/
-

+/
-

=
1

dn
exp

*.
,
Cn − ne

− s√
n +Cn

ne
− s√

n −Cn
Cn

+O (1)+/
-
→ 0

as n → ∞. �

We have now collected all the ingredients to establish the asymp-

totic expression for Pn (s,t ) as presented in Theorem 1.

Proof of Theorem 1. The result is a consequence of Lemma 1 when

substituting equations (10), (11), in combination with the functions

that we asymptotically evaluated in Lemmas 3 and 4 (both for

general s,t and for s = t = 0, that is). �

5 MODERATE REPAIR (α = 1

2
)

Now that Theorem 1 has been proved, Corollary 1 provides the

limiting marginal distributions of Bn and Dn when α < 1

2
or

1

2
<

α < 1. In particular, the corollary shows that for these values of

α , Bn and Dn are asymptotically independent. In this section, we

discuss the implications of Theorem 1 for α = 1

2
, which turn out

to be more delicate. In this case, the repair queue size fluctuates

precisely as much as the product queue size, as we pointed out in

Section 2.3. This causes the constraint Bn + Dn 6 Cn to affect the

limiting distributions of both B̄n and D̄n (instead of just either of

them as in Corollary 1). According to Theorem 1, the LST satisfies

Pn (s,t ) → e−sβ
1

1 + t

Ψ(β + s ) − Ψ(β + s − t − 1)

Ψ(β ) − Ψ(β − 1)
, (18)

as n → ∞, where we recall that Ψ(x ) denotes the Mills ratio of

the standard-normal distribution. It is unclear how to invert this

LST, but we can extract meaningful information from it. A crucial

2 4 6 8 10

-0.5

-0.4

-0.3

-0.2

-0.1

Figure 3: Cor(B̄,D̄) for α = 1

2
, as a function of β .

observation is that the limit of Pn (s,t ) no longer factorizes into com-

ponents involving s and t separately, as was the case in Corollary

1. As a result, we conclude that B̄n and D̄n are now asymptotically

dependent. This finding is especially intriguing because for all other
values of α we found asymptotic independence of B̄n and D̄n .

To characterize the dependence that arises, we compute (joint) mo-

ments of B̄n and D̄n exploiting the moment-generating properties

of Pn (s,t ). Let B̄ := limn→∞ B̄n and D̄ := limn→∞ D̄n . Then by

differentiation of (18) and inserting s = t = 0, we have

E
(
B̄
)
= −

Ψ(β − 1)

Ψ(β ) − Ψ(β − 1)
,

E
(
D̄
)
= 1 −

1 + (β − 1)Ψ(β − 1)

Ψ(β ) − Ψ(β − 1)
.

By standard properties of Ψ(·), one can show that E(B̄) < 0 and

E(D̄) < 1. This can be explained by the fact that 0 and 1 are the

expectations of the untruncated distributions as presented in Corol-

lary 1. However, as α = 1

2
is the critical point between the two

cases presented in Corollary 1, it makes sense that the constraint

Bn+Dn 6 Cn has a decreasing effect on both E(B̄) and E(D̄), rather
than just one of them. Furthermore, by computing E(B̄D̄) using
(18), we obtain

Cov

(
B̄,D̄

)
= −

(Ψ(β − 1))2 + Ψ(β ) + (β − 2)Ψ(β )Ψ(β − 1)

(Ψ(β ) − Ψ(β − 1))2
.

Similarly, the Pearson correlation coefficient between B̄ and D̄ can

be derived; see Figure 3. The figure shows that the correlation is

both negative and significant for small β , but that B̄ and D̄ become

independent as β → ∞. This behavior also follows from the con-

straint Bn +Dn 6 Cn : it yields negative correlation, but it vanishes
as β → ∞. In that case,Cn becomes large with respect to Bn andDn ,

nullifying the constraint and removing the source of dependence.

6 NEARLY-INSTANTANEOUS REPAIR (α > 1)

Since Theorem 1 only covers α < 1, it remains to analyze the oppo-

site case in this section. Recall that in Section 2.3, we introduced

normalized versions of Bn and Dn in order to preserve finite mean.

When α > 1 however, the repair speed is so large that the repair

queue size Dn converges to a finite mean random variable (which

was not the case before). In fact, if α > 1, the distribution Dn con-

verges to a degenerate distribution with value 0. Because of this, it
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is no longer necessary to normalize Dn . We will therefore consider

the joint distribution of the random variables B̄n and Dn .

In this regime, a statement similar to Theorem 1 holds, which

is given in the following proposition. For convenience we write

Un (s,t ) := E(e
−s B̄ne−tDn ), where Dn is unscaled.

Proposition 2. For α > 1,

Un (s,t ) ∼ e
1

2
s2 Φ(β + s )

Φ(β )

1 − (1 − γn )

1 − (1 − γn )e−t

as n → ∞.

Proof. The proof relies heavily on its counterpart for α < 1. Ob-

serve that Un (s,t ) = Pn (s,t/γn ). When replacing t by t/γn , the
result immediately follows from Lemma 1, Equation (10) and Lem-

mas 3 and 4. �

As in Corollary 1, we recognize the Laplace-Stieltjes transforms of

a truncated standard-normal distribution, and of a geometric with

parameterγn , so that B̄n andDn are asymptotically independent. In

addition, as n → ∞, B̄n converges in distribution to (N |N 6 β ),
whereas Dn behaves as G (γn ). As expected, for α > 1, γn → 0, so

that the distribution of Dn becomes degenerate.

7 NUMERICAL ILLUSTRATIONS

Corollary 1 describes the convergence in distribution for B̄n and

D̄n when α , 1

2
. However, there is no guarantee on the speed

at which these random variables converge to their limits. In this

section, we assess the pre-limit distributions by means of numerical

experiments. In doing so, we depend on simulation to evaluate

(1), since the exact computation of the normalization constant is

challenging. Indeed, the sums in (3) contain many terms involving

computationally demanding powers and factorials.

In Figure 4 the dots represent an estimated density for B̄n . The
left plot results from taking α = 1, and the standard-normal den-

sity is added for comparison (more precisely, the line is actually

the standard-normal density times the constant 1/Φ(β ), so that

it matches with the truncated normal density for values smaller

than β). The simulation results almost coincide with the truncated

normal density, entailing that the distribution of B̄n is close to its

limiting distribution. The right plot corresponds to α = 1

2
, and

shows a density estimation that is neither a standard-normal nor a

truncated version. Its decline due to the constraint Bn + Dn 6 Cn
is well visible, yet not as sharp as for α > 1

2
.

Figure 5 shows two similar plots for D̄n . Left, where α = −2, the
simulation results are close to the truncated exponential density.

There is no truncation in the right plot (α = 1

2
), but the estimated

density of D̄n is significantly steeper than an exponential density.

As one might expect, the convergence is slower when α is close to
1

2
.

This holds in particular for D̄n , where we need to set α significantly

below
1

2
.

Figure 4: Simulated density of B̄n (dots) with β = 1. On the
left for α = 1 and n = 2000, compared to the appropriate
normal density form (line), on the right for α = 1

2
and n =

500.

Figure 5: Simulated density of D̄n (dots) with β = 2. On the
left for α = −2 and n = 5, compared to the appropriate ex-
ponential density form (line), on the right for α = 1

2
and

n = 1000.
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