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Abstract. We study the long-time asymptotics of the total mass of the solution to the par-
abolic Anderson model (PAM) on a supercritical Galton-Watson random tree with bounded
degrees. We identify the second-order contribution to this asymptotics in terms of a varia-
tional formula that gives information about the local structure of the region where the solution
is concentrated. The analysis behind this formula suggests that, under mild conditions on the
model parameters, concentration takes place on a tree with minimal degree. Our approach
can be applied to finite locally tree-like random graphs, in a coupled limit where both time
and graph size tend to infinity. As an example, we consider the configuration model or, more
precisely, the uniform simple random graph with a prescribed degree sequence.
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1. Introduction and main results

In Section 1.1 we give a brief introduction to the parabolic Anderson model. In Section 1.2
we give the basic notation. In Sections 1.3 and 1.4 we present our results for Galton-Watson
trees and for the configuration model, respectively. In Section 1.5 we discuss these results.

1.1. The PAM and intermittency. The parabolic Anderson model (PAM) concerns the
Cauchy problem for the heat equation with a random potential, i.e., solutions u to the equation

∂tu(t, x) = ∆u(t, x) + ξ(x)u(t, x), t > 0, x ∈X , (1.1)

where X is a space equipped with a Laplacian ∆, and ξ is a random potential on X . The
operator ∆ + ξ is called the Anderson operator. Although Zd and Rd are the most common
choices for X , other spaces are interesting as well, such as Riemannian manifolds or discrete
graphs. In the present paper we study the PAM on random graphs. For surveys on the
mathematical literature on the PAM until 2016, we refer the reader to [A16, K16].

The main question of interest in the PAM is a detailed description of the concentration
effect called intermittency: in the limit of large time the solution u concentrates on small and
well-separated regions in space, called intermittent islands. This concentration effect can be
studied particularly well in the PAM because efficient mathematical tools are available, such
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as eigenvalue expansions and the Feynman-Kac formula. In particular, these lead to a detailed
description of the locations of the intermittent islands, as well as the profiles of the potential
ξ and the solution u inside these islands.

The analysis of intermittency usually starts with a computation of logarithmic large-time
asymptotics of the total mass, called Lyapunov exponents. There is an important distinction
between the annealed setting (i.e., averaged over the random potential) and the quenched
setting (i.e., almost surely with respect to the random potential). Often both Lyapunov
exponents admit explicit descriptions in terms of characteristic variational formulas that
contain information about how the mass concentrates in space, and serve as starting points
for deeper investigations. The ‘annealed’ and the ‘quenched’ variational formula are typically
connected but take two different points of view. They contain two parts: a rate function term
that identifies which profiles of the potential are most favourable for mass concentration, and
a spectral term that identifies which profiles the solution takes inside the intermittent islands.

From now on, we restrict to discrete spaces and to random potentials that consist of i.i.d.
variables. For Zd, the above intermittent picture was verified for several classes of marginal
distributions. It turned out that the double-exponential distribution with parameter % ∈
(0,∞), given by

P(ξ(0) > u) = e−eu/% , u ∈ R, (1.2)

is particularly interesting, because it leads to non-trivial intermittent islands and to interesting
profiles of both potential and solution inside. There are four different classes of potentials,
distinguished by the type of variational formula that emerges and the scale of the diameter of
the intermittent island (cf. [HKM06]). The double-exponential distribution is critical in the
sense that the intermittent islands neither grow nor shrink with time, and therefore represents
a class of its own.

The setup of the present paper contains two features that are novel in the study of the PAM:
(1) we consider a random discrete space, thereby introducing another layer of randomness into
the model; (2) this space has a non-Euclidean topology, in the form of an exponential growth
of the volume of balls as a function of their radius. As far as we are aware, the discrete-space
PAM has so far been studied only on Zd and on two examples of finite deterministic graphs:
the complete graph with n vertices [FM90] and the N -dimensional hypercube with n = 2N

vertices [AGH16]. These graphs have unbounded degrees as n→∞, and therefore the Laplace
operator was equipped with a prefactor that is equal to the inverse of the degree, unlike the
Laplace operator considered here.

Our main target is the PAM on a Galton-Watson tree with bounded degrees. However,
our approach also applies to large finite graphs that are sparse (e.g. bounded degrees) and
locally tree-like (rare loops). As an illustration, we consider here the configuration model or,
more precisely, the uniform simple random graph with prescribed degree sequence. We choose
to work in the almost-sure (or large-probability) setting with respect to the randomnesses of
both graph and potential, and we take as initial condition a unit mass at the root of the
graph. We identify the leading order large-time asymptotics of the total mass, and derive a
variational formula for the correction term. This formula contains a spatial part (identifying
the subgraph on which the concentration takes place) and a profile part (identifying the shape
on that subgraph of both the potential and the solution). Both parts are new. In some cases
we can identify the minimiser of the variational formula. As in the case of Zd, the structure
of the islands does not depend on time: no spatial scaling is necessary.

1.2. The PAM on a graph. We begin with some definitions and notations, and refer the
reader to [A16, K16] for more background on the PAM in the case of Zd.
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Let G = (V,E) be a simple connected undirected graph, either finite or countably infinite.
Let ∆G be the Laplacian on G, i.e.,

(∆Gf)(x) :=
∑
y∈V :
{x,y}∈E

[f(y)− f(x)], x ∈ V, f : V → R. (1.3)

Our object of interest is the non-negative solution of the Cauchy problem for the heat equation
with potential ξ : V → R and localised initial condition,

∂tu(x, t) = (∆Gu)(x, t) + ξ(x)u(x, t), x ∈ V, t > 0,
u(x, 0) = δO(x), x ∈ V, (1.4)

where O ∈ V is referred to as the origin or root of G. We say that G is rooted at O and call
G = (V,E,O) a rooted graph. The quantity u(t, x) can be interpreted as the amount of mass
present at time t at site x when initially there is unit mass at O.

Criteria for existence and uniqueness of the non-negative solution to (1.4) are well-known
for the case G = Zd (see [GM90]), and rely on the Feynman-Kac formula

u(x, t) = EO
[
exp

{∫ t

0
ξ(Xs)ds

}
1l{Xt = x}

]
, (1.5)

where X = (Xt)t≥0 is the continuous-time random walk on the vertices V with jump rate 1
along the edges E, and PO denotes the law of X given X0 = O. We will be interested in the
total mass of the solution,

U(t) :=
∑
x∈V

u(x, t) = EO
[
exp

{∫ t

0
ξ(Xs)ds

}]
. (1.6)

Often we suppress the dependence on G, ξ from the notation. Throughout the paper, we
assume that the random potential ξ = (ξ(x))x∈V consists of i.i.d. random variables satisfying:

Assumption (DE). For some % ∈ (0,∞),

P (ξ(0) ≥ 0) = 1, P (ξ(0) > u) = e−eu/% for u large enough. (1.7)

Under Assumption (DE), ξ(0) ≥ 0 almost surely and ξ(x) has an eventually exact double-
exponential upper tail. The latter restrictions are helpful to avoid certain technicalities that
are unrelated to the main message of the paper and require no new ideas. In particular, (1.7)
is enough to guarantee existence and uniqueness of the non-negative solution to (2.9) on any
discrete graph with at most exponential growth, as can be inferred from the proof of the
Zd-case in [GM98]. All our results remain valid under (1.2) or even milder conditions, e.g.
[GM98, Assumption (F)] plus an integrability condition on the lower tail of ξ(0).

The following characteristic variational problem will turn out to be important for the de-
scription of the asymptotics of U(t) when ξ has a double-exponential tail. Denote by P(V )
the set of probability measures on V . For p ∈ P(V ), define

IE(p) :=
∑
{x,y}∈E

(√
p(x)−

√
p(y)

)2
, JV (p) := −

∑
x∈V

p(x) log p(x), (1.8)

and set

χG(%) := inf
p∈P(V )

[IE(p) + %JV (p)], % ∈ (0,∞). (1.9)

The first term in (1.9) is the quadratic form associated with the Laplacian, describing the
solution u(·, t) in the intermittent islands, while the second term in (1.9) is the Legendre
transform of the rate function for the potential, describing the highest peaks of ξ(·) inside the
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intermittent islands. See Section 1.5 for its relevance and interpretation, and Section 2.3 for
alternate representations.

1.3. Results: Galton-Watson Trees. In this section we focus on our first example of a
random graph.

Let D0, Dg be random variables taking values in N = {1, 2, 3, . . . }. The Galton-Watson
tree with initial degree distribution D0 and general degree distribution Dg is constructed as
follows. Start with a root vertex O, and attach edges from O to D0 first-generation vertices.
Proceed recursively: after having attached the n-th generation of vertices, attach to each
one of them an independent (Dg − 1)-distributed number of new vertices, whose union gives
the (n + 1)-th generation of vertices. Denote by GW = (V,E) the graph obtained, by P its
probability law, and by E the corresponding expectation. The law of Dg − 1 is the offspring
distribution of GW, and the law of Dg is the degree distribution. Write supp(Dg) to denote
the set of degrees that are taken by Dg with positive probability.

We will work under the following bounded-degree assumption:

Assumption (BD).

dmin := min supp(Dg) ≥ 2, E[Dg] > 2, (1.10)

and, for some dmax ∈ N, dmax ≥ dmin,

max supp(Dg) ≤ dmax. (1.11)

Under Assumption (BD), GW is almost surely an infinite tree. Moreover,

lim
r→∞

log |Br(O)|
r

= logE[Dg − 1] =: ϑ > 0 P− a.s., (1.12)

where Br(O) is the ball of radius r around O in the graph distance (see e.g. [LP16, pp.134–
135]). Note that Assumption (BD) allows deterministic trees with constant offspring dmin− 1
(provided dmin ≥ 3).

To state our main result, we define the constant

χ̃(%) := inf
{
χT (%) : T infinite tree with degrees in supp(Dg)

}
(1.13)

with χG(%) defined in (1.9).

Theorem 1.1. [Quenched Lyapunov exponent for the PAM on GW] Let G = GW =
(V,E,O) be the rooted Galton-Watson random tree satisfying Assumption (BD), and let ϑ be
as in (1.12). Let ξ = (ξ(x))x∈V be an i.i.d. potential satisfying Assumption (DE). Let U(t)
denote the total mass at time t of the solution u to the PAM on GW. Then, as t→∞,

1

t
logU(t) = % log

(
%tϑ

log log t

)
− %− χ̃(%) + o(1), (P×P)-a.s. (1.14)

The proof of Theorem 1.1 is given in Section 4.

For % sufficiently large we can identify the infimum in (1.13). For d ≥ 2, denote by Td the
infinite homogeneous tree with degree equal to d at every node.

Theorem 1.2. [Identification of the minimiser] If % ≥ 1/ log(dmin + 1), then χ̃(%) =
χTdmin

(%).

The proof of Theorem 1.2 is given in Section A with the help of a comparison argument that
appends copies of the infinite dmin-tree to itself.
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1.4. Results: Configuration Model. In this section we focus on our second example of a
random graph.

For n ∈ N, let d(n) = (d(n)

i )ni=1 be a collection of positive integers. The configuration model
with degree sequence d(n) is a random multigraph (i.e., a graph that may have self-loops and
multiple edges) on the vertex set Vn := {1, . . . , n} defined as follows. To each i ∈ Vn, attach
d(n)

i ‘half-edges’. After that, construct edges by successively attaching each half-edge uniformly
at random to a remaining half-edge. For this procedure to be successful, we must require that

d(n)

1 + · · ·+ d(n)
n is even for every n ∈ N. (1.15)

Draw a root On uniformly at random from Vn. Denote by CMn = (Vn, En,On) the rooted
multigraph thus obtained, and by Pn its probability law. For further details, we refer the
reader to [vdH17a, Chapter 7].

We will work under the following assumption on d(n):

Assumption (CM): The degree sequences d(n) = (d(n)

i )ni=1, n ∈ N, satisfy (1.15). Moreover,

(1) There exists an N-valued random variable D such that d(n)

On ⇒ D as n→∞.
(2) dmin := min supp(D) ≥ 3.
(3) There exists a dmax ∈ N such that 2 ≤ d(n)

i ≤ dmax for all n ∈ N and 1 ≤ i ≤ n.

In particular, 3 ≤ dmin ≤ dmax < ∞ and D ≤ dmax almost surely. It is possible to take d(n)

random. In that case Assumption (CM) must be required almost surely or in probability with
respect to the law of d(n), and our results below must be interpreted accordingly.

Proposition 1.3. [Connectivity and simplicity of CMn] Under Assumption (CM),

lim
n→∞

Pn(CMn is a simple graph) = e−
ν
2
− v

2

4 , (1.16)

where

ν :=
E[D(D − 1)]

E[D]
∈ [2,∞). (1.17)

Moreover,
lim
n→∞

Pn

(
CMn is connected | CMn is simple

)
= 1. (1.18)

Proof. See [vdH17a, Theorem 7.12] and [FvdH17, Theorem 2.3]. �

Proposition 1.3 tells us that for large n the set

Un(d(n)) :=
{

simple connected graphs on {1, . . . , n} with degrees d(n)

1 , . . . , d(n)
n

}
(1.19)

is non-empty. Hence, we may consider the uniform simple random graph UGn that is drawn
uniformly at random from Un(d(n)).

Proposition 1.4. [Conditional law of CMn given simplicity] Under the conditional law
Pn( · | CMn is simple), CMn has the same law as UGn.

Proof. See [vdH17a, Proposition 7.15]. �

As usual, for a sequence of events (An)n∈N, we say that An occurs with high probability
(whp) as n→∞ if the probability of An tends to 1 as n→∞. This notion does not require
the events to be defined on the same probability space. We denote by distTV(X,Y ) the total
variation distance between two random variables X and Y (i.e., between their laws). Let

Φn :=
( 1

n
∨ distTV(dOn , D)

)−1
, (1.20)

and note that, by Assumption (CM), Φn →∞ as n→∞.
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Theorem 1.5. [Quenched Lyapunov exponent for the PAM on UGn] For any n ∈ N,
let G = UGn be the uniform simple random graph with degree sequence d(n) satisfying Assump-
tion (CM). For any n ∈ N, let ξ be an i.i.d. potential on Vn satisfying Assumption (DE). Let
Un(t) denote the total mass of the solution to the PAM on G = UGn as defined in Section 1.2.
Fix a sequence of times (tn)n∈N with tn →∞ and tn log tn = o(log Φn) as n→∞. Then, with
high P×Pn-probability as n→∞,

1

tn
logUn(tn) = % log

(
%tnϑ

log log tn

)
− %− χ̃(%) + o(1), (1.21)

where ϑ := log ν > 0 with ν as in (1.17), and χ̃(%) is as in (1.13).

The proof of Theorem 1.5 is given in Section 5. The main ingredients in the proof are
Theorem 1.1 and a well-known comparison between the configuration model and an associated
Galton-Watson tree inside a slowly-growing ball, from which the condition on tn originates.

Condition (1) in Assumption (CM) is a standard regularity condition. Conditions (2) and
(3) provide easy access to results such as Propositions 1.3–1.4 above. As examples of degree
sequences satisfying Assumption (CM) we mention:

• Constant degrees. In the case where di = d ≥ 3 for a deterministic d ∈ N and all
1 ≤ i ≤ n, we have dOn = D = d almost surely, and UGn is a uniform regular random
graph. To respect (1.15), it is enough to restrict to n such that nd is even. In this
case distTV(dOn , D) = 0, and so Φn = n in (1.20).
• Random degrees. In the case where (di)i∈N forms an i.i.d. sequence taking values in
{3, . . . , dmax}, classical concentration bounds (e.g. Azuma’s inequality) can be used to
show that, for any γ ∈ (0, 1

2),

dTV(dOn , D) = o(n−γ) almost surely as n→∞, (1.22)

and so Φn � nγ . The condition in (1.15) can be easily satisfied after replacing dn
by dn + 1 when d1 + · · · + dn is odd, which does not affect (1.22). With this change,
Assumption (CM) is satisfied. For more information about CMn with i.i.d. degrees,
see [vdH17a, Chapter 7].

1.5. Discussion. Our main results, Theorems 1.1 and 1.5, identify the quenched logarithmic
asymptotics of the total mass of the PAM. Our proofs show that the first term in the asymp-
totics comes from the height of the potential in an intermittent island, the second term −%
from the probability of a quick sprint by the random walk in the Feynman-Kac formula from
O to the island, and the third term χ̃(%) from the structure of the island and the profile of the
potential inside. Below we explain how each of these three terms comes about. Much of what
follows is well-known from the study of the PAM on Zd (see also [K16]), but certain aspects
are new and derive from the randomness of the ambient space and its exponential growth.

I Galton-Watson tree.

• First and second terms. The large-t asymptotics of the Feynman-Kac formula (2.10) for
U(t) comes from those random walk paths (X(s))s∈[0,t] that run within st time units to some
favorable local region of the graph (the intermittent island) and subsequently stay in that
region for the rest of the time. In order to find the scale rt of the distance to the region and
the time st of the sprint, we have to balance and optimise a number of crucial quantities: the
number of sites in the ball Brt(O) around O with radius rt, the scale of the maximal value
of the potential within that ball, the probability to reach that ball within time st, and the
gain from the Feynman-Kac formula from staying in that ball during t − st time units. One
key ingredient is the well-known fact that the maximum of m independent random variables
satisfying Assumption (DE) is asymptotically equal to hm ≈ % log logm for large m. Another
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key ingredient is that Brt(O) has approximately ertϑ vertices (see (1.12)). Hence, this ball
contains values of the potential of height ≈ hertϑ ≈ % log (rtϑ), not just at one vertex but on
a cluster of vertices of arbitrary finite size. The contribution from staying in such as cluster
during ≈ t time units yields the first term of the asymptotics, where we still need to identify
rt. A slightly more precise calculation, involving the probabilistic cost to run within st time
units over rt space units and to afterwards gain a mass of size (t− st)% log (rtϑ), reveals that
the optimal time is st ≈ rt/% log rt. Optimising this together with the first term % log (rtϑ)
over rt, we see that the optimal distance is rt = %t/ log log t. The term −% comes from the
probability of making rt steps within st = rt/% log rt time units.

• Third term. The variational formula χ̃G(%) describes the second-order asymptotics of the
gain of the random walk from staying ≈ t time units in an optimal local region (the first-
order term has already been identified as % log (rtϑ)). Indeed, pick some finite tree T that
is admissible in (1.13), i.e., has positive probability to occur locally in the graph G = GW.
Many copies of T occur disjointly with positive density in G. In particular, they appear
within the ball Brt(O) a number of times that is proportional to the volume of the ball.
By standard extreme-value analysis, on one of these many copies of T the random potential
achieves an approximately optimal height (≈ % log (rtϑ)) and shape. The optimality of the
shape is measured in terms of the negative local Dirichlet eigenvalue −λT (ξ) of ∆G + ξ inside
T . The shapes q that ξ can assume locally are those that have a large-deviation rate value
L(q) =

∑
x eq(x)/% at most 1 (note that L(q) measures the probabilistic cost of the shape q on

an exponential scale). All allowed shapes q are present locally at some location inside the ball
Brt(O) for large t. Each of these locations can be used by the random walk as an intermittent
island. Optimising over all allowed shapes q, we see that the second-order term of the long
stay in that island must indeed be expressed by the term

sup
q : L(q)≤1

[−λT (q)]. (1.23)

When T is appropriately chosen, this number is close to the number χ̃(%) defined in (1.13)
(cf. Proposition 2.4). This completes the heuristic explanation of the asymptotics in (1.14).

I Configuration Model.

The analogous assertion for the configuration model in (1.21) is understood in the same way,
ignoring the fact that the graph is now finite, and that size and time are coupled. As to the
additional growth constraint on tn log tn in Theorem 1.5: its role is to guarantee that the ball
Brtn (O) is small enough to contain no loop with high probability. In fact, this ball is very
close in distribution to the same ball in an associated Galton-Watson tree (cf. Proposition 5.1),
which allows us to carry over our result.

Minimal degree tree is optimal. What is a heuristic explanation for our result in Theorem
1.2 that the optimal tree is an infinitely large homogeneous tree of minimal degree dmin at
every vertex? The first term in (1.9), the quadratic form associated with the Laplacian, has
a spread-out effect. Apparently, the self-attractive effect of the second term is not strong
enough to cope with this, as the super-linear function p 7→ p log p in the definition of JV in
(1.8) is ‘weakly superlinear’. This suggests that the optimal structure should be infinitely
large (also on Zd the optimal profile is positive anywhere in the ambient space Zd). The first
term is obviously monotone in the degree, which explains why the infinite tree with minimal
degree optimises the formula.

Hurdles. The exponential growth of the graph poses a number of technical difficulties that
are not present for the PAM on Zd or Rd. Indeed, one of the crucial points in the proof of the
upper bound for the large-time asymptotics is to restrict the infinite graph G to some finite but
time-dependent subgraph (in our case the ballBrt(O)). On Zd, a reflection technique that folds



8 FRANK DEN HOLLANDER, WOLFGANG KÖNIG, RENATO S. DOS SANTOS

Zd into a box of an appropriate size gives an upper bound at the cost of a negligible boundary
term. For exponentially growing graphs, however, this technique can no longer be used because
the boundary of a large ball is comparable in size to the volume of the ball. Therefore we
need to employ and adapt an intricate method developed on Zd for deriving deeper properties
of the PAM, namely, Poisson point process convergence of all the top eigenvalue-eigenvector
pairs and asymptotic concentration in a single island. This method relies on certain path
expansions, which are developed in Section 3 and rely on results from [BKS18].

1.6. Outline. The remainder of the paper is organised as follows. In Section 2 we collect
some basic notations and facts about graphs, spectral objects, alternate representations of
the characteristic formula χ̃G(%), and the potential landscape. In Section 3 we employ a path
expansion technique to estimate the contribution to the Feynman-Kac formula coming from
certain specific classes of paths. In Section 4 we prove Theorem 1.1. In Section 5 we prove
Theorem 1.5. In Appendix A we analyse the behavior of the variational formula χT for trees
T under certain glueing operations, and prove Theorem 1.2.

2. Preliminaries

In this section we gather some facts that will be useful in the remainder of the paper. In
particular, we transfer some basic properties of the potential landscape derived in [BK16] and
[BKS18] for the Euclidean-lattice setting to the sparse-random-graph setting. In Section 2.1
we describe the classes of graphs we will work with. In Section 2.2 we derive spectral bounds
on the Feynman-Kac formula. In Section 2.3 we provide alternative representations for the
constant χ in (1.9). In Section 2.4 we obtain estimates on the maximal height of the potential
in large balls as well as on the sizes and local eigenvalues of the islands where the potential is
close to maximal. In Section 2.5 we obtain estimates on the heights of the potential seen along
self-avoiding paths and on the number of islands where the potential is close to maximal.

2.1. Graphs. All graphs considered in the paper are simple, connected and undirected, and
are either finite or countably infinite. For a graph G = (V,E), we denote by dist(x, y) =
distG(x, y) the graph distance between x, y ∈ V , and by

deg(x) = degG(x) := #{y ∈ V : {y, x} ∈ E}, (2.1)

the degree of the vertex x ∈ V . The ball of radius ` > 0 around a vertex x is defined as

B`(x) = BG
` (x) := {y ∈ V : distG(y, x) ≤ `}, L` := |B`|. (2.2)

For a rooted graph G = (V,E,O), the distance to the root is defined as

|x| := distG(x,O), x ∈ V. (2.3)

The classes of graphs that we will consider are as follows. Fix a parameter dmax ∈ N. For
r ∈ N0 = N ∪ {0}, define

Gr :=
{

simple connected undirected rooted graphs G=(V,E,O) with
V finite or countable, |V |≥r+1 and maxx∈V degG(x)≤dmax

}
. (2.4)

Note that if G ∈ Gr, then Lr = |Br| ≥ r + 1. Also define

G∞ =
⋂
r∈N0

Gr =
{

simple connected undirected rooted graphs G=(V,E,O) with
V countable, |V |=∞ and maxx∈V degG(x)≤dmax

}
. (2.5)

When dealing with infinite graphs, we will be interested in those that have an exponential
growth. Thus we define, for ϑ > 0,

G(ϑ)
∞ =

{
G ∈ G∞ : lim

r→∞

logLr
r

= ϑ

}
. (2.6)
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Note that GW ∈ G
(ϑ)
∞ almost surely, with ϑ as in (1.12).

2.2. Spectral bounds. Let G = (V,E) be a simple connected graph with maximal degree
dmax ∈ N, where the vertex set V may be finite or countably infinite.

We recall the Rayleigh-Ritz formula for the principal eigenvalue of the Anderson Hamil-
tonian. For Λ ⊂ V and q : V → [−∞,∞), let λ(1)

Λ (q;G) denote the largest eigenvalue of the
operator ∆G + q in Λ with Dirichlet boundary conditions on V \Λ. More precisely,

λ(1)

Λ (q;G) := sup
{
〈(∆G + q)φ, φ〉`2(V ) : φ ∈ RV , suppφ ⊂ Λ, ‖φ‖`2(V ) = 1

}
. (2.7)

We will often omit the superscript “(1)”, i.e., write λΛ(q;G) = λ(1)

Λ (q;G), and abbreviate
λG(q) := λV (q;G). When there is no risk of confusion, we may also suppress G from the
notation, and omit q when q = ξ.

Here are some straightforward consequences of the Rayleigh-Ritz formula:

(1) For any Γ ⊂ Λ,

max
z∈Γ

q(z)− dmax ≤ λ(1)

Γ (q;G) ≤ λ(1)

Λ (q;G) ≤ max
z∈Λ

q(z). (2.8)

(2) The eigenfunction corresponding to λ(1)

Λ (q;G) can be taken to be non-negative.
(3) If q is real-valued and Γ ( Λ are finite and connected in G, then the middle inequality

in (2.8) is strict and the non-negative eigenfunction corresponding to λ(1)

Λ (q;G) is
strictly positive.

In what follows we state some spectral bounds for the Feynman-Kac formula. These bounds
are deterministic, i.e., they hold for any fixed realisation of the potential ξ ∈ RV .

Inside G, fix a finite connected subset Λ ⊂ V , and let HΛ denote the Anderson Hamiltonian
in Λ with zero Dirichlet boundary conditions on Λc = V \Λ (i.e., the restriction of the operator
HG = ∆G + ξ to the class of functions supported on Λ). For y ∈ Λ, let uyΛ be the solution of

∂tu(x, t) = (HΛu)(x, t), x ∈ Λ, t > 0,
u(x, 0) = 1ly(x), x ∈ Λ,

(2.9)

and set UyΛ(t) :=
∑

x∈Λ u
y
Λ(x, t). The solution admits the Feynman-Kac representation

uyΛ(x, t) = Ey
[
exp

{∫ t

0
ξ(Xs)ds

}
1l{τΛc > t,Xt = x}

]
, (2.10)

where τΛc is the hitting time of Λc. It also admits the spectral representation

uyΛ(x, t) =

|Λ|∑
k=1

etλ
(k)
Λ φ(k)

Λ (y)φ(k)

Λ (x), (2.11)

where λ(1)

Λ ≥ λ
(2)

Λ ≥ · · · ≥ λ
(|Λ|)
Λ and φ(1)

Λ , φ(2)

Λ , . . . , φ(|Λ|)
Λ are, respectively, the eigenvalues and the

corresponding orthonormal eigenfunctions of HΛ. These two representations may be exploited
to obtain bounds for one in terms of the other, as shown by the following lemma.

Lemma 2.1. [Bounds on the solution] For any y ∈ Λ and any t > 0,

etλ
(1)
Λ φ(1)

Λ (y)2 ≤ Ey
[
e
∫ t
0 ξ(Xs)ds1l{τΛc>t,Xt=y}

]
≤ Ey

[
e
∫ t
0 ξ(Xs)ds1l{τΛc>t}

]
≤ etλ

(1)
Λ |Λ|1/2. (2.12)

Proof. The first and third inequalities follow from (2.10–2.11) after a suitable application of
Parseval’s identity. The second inequality is elementary. �
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The following lemma bounds the Feynman-Kac formula integrated up to an exit time.

Lemma 2.2. [Mass up to an exit time] For any y ∈ Λ and γ > λ(1)

Λ ,

Ey
[
exp

{∫ τΛc

0
(ξ(Xs)− γ) ds

}]
≤ 1 +

dmax|Λ|
γ − λ(1)

Λ

. (2.13)

Proof. See [GKM07, Lemma 4.2]. �

The following lemma provides control on the principal eigenfunction.

Lemma 2.3. [Representation of the principal eigenfunction] For any x, y ∈ Λ,

φ(1)

Λ (x)

φ(1)

Λ (y)
= Ex

[
exp

{∫ τy

0

(
ξ(Xu)− λ(1)

Λ

)
du

}
1l{τy < τΛc}

]
. (2.14)

Proof. See [MP16, Proposition 3.3]. �

2.3. About the constant χ. We next introduce alternative representations for χ in (1.9) in
terms of a ‘dual’ variational formula. Fix % ∈ (0,∞) and a graph G = (V,E). The functional

LV (q; %) :=
∑
x∈V

eq(x)/% ∈ [0,∞], q : V → [−∞,∞), (2.15)

plays the role of a large deviation rate function for the potential ξ in V (compare with (1.7)).
Henceforth we suppress the superscript “(1)” from the notation for the principal eigenvalue
(2.7), i.e., we write

λΛ(q;G) = λ(1)

Λ (q;G), Λ ⊂ V, (2.16)

and abbreviate λG(q) = λV (q;G). We also define

χ̂Λ(%;G) := − sup
q : V→[−∞,∞),
LV (q;%)≤1

λΛ(q;G) ∈ [0,∞), χ̂G(%) := χ̂V (%;G). (2.17)

The condition LV (q; %) ≤ 1 on the supremum above ensures that the potentials q have a
fair probability under the i.i.d. double-exponential distribution. Finally, for an infinite rooted
graph G = (V,E,O), we define

χ(0)

G (ρ) := inf
r>0

χ̂Br(%;G). (2.18)

Both χ(0) and χ̂ give different representations for χ.

Proposition 2.4. [Alternative representations for χ] For any graph G = (V,E) and any
Λ ⊂ V ,

χ̂Λ(%;G) ≤ χG(%), χ̂V (%;G) = χ̂G(%) = χG(%). (2.19)

If G = (V,E,O) ∈ G∞, then

χ(0)

G (%) = lim
r→∞

χ̂Br(%;G) = χG(%). (2.20)

Proposition 2.4 will be proved in Section A.1.



THE PARABOLIC ANDERSON MODEL ON A GALTON-WATSON TREE 11

2.4. Potentials and islands. We next consider properties of the potential landscape. Recall
that (ξ(x))x∈V are i.i.d. double-exponential random variables. Set

aL := % log log(L ∨ ee). (2.21)

The next lemma shows that aLr is the leading order of the maximum of ξ in Br.

Lemma 2.5. [Maximum of the potential] Fix r 7→ gr > 0 with limr→∞ gr =∞. Then

sup
G∈Gr

P

(∣∣∣∣max
x∈Br

ξ(x)− aLr
∣∣∣∣ ≥ gr

logLr

)
≤ max

{
1

r2
, e
− gr
%

}
∀ r > 2e2. (2.22)

Moreover, for any ϑ > 0 and any G ∈ G
(ϑ)
∞ , P-almost surely eventually as r →∞,∣∣∣∣max

x∈Br
ξ(x)− aLr

∣∣∣∣ ≤ 2% log r

ϑr
. (2.23)

Proof. Without loss of generality, we may assume that gr ≤ 2% log r. Fix G ∈ Gr and estimate

P

(
max
x∈Bn

ξ(x) ≤ aLr −
gr

logLr

)
= e
− 1
%
Lr(logLr)e

− gr
% logLr ≤ e

− r log r

e2% ≤ e
− gr
% , (2.24)

provided r > 2e2. On the other hand, using ex ≥ 1 + x, x ∈ R, we estimate

P

(
max
x∈Bn

ξ(x) ≥ aLr +
gr

log r

)
= 1−

(
1− e−e

log logLr+
gr

% log r

)Lr
≤ e
− gr
% . (2.25)

Noting that the bounds above do not depend on G, so the case G ∈ Gr is concluded.

For the case G ∈ G
(ϑ)
∞ , let gr := 3

2% log r. Note that the right-hand side of (2.22) is summable
over r ∈ N, so that, by the Borel-Cantelli lemma,∣∣∣∣max

x∈Br
ξ(x)− aLr

∣∣∣∣ < gr
logLr

<
2% log r

ϑr
P-almost surely eventually as r →∞. �

For a fixed rooted graph G = (V,E,O) ∈ Gr, we define sets of high excedances of the
potential in Br as follows. Given A > 0, let

Πr,A = Πr,A(ξ) := {z ∈ Br : ξ(z) > aLr − 2A} (2.26)

be the set vertices in Br where the potential is close to maximal. For a fixed α ∈ (0, 1), define

Sr := (log r)α (2.27)

and set
Dr,A = Dr,A(ξ) := {z ∈ Br : distG(z,Πr,A) ≤ Sr} ⊃ Πr,A, (2.28)

i.e., Dr,A is the Sr-neighbourhood of Πr,A. Let Cr,A denote the set of all connected components
of Dr,A in G, which we call islands. For C ∈ Cr,A, let

zC := argmax{ξ(z) : z ∈ C} (2.29)

be the point with highest potential within C. Since ξ(0) has a continuous law, zC is P-a.s. well
defined for all C ∈ Cr,A.

The next lemma gathers some useful properties of Cr,A.

Lemma 2.6. [Maximum size of the islands] For every A > 0, there exists MA ∈ N such
that the following holds. For a graph G ∈ Gr, define the event

Br :=
{
∃ C ∈ Cr,A with |C ∩Πr,A| > MA

}
. (2.30)

Then
∑

r∈N0
supG∈Gr

P(Br) <∞. In particular,

lim
r→∞

sup
G∈Gr

P(Br) = 0, (2.31)
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and, for any fixed G ∈ G∞, P-almost surely eventually as r → ∞, Br does not occur. Note
that

on Bc
r all C ∈ Cr,A satisfy: |C ∩Πr,A| ≤MA, diamG(C) ≤ 2MASr, |C| ≤MAd

Sr
max. (2.32)

Proof. The claim follows from a straightforward estimate based on (1.7) (see [BK16, Lemma
6.6]). �

Apart from the dimensions, it will be also important to control the principal eigenvalues of

islands in Cr,A. For this we restrict to graphs in G
(ϑ)
∞ .

Lemma 2.7. [Principal eigenvalues of the islands] For any ϑ > 0 and any G ∈ G
(ϑ)
∞ ,

P-almost surely eventually as r →∞,

all C ∈ Cr,A satisfy: λ(1)

C (ξ;G) ≤ aLr − χ̂C(%;G) + ε. (2.33)

Proof. We follow [GM98, Lemma 2.11]. Let ε > 0, G = (V,E,O) ∈ G
(ϑ)
∞ , and define the event

Br :=
{

there exists a connected subset Λ⊂V with Λ∩Br 6=∅,
|Λ|≤MAd

Sr
max and λ

(1)
Λ (ξ;G)≥aLr−χ̂Λ(%;G)+ε

}
(2.34)

with MA as in Lemma 2.6. Note that, by (1.7), eξ(x)/% is stochastically dominated by C ∨E,
where E is an Exp(1) random variable and C > 0 is a constant. Thus, for any Λ ⊂ V , using

(2.17), taking γ :=
√

eε/% > 1 and applying Markov’s inequality, we may estimate

P
(
λ(1)

Λ (ξ;G) ≥ aLr − χ̂Λ(%;G) + ε
)
≤ P (LΛ(ξ − aLr − ε) > 1) = P

(
γ−1LΛ(ξ) > γ logLr

)
≤ e−γ logLrE[eγ

−1LΛ(ξ)] ≤ e−γ logLrK |Λ|γ
(2.35)

for some constant Kγ ∈ (1,∞). Next note that, for any x ∈ Br, n ∈ N, the number of
connected subsets Λ ⊂ V with x ∈ Λ and |Λ| = n is at most ec◦n for some c◦ = c◦(dmax) > 0
(see e.g. [Gr99, Proof of Theorem (4.20)]). Using a union bound and applying logLr ∼ ϑr,
we estimate, for some constants c1, c2 > 0,

P(Br) ≤ e−(γ−1) logLr

bMAd
Sr
maxc∑

n=1

ec◦nKn
γ ≤ c1 exp

{
−1

2ϑr + c2d
(log r)α

max

}
≤ e−

1
3ϑr (2.36)

when r is large. Now the Borel-Cantelli lemma implies that, P-almost surely eventually as
r →∞, Br does not occur. The proof is completed by invoking Lemma 2.6. �

For later use, we state the consequence for GW in terms of χ̃(ρ) in (1.13).

Corollary 2.8. [Uniform bound on principal eigenvalue of the islands] For G = GW
as in Section 1.3, ϑ > as in (1.12), and any ε > 0, P×P-almost surely eventually as r →∞,

max
C∈Cr,A

λ(1)

C (ξ;G) ≤ aLr − χ̃(%) + ε. (2.37)

Proof. First note that GW ∈ G
(ϑ)
∞ almost surely, so Lemma 2.7 applies. By Lemma 2.5,

for any constant C > 0, the maximum of ξ in a ball of radius CSr around O is of order
O(log log r). This means that O is distant from Πr,A, in particular, dist(O, Dr,A) ≥ 2 almost
surely eventually as r → ∞. For C ∈ Cr,A, let TC be the infinite tree obtained by attaching
to each x ∈ ∂C := {y /∈ C : ∃z ∈ C with z ∼ y} 63 O an infinite tree with constant offspring
dmin − 1. Then TC is an infinite tree with degrees in supp(Dg) and, by Proposition 2.4,

χ̂C(%;GW) = χ̂C(%;TC) ≤ χTC(%) ≤ χ̃(%). �
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2.5. Connectivity. We again work in the setting of Section 2.1. We recall the following
Chernoff bound for a Binomial random variable Bin(n, p) with parameters n, p (see e.g.
[BKS18, Lemma 5.9]):

P (Bin(n, p) ≥ u) ≤ exp

{
−u
(

log
u

np
− 1

)}
∀u > 0. (2.38)

Lemma 2.9. [Number of intermediate peaks of the potential] For any β ∈ (0, 1) and
any ε ∈ (0, β/2), the following holds. For G ∈ Gr and a self-avoiding path π in G, set

Nπ = Nπ(ξ) := |{z ∈ supp(π) : ξ(z) > (1− ε)aLr}|. (2.39)

Define the event

Br :=
{

there exists a self-avoiding path π in G with

supp(π)∩Br 6=∅, | supp(π)|≥(logLr)β and Nπ>
| supp(π)|
(logLr)ε

}
. (2.40)

Then
∑

r∈N0
supG∈Gr

P(Br) <∞. In particular,

lim
r→∞

sup
G∈Gr

P(Br) = 0 (2.41)

and, for any fixed G ∈ G∞, P-almost surely eventually as r →∞, all self-avoiding paths π in

G with supp(π) ∩Br 6= ∅ and | supp(π)| ≥ (logLr)
β satisfy Nπ ≤ | supp(π)|

(logLr)ε
.

Proof. Fix β ∈ (0, 1) and ε ∈ (0, β/2). For any G ∈ Gr, (1.7) implies

pr := P(ξ(0) > (1− ε)aLr) = exp
{
−(logLr)

1−ε} . (2.42)

Fix x ∈ Bn and k ∈ N. The number of self-avoiding paths π in Br with | supp(π)| = k and
π0 = x is at most dkmax. For such a π, the random variable Nπ has a Bin(pr, k)-distribution.
Using (2.38) and a union bound, we obtain

P
(
∃ self-avoiding π with | supp(π)| = k, π0 = x and Nπ > k/(logLr)

ε
)

≤ exp

{
−k
(

(logLr)
1−2ε − log dmax −

1 + ε log logLr
(logLr)ε

)}
. (2.43)

Note that, since Lr > r and the function x 7→ log log x/(log x)ε is eventually decreasing, for
r large enough and uniformly over G ∈ Gr, the expression in parentheses above is at least
1
2(logLr)

1−2ε. Summing over k ≥ (logLr)
β and x ∈ Br, we get

P
(
∃ self-avoiding π such that | supp(π)| ≥ (logLr)

β and (2.39) does not hold
)

≤ 2Lr exp
{
−1

2(logLr)
1+β−2ε

}
≤ c1 exp

{
−c2(logLr)

1+δ
} (2.44)

for some positive constants c1, c2, δ, uniformly over G ∈ Gr. Since Lr > r, (2.44) is summable
in r (uniformly over G ∈ Gr). The proof is concluded invoking the Borel-Cantelli lemma. �

A similar computation bounds the number of high exceedances of the potential.

Lemma 2.10. [Number of high exceedances of the potential] For any A > 0 there is
a C ≥ 1 such that, for all δ ∈ (0, 1), the following holds. For G ∈ Gr and a self-avoiding path
π in G, let

Nπ := |{x ∈ supp(π) : ξ(x) > aLr − 2A}|. (2.45)

Define the event

Br :=

{
there exists a self-avoiding path π in G with

supp(π)∩Br 6=∅, | supp(π)|≥C(logLr)δ and Nπ>
| supp(π)|
(logLr)δ

}
. (2.46)
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Then
∑

r∈N0
supG∈Gr

P(Br) <∞. In particular,

lim
r→∞

sup
G∈Gr

P(Br) = 0 (2.47)

and, for any fixed G ∈ G∞, P-almost surely eventually as r →∞, all self-avoiding paths π in
G with supp(π) ∩Br 6= ∅ and | supp(π)| ≥ C(logLr)

δ satisfy

Nπ = |{x ∈ supp(π) : ξ(x) > aLr − 2A}| ≤ | supp(π)|
(logLr)δ

. (2.48)

Proof. Proceed as for Lemma 2.9, noting that this time

pr := P
(
ξ(0) > aLr − 2A

)
= L−εr (2.49)

where ε = e
− 2A

% , and taking C > 2/ε. �

3. Path expansions

We again work in the setting of Section 2.1. In the following, we develop a way to bound the
contribution of certain specific classes of paths to the Feynman-Kac formula. In Section 3.1 we
state a key proposition reducing the entropy of paths. This proposition is proved in Section 3.4
with the help of a lemma bounding the mass of an equivalence class of paths, which is stated
and proved in Section 3.3. The proof of this lemma requires two further lemmas controlling
the mass of the solution along excursions, which are stated and proved in Section 3.2.

3.1. Key proposition. Fix a graph G = (V,E,O) ∈ Gr. We define various sets of nearest-
neighbour paths in G as follows. For ` ∈ N0 and subsets Λ,Λ′ ⊂ V , put

P`(Λ,Λ
′) :=

{
(π0, . . . , π`) ∈ V `+1 :

π0 ∈ Λ, π` ∈ Λ′,
{πi, πi−1} ∈ E ∀ 1 ≤ i ≤ `

}
,

P(Λ,Λ′) :=
⋃
`∈N0

P`(Λ,Λ
′),

(3.1)

and set

P` := P`(V, V ), P := P(V, V ). (3.2)

When Λ or Λ′ consists of a single point, we write x instead of {x}. For π ∈P`, we set |π| := `.
We write supp(π) := {π0, . . . , π|π|} to denote the set of points visited by π.

Let X = (Xt)t≥0 be the continuous-time random walk on G that jumps from x ∈ V to
any neighbour y ∼ x with rate 1. We denote by (Tk)k∈N0 the sequence of jump times (with
T0 := 0). For ` ∈ N0, let

π(`)(X) := (X0, . . . , XT`) (3.3)

be the path in P` consisting of the first ` steps of X and, for t ≥ 0, let

π(X[0,t]) = π(`t)(X), where `t ∈ N0 satisfies T`t ≤ t < T`t+1, (3.4)

denote the path in P consisting of all the steps taken by X between times 0 and t.

Recall the definitions from Section 2.4. For G ∈ Gr, π ∈P and A > 0, define

λr,A(π) := sup
{
λ(1)

C (ξ;G) : C ∈ Cr,A, supp(π) ∩ C ∩Πr,A 6= ∅
}
, (3.5)

with the convention sup ∅ = −∞. This is the largest principal eigenvalue among the compo-
nents of Cr,A in G that have a point of high exceedance visited by the path π.

The main result of this section is the following proposition. Hereafter we abbreviate
log(3) x := log log log x.
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Proposition 3.1. [Entropy reduction] For every fixed dmax ∈ N, there exists an A0 =
A0(dmax) > 0 such that the following holds. Let α ∈ (0, 1) be as in (2.27) and let κ ∈ (α, 1).
For all A > A0, there exists a constant cA = cA(dmax) > 0 such that, with probability tending
to one as r → ∞ uniformly over G ∈ Gr, the following statement is true: For each x ∈ Br,
each N ⊂ P(x,Br) satisfying supp(π) ⊂ Br and max1≤`≤|π| distG(π`, x) ≥ (logLr)

κ for all
π ∈ N , and each assignment π 7→ (γπ, zπ) ∈ R× V satisfying

γπ ≥
(
λr,A(π) + e−Sr

)
∨ (aLr −A) for all π ∈ N (3.6)

and

zπ ∈ supp(π) ∪
⋃

C∈Cr,A :
supp(π)∩C∩Πr,A 6=∅

C for all π ∈ N , (3.7)

the following inequality holds for all t ≥ 0:

logEx
[
e
∫ t
0 ξ(Xs)ds1l{π(X[0,t])∈N}

]
≤ sup

π∈N

{
tγπ −

(
log(3) Lr − cA

)
distG(x, zπ)

}
. (3.8)

Moreover, for any G ∈ G∞, P-almost surely eventually as r →∞, the same statement is true.

The key to the proof of Proposition 3.1 in Section 3.4 is Lemma 3.5 in Section 3.3, whose
proof depends on Lemmas 3.2–3.3 in Section 3.2. We emphasize that all these results are
deterministic, i.e., they hold for any fixed potential ξ : V → R.

3.2. Mass of the solution along excursions. Fix G = (V,E,O) ∈ Gr. The first step to
control the contribution of a path to the total mass is to control the contribution of excursions
outside Πr,A (recall (2.26)).

Lemma 3.2. [Path evaluation] For ` ∈ N0, π ∈P` and γ > max0≤i<|π|{ξ(πi)− deg(πi)},

Eπ0

[
exp

{∫ T`

0
(ξ(Xs)− γ) ds

} ∣∣∣∣π(`)(X) = π

]
=

`−1∏
i=0

deg(πi)

γ − [ξ(πi)− deg(πi)]
. (3.9)

Proof. The left-hand side of (3.9) can be evaluated by using the fact that T` is the sum of `
independent Exp(deg(πi)) random variables that are independent of π(`)(X). The condition
on γ ensures that all integrals are finite. �

For a path π ∈P and ε ∈ (0, 1), we write

M r,ε
π :=

∣∣{0 ≤ i < |π| : ξ(πi) ≤ (1− ε)aLr
}∣∣, (3.10)

with the interpretation that M r,ε
π = 0 if |π| = 0.

Lemma 3.3. [Mass of excursions] For every A, ε > 0 there exist c > 0 and n0 ∈ N such
that, for all r ≥ n0, all γ > aLr−A and all π ∈P satisfying πi /∈ Πr,A for all 0 ≤ i < ` := |π|,

Eπ0

[
exp

{∫ T`

0
(ξ(Xt)− γ) ds

} ∣∣∣∣π(`)(X) = π

]
≤ q`Ae(c−log(3) Lr)Mr,ε

π , (3.11)

where qA := (1 +A/dmax)−1. Note that π` ∈ Πr,A is allowed.

Proof. By our assumptions on π and γ, we can use Lemma 3.2. Splitting the product in
the right-hand side of (3.9) according to whether ξ(πi) ≥ (1 − ε)aLr or not, and using that
ξ(πi) ≤ aLr − 2A for all 0 ≤ i < |π|, we bound the left-hand side of (3.11) by

q`A

[
qA
εaLr −A
dmax

]−|{0≤i<` : ξ(πi)≤(1−ε)aLr}|
. (3.12)
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Since aLr = % log logLr ≥ % log log r, for large r the number within square brackets in (3.12) is
at least qAε%(log logLr)/2dmax > 1. Hence (3.11) holds with c := log(1∨ 2dmax(qAε%)−1). �

3.3. Equivalence classes of paths. We follow [BKS18, Section 6.2]. Note that the distance
between Πr,A and Dc

r,A in G is at least Sr = (logLr)
α.

Definition 3.4. [Concatenation of paths] (a) When π and π′ are two paths in P with
π|π| = π′0, we define their concatenation as

π ◦ π′ := (π0, . . . , π|π|, π
′
1, . . . , π

′
|π′|) ∈P. (3.13)

Note that |π ◦ π′| = |π|+ |π′|.

(b) When π|π| 6= π′0, we can still define the shifted concatenation of π and π′ as π ◦ π̂′, where
π̂′ := (π|π|, π|π| + π′1 − π′0, . . . , π|π| + π′|π′| − π

′
0). The shifted concatenation of multiple paths is

defined inductively via associativity.

Now, if a path π ∈ P intersects Πr,A, then it can be decomposed into an initial path, a
sequence of excursions between Πr,A and Dc

r,A, and a terminal path. More precisely, there
exists mπ ∈ N such that

π = π̌(1) ◦ π̂(1) ◦ · · · ◦ π̌(mπ) ◦ π̂(mπ) ◦ π̄, (3.14)

where the paths in (3.14) satisfy

π̌(1) ∈P(V,Πr,A) with π̌(1)

i /∈ Πr,A, 0 ≤ i < |π̌(1)|,
π̂(k) ∈P(Πr,A, D

c
r,A) with π̂(k)

i ∈ Dr,A, 0 ≤ i < |π̂(k)|, 1 ≤ k ≤ mπ − 1,

π̌(k) ∈P(Dc
r,A,Πr,A) with π̌(k)

i /∈ Πr,A, 0 ≤ i < |π̌(k)|, 2 ≤ k ≤ mπ,

π̂(mπ) ∈P(Πr,A, V ) with π̂(mπ)

i ∈ Dr,A, 0 ≤ i < |π̂(mπ)|,

(3.15)

while
π̄ ∈P(Dc

r,A, V ) and π̄i /∈ Πr,A ∀ i ≥ 0 if π̂(mπ) ∈P(Πr,A, D
c
r,A),

π̄0 ∈ Dr,A, |π̄| = 0 otherwise.
(3.16)

Note that the decomposition in (3.14)–(3.16) is unique, and that the paths π̌(1), π̂(mπ) and π̄
can have zero length. If π is contained in Br, then so are all the paths in the decomposition.

Whenever supp(π) ∩Πr,A 6= ∅ and ε > 0, we define

sπ :=

mπ∑
i=1

|π̌(i)|+ |π̄|, kr,επ :=

mπ∑
i=1

M r,ε

π̌(i) +M r,ε
π̄ (3.17)

to be the total time spent in exterior excursions, respectively, on moderately low points of the
potential visited by exterior excursions (without their last point).

In case supp(π) ∩ Πr,A = ∅, we set mπ := 0, sπ := |π| and kr,επ := M r,ε
π . Recall from (3.5)

that, in this case, λr,A(π) = −∞.

We say that π, π′ ∈ P are equivalent, written π′ ∼ π, if mπ = mπ′ , π̌
′(i) = π̌(i) for

all i = 1, . . . ,mπ, and π̄′ = π̄. If π′ ∼ π, then sπ′ , k
r,ε
π′ and λr,A(π′) are all equal to the

counterparts for π.

To state our key lemma, we define, for m, s ∈ N0,

P(m,s) = {π ∈P : mπ = m, sπ = s} , (3.18)

and denote by
Cr,A := max{|C| : C ∈ Cr,A} (3.19)

the maximal size of the islands in Cr,A.
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Lemma 3.5. [Mass of an equivalence class] For every A, ε > 0 there exist c > 0 and

r0 ∈ N such that, for all r ≥ r0, all m, s ∈ N0, all π ∈ P(m,s) with supp(π) ⊂ Br, all
γ > λr,A(π) ∨ (aLr −A) and all t ≥ 0,

Eπ0

[
e
∫ t
0 (ξ(Xu)−γ) du 1l{π(X[0,t])∼π}

]
≤
(
C

1/2
r,A

)1l{m>0}
(

1 +
dmaxCr,A
γ − λr,A(π)

)m( qA
dmax

)s
e(c−log(3) Lr)kr,επ . (3.20)

Proof. Fix A, ε > 0 and let c > 0, n0 ∈ N be as given by Lemma 3.3. Set

Iba := e
∫ b
a (ξ(Xu)−γ)du, 0 ≤ a ≤ b <∞. (3.21)

We use induction on m. Suppose that m = 1, let ` := |π̌(1)|. There are two possibilities: either
π̄0 belongs to Dr,A or not. First we consider the case π̄0 ∈ Dr,A, which implies that |π̄| = 0.
By the strong Markov property,

Eπ0

[
It01l{π(X[0,t])∼π}

]
≤ Eπ0

[
IT`0 ItT`1l{π(`)(X)=π̌(1)}1l{T`<t}1l{Xu+T`

∈Dr,A ∀u∈[0,t−T`]}

]
= Eπ0

[
IT`0 1l{π(`)(X)=π̌(1)}1l{T`<t}

(
E
π̌

(1)
`

[
It−u0 1l{τDc

r,A
>t−u}

])
u=T`

]
. (3.22)

Put z = π̌(1)

` . Since z ∈ Πr,A, we may write Cz to denote the island in Cr,A containing z.
Since τDc

r,A
= τCc

z
Pz-a.s., Lemma 2.1 and the hypothesis on γ allow us to bound the inner

expectation in (3.22) by |Cz|1/2. Applying Lemma 3.3, we further bound (3.22) by

|Cz|1/2Eπ0

[
IT`0 1l{π(`)(X)=π̌(1)}

]
≤ C1/2

r,A

(
qA
dmax

)`
e
(c−log(3) Lr)Mr,ε

π̌(1) , (3.23)

which proves (3.20) for m = 1 and π̄0 ∈ Dr,A.

Next consider the case π̄0 ∈ Dc
r,A. Abbreviating σ := inf{u > T` : Xu /∈ Dr,A}, write

Eπ0

[
It01l{π(X[0,t])∼π}

]
≤ Eπ0

[
Iσ0 1l{π(`)(X)=π̌(1), σ<t}

(
Eπ̄0

[
It−u0 1l{π(X[0,t−u])=π̄}

] )
u=σ

]
. (3.24)

Let `∗ := |π̄| and note that, since π̄`∗ /∈ Πr,A, by the hypothesis on γ we have

Eπ̄0

[
It−u0 1l{π(X[0,t−u])=π̄}

]
≤ Eπ̄0

[
I
T`∗
0 1l{π(`∗)(X)=π̄}

]
≤
(

qA
dmax

)`∗
e(c−log(3) Lr)Mr,ε

π̄ (3.25)

where the second inequality holds by Lemma 3.3. On the other hand, by Lemmas 2.2 and 3.3,

Eπ0

[
Iσ0 1l{π(`)(X)=π̌(1)}

]
= Eπ0

[
IT`0 1l{π(`)(X)=π̌(1)}

]
Ez
[
I
τCcz
0

]
≤
(

1 +
dmaxCr,A
γ − λr,A(π)

)(
qA
dmax

)`
e
(c−log(3) Lr)Mr,ε

π̌(1) . (3.26)

Putting together (3.24)–(3.26), we complete the proof of the case m = 1. The case m = 0
follows from (3.25) after we replace π̄ by π and t− u by t.

Suppose now that the claim is proved for some m ≥ 1, and let π ∈ P(m+1,s). Define
π′ := π̌(2) ◦ π̂(2) ◦ · · · ◦ π̌(m+1) ◦ π̂(m+1) ◦ π̄. Then π′ ∈ P(m,s′), where s = s′ + |π̌(1)| and
kr,επ = M r,ε

π̌(1) + kr,επ′ . Setting ` := |π̌(1)|, σ := inf{u > T` : Xu /∈ Dr,A} and x := π̌(2)

0 , we get

Eπ0

[
It01l{π(X0,t)∼π}

]
≤ Eπ0

[
Iσ0 1l{π(`)(X)=π̌(1), σ<t}

(
Ex
[
It−u0 1l{π(X0,t−u)∼π′}

] )
s=σ

]
, (3.27)

from which (3.20) follows via the induction hypothesis and (3.26). �
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3.4. Proof of Proposition 3.1.

Proof. The proof is based on Lemma 3.5. First define

c0 := 1 + 3 log log dmax, A0 := dmax

(
e3c0 − 1

)
. (3.28)

Fix A > A0, β < α and ε ∈ (0, β/2) as in Lemma 2.9. Let r0 ∈ N be as given by Lemma 3.5,
and take r ≥ r0 so large that the conclusions of Lemmas 2.6–2.9 hold, i.e., assume that
the events Br from both lemmas do not occur with either G = (V,E,O) ∈ Gr or G ∈ G∞
accordingly. Fix x ∈ Br. Recall the definitions of Cr,A and P(m,s). Noting that the relation

∼ defined below (3.17) is an equivalence relation in P(m,s), we define

P̃(m,s)
x :=

{
equivalence classes of the paths in P(x, V ) ∩P(m,s)

}
. (3.29)

Lemma 3.6. [Bound equivalence classes] |P̃(m,s)
x | ≤ [2dmaxCr,A]mdsmax for all m, s ∈ N0.

Proof. The estimate is clear when m = 0. To prove that it holds for m ≥ 1, write ∂Λ :=
{z /∈ Λ: distG(z,Λ) = 1} for Λ ⊂ V . Then |∂C ∪ C| ≤ (dmax + 1)|C| ≤ 2dmaxCr,A. We

define a map Φ: P̃
(m,s)
x → Ps(x, V ) × {1, . . . , 2dmaxCr,A}m as follows. For each Λ ⊂ V

with 1 ≤ |Λ| ≤ 2dmaxCr,A, fix an injection fΛ : Λ → {1, . . . , 2dmaxCr,A}. Given a path

π ∈ P(m,s) ∩P(x, V ), decompose π as in (3.14), and denote by π̃ ∈ Ps(x, V ) the shifted
concatenation (cf. Definition 3.4) of π̌(1), . . . , π̌(m), π̄. Note that, for 2 ≤ k ≤ m, the point π̌(k)

0

lies in ∂Ck for some Ck ∈ Cr,A, while π̄0 ∈ ∂C ∪ C for some C ∈ Cr,A. Thus, we may set

Φ(π) :=
(
π̃, f∂C2(π̌(2)

0 ), . . . , f∂Cm(π̌(m)

0 ), f∂C̄∪C̄(π̄0)
)
. (3.30)

As is readily checked, Φ(π) depends only on the equivalence class of π and, when restricted
to equivalence classes, Φ is injective. Hence the claim follows. �

Now take N ⊂P(x, V ) as in the statement, and set

Ñ (m,s) :=
{

equivalence classes of paths in N ∩P(m,s)
}
⊂ P̃(m,s)

x . (3.31)

For each M∈ Ñ (m,s), choose a representative πM ∈M, and use Lemma (3.6) to write

Ex
[
e
∫ t
0 ξ(Xu)du1l{π(X[0,t])∈N}

]
=

∑
m,s∈N0

∑
M∈Ñ (m,s)

Ex
[
e
∫ t
0 ξ(Xu)du1l{π(X[0,t])∼πM}

]
≤

∑
m,s∈N0

(2dmaxCr,A)mdsmax sup
π∈N (m,s)

Ex
[
e
∫ t
0 ξ(Xu)du1l{π(X[0,t])∼π}

]
, (3.32)

where we use the convention sup ∅ = 0. For fixed π ∈ N (m,s), by (3.6), we may apply (3.20)
and Lemma 2.6 to obtain, for all r large enough and with c0 as in (3.28),

(2dmax)mdsmaxEx
[
e
∫ t
0 ξ(Xu)du1l{π(X[0,t])∼π}

]
≤ etγπec0mSrqsAe(c−log(3) Lr)kr,επ . (3.33)

We next claim that, for r large enough and π ∈ N (m,s),

s ≥ [(m− 1) ∨ 1]Sr. (3.34)

Indeed, when m ≥ 2, | supp(π̌(i))| ≥ Sr for all 2 ≤ i ≤ m. When m = 0, | supp(π)| ≥
max1≤`≤|π| |π` − x| ≥ (logLr)

κ � Sr by assumption. When m = 1, the latter assumption

and Lemma 2.6 together imply that supp(π) ∩ Dc
r,A 6= ∅, and so either | supp(π̌(1))| ≥ Sr or

| supp(π̌(1))| ≥ Sr. Thus, (3.34) holds by (3.17) and (2.27).
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Note that qA < e−3c0 , so

∑
m≥0

∑
s≥[(m−1)∨1]Sr

ec0mSrqsA =
qSrA + ec0SrqSrA +

∑
m≥2 ec0Srmq

(m−1)Sr
A

1− qA
≤ 4e−c0Sr

1− qA
< 1 (3.35)

for r large enough. Inserting this back into (3.32), we obtain

logEx
[
e
∫ t
0 ξ(Xs)ds1l{π(X0,t)∈N}

]
≤ sup

π∈N

{
tγπ +

(
c− log(3) Lr

)
kr,επ

}
. (3.36)

Thus the proof will be finished once we show that, for some ε′ > 0, whp (respectively,
almost surely eventually) as n→∞, all π ∈ N satisfy

kr,επ ≥ distG(x, zπ)(1− 2(logLr)
−ε′). (3.37)

To that end, we define for each π ∈ N an auxiliary path π? as follows. First note that by
using our assumptions we can find points z′, z′′ ∈ supp(π) (not necessarily distinct) such that

distG(x, z′) ≥ (logLr)
κ, distG(z′′, zπ) ≤ 2MASr, (3.38)

where the latter holds by Lemma 2.6. Write {z1, z2} = {z′, z′′} with z1, z2 ordered according to
their hitting times by π, i.e., inf{` : π` = z1} ≤ inf{` : π` = z2}. Define πe as the concatenation
of the loop erasure of π between x and z1 and the loop erasure of π between z1 and z2. Since
πe is the concatenation of two self-avoiding paths, it visits each point at most twice. Finally,
define π? ∼ πe by substituting the excursions of πe from Πr,A to Dc

r,A by direct paths between

the corresponding endpoints, i.e., substitute each π̂(i)
e with |π̂(i)

e | = `i, (π̂(i)
e )0 = xi ∈ Πr,A and

(π̂(i)
e )`i = yi ∈ Dc

r,A by a shortest-distance path π̃(i)
? with the same endpoints and |π̃(i)

? | =

distG(xi, yi). Since π? visits each x ∈ Πr,A at most 2 times,

kr,επ ≥ kr,επ? ≥M
r,ε
π? − 2| supp(π?) ∩Πr,A|(Sr + 1) ≥M r,ε

π? − 4| supp(π?) ∩Πr,A|Sr. (3.39)

Note that M r,ε
π? ≥ |{x ∈ supp(π?) : ξ(x) ≤ (1− ε)aLr}| − 1 and, by (3.38), | supp(π?)| ≥

distG(x, z′) ≥ (logLr)
κ � (logLr)

α+2ε′ for some 0 < ε′ < ε. Applying Lemmas 2.9–2.10
and using (2.27) and Lr > r, we obtain, for r large enough,

kr,επ ≥ | supp(π?)|
(

1− 2

(logLr)ε
− 4Sr

(logLr)α+2ε′

)
≥ | supp(π?)|

(
1− 1

(logLr)ε
′

)
. (3.40)

On the other hand, since | supp(π?)| ≥ (logLr)
κ and by (3.38) again,

|supp(π?)| =
(
|supp(π?)|+ 2MASr

)
− 2MASr

≥
(
distG(x, z′′) + 2MASr

)(
1− 2MASr

(logLr)κ

)
≥ distG(x, zπ)

(
1− 1

(logLr)ε
′

)
.

(3.41)

Now (3.37) follows from (3.40)–(3.41). �

4. Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. We note that, after replacing dmax by
dmax ∨D0 if necessary, we may assume without loss of generality that

GW ∈ G(ϑ)
∞ . (4.1)
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4.1. Lower bound. In this section we give the proof of the lower bound for the large-t
asymptotics of the total mass. This proof already explains the random mechanism that
produces the main contribution to the total mass. This mechanism comes from an optimization
of the behavior of the random path in the Feynman-Kac formula, which in turn comes from
the existence of a favorite region in the random graph, both in terms of the local graph
structure and the high values of the potential in this local graph structure. The optimality
is expressed in terms of a distance to the starting point O that can be reached in a time
o(t) with a sufficiently high probability, such that time t − o(t) is left for staying inside the
favorite region, thus yielding a maximal contribution to the Feynman-Kac formula. The latter
is measured in terms of the local eigenvalue of the Anderson operator ∆ + ξ, which in turn
comes from high values of the potential ξ in the local region.

We write the total mass of the solution of (2.9) in terms of the Feynman-Kac formula as

U(t) = EO
[

exp
{∫ t

0
ξ(Xs) ds

}]
, (4.2)

where (Xs)s≥0 is the continuous-time random walk on GW, i.e., the Markov chain with gen-
erator ∆GW = ∆, the Laplacian on GW, starting from the origin O. As usual in the literature
of the PAM, this formula is the main point of departure for our proof.

Fix ε > 0. By the definition of χ̃, there exists an infinite rooted tree T = (V ′, E′,Y) with
degrees in supp(Dg) such that χT (%) < χ̃(%) + 1

4ε. Let Qr = BT
r (Y) be the ball of radius r

around Y in T . By Proposition 2.4 and (2.17), there exist a radius R ∈ N and a potential
profile q : BT

R → R with LQR(q; %) < 1 (in particular, q ≤ 0) such that

λQR(q;T ) ≥ −χ̂QR(%;T )− 1
2ε > −χ̃(%)− ε. (4.3)

For ` ∈ N, let B` = B`(O) denote the ball of radius ` around O in GW. We will show next
that, almost surely eventually as ` → ∞, B` contains a copy of the ball QR where ξ is lower
bounded by % log log |B`|+ q.

Proposition 4.1. [Balls with high exceedances] P×P-almost surely eventually as `→∞,
there exists a vertex z ∈ B` with BR+1(z) ⊂ B` and an isomorphism ϕ : BR+1(z) → QR+1

such that ξ ≥ % log log |B`|+ q ◦ ϕ in BR(z). In particular,

λBR(z)(ξ;GW) > % log log |B`| − χ̃(%)− ε. (4.4)

Any such z necessarily satisfies |z| ≥ c` P × P-almost surely eventually as ` → ∞ for some
constant c = c(%, ϑ, χ̃(%), ε) > 0.

Proof. First note that, as a consequence of the definition of GW, it may be shown straight-
forwardly that, for some p = p(T,R) ∈ (0, 1) and P-almost surely eventually as `→∞, there
exist N ∈ N, N ≥ p|B`| and distinct z1, . . . , zN ∈ B` such that BR+1(zi) ∩ BR+1(zj) = ∅ for
1 ≤ i 6= j ≤ N and, for each 1 ≤ i ≤ N , BR+1(zi) ⊂ B` and BR+1(zi) is isomorphic to QR+1.
Now, by (1.7), for each i ∈ {1, . . . , N},

P
(
ξ ≥ % log log |B`|+ q in BR(zi)

)
= |B`|−LQR (q). (4.5)

Using additionally that |B`| ≥ ` and 1− x ≤ e−x, x ∈ R, we obtain

P(6 ∃i ∈ {1, . . . , N} : ξ ≥ % log log |B`|+ q in BR(zi)) =
(

1− |B`|−LQR (q)
)N
≤ e−p`

1−LQR (q)

which is summable in ` ∈ N, so the proof of the first statement is completed using the Borel-
Cantelli lemma. As for the last statement, note that, by (2.8), Lemma 2.5 and Lr ∼ ϑr,

λBc`(ξ;GW) ≤ max
x∈Bc`

ξ(x) < aLc` + o(1) < aL` + % log cϑ+ o(1) < aL` − χ̃(%)− ε (4.6)

provided c > 0 is small enough. �
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Proof of the lower bound in (1.14). Let z be as in Proposition 4.1. For any s ∈ (0, t), we
obtain a lower bound for U(t) as follows (write τz for the hitting time of z):

U(t) ≥ EO
[

exp
{∫ t

0
ξ(Xu) du

}
1l{τz≤s} 1l{Xu∈BR(z)∀u∈[τz ,t]}

]
= EO

[
e
∫ τz
0 ξ(Xu) du 1l{τz≤s} Ez

[
e
∫ v
0 ξ(Xu) du 1l{Xu∈T ∀u∈[0,v]}

]∣∣∣
v=t−τz

]
,

(4.7)

where we use the Markov property at time τz. We first bound the last term in the integrand
in (4.7). Since ξ ≥ % log log |B`|+ q in BR(z),

Ez
[
e
∫ v
0 ξ(Xu) du1l{Xu∈BR(z) ∀u∈[0,v]}

]
≥ ev% log log |B`|EY

[
e
∫ v
0 q(Xu) du1l{Xu∈QR ∀u∈[0,v]}

]
≥ ev% log log |B`|evλQR (q;T )φ(1)

QR
(Y)2

> exp
{
v (% log log |B`| − χ̃(%)− ε)

}
,

(4.8)

for large v, where we used that BR+1(z) is isomorphic to QR+1 and applied Lemma 2.1 and
(4.3). On the other hand, since ξ ≥ 0,

EO
[

exp
{∫ τz

0
ξ(Xu) du

}
1l{τz ≤ s}

]
≥ PO(τz ≤ s), (4.9)

and we can bound the latter probability from below by the probability that the random walk

runs along a shortest path from the root O to z within a time at most s. Such a path (yi)
|z|
i=0

has y0 = O, y|z| = z, yi ∼ yi−1 for i = 1, . . . , |z|, has at each step from yi precisely deg(yi)
choices for the next step with equal probability, and the step is carried out after an exponential
time Ei with parameter deg(yi). This gives

PO(τz ≤ s) ≥
( |z|∏
i=1

1

deg(yi)

)
P
( |z|∑
i=1

Ei ≤ s
)
≥ d−|z|maxPoidmins([|z|,∞)), (4.10)

where Poiγ is the Poisson distribution with parameter γ, and P is the generic symbol for
probability. Summarising, we obtain

U(t) ≥ d−|z|maxe−dmins
(dmins)

|z|

|z|!
e(t−s)[% log log |B`|−χ̃(%)−ε]

≥ exp

{
−dmins+ (t− s) [% log log |B`| − χ̃(%)− ε]− |z| log

(
dmax

dmin

|z|
s

)}
≥ exp

{
−dmins+ (t− s) [% log log |B`| − χ̃(%)− ε]− ` log

(
dmax

dmin

`

s

)}
,

(4.11)

where for the last inequality we assume s ≤ |z| and use ` ≥ |z|. Further assuming that
` = o(t), we see that the optimum over s is obtained at

s =
`

dmin + % log log |B`| − χ̃(%)− ε
= o(t). (4.12)

Note that, by Proposition 4.1, this s indeed satisfies s ≤ |z|. Applying (1.12) we get, after a
straightforward computation, almost surely eventually as t→∞,

1

t
logU(t) ≥ % log log |B`| −

`

t
log log `− χ̃(%)− ε+O

(
`

t

)
. (4.13)
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Analysing the main terms above and using log |B`| ∼ ϑ`, we find that the optimal ` satisfies
` log log `− `

log ` ∼ t%, i.e., ` ∼ %t/ log log t = rt. For this choice we obtain

1

t
logU(t) ≥ % log log |Brt | − rt log log rt − χ̃(%)− ε+O

(
1

log log t

)
. (4.14)

Substituting log |Br| ∼ ϑr and the definition of rt, we obtain, P× P-almost surely,

lim inf
t→∞

{
1

t
logU(t)− % log

(
%ϑt

log log t

)}
≥ −%− χ̃(%)− ε. (4.15)

Since ε > 0 is arbitrary, the proof of the lower bound in (1.14) is complete. �

4.2. Upper bound. In this section we prove the upper bound in (1.14). A first step is to
reduce the problem to a ball of radius t log t. Here we include more general graphs.

Lemma 4.2. [Spatial truncation] For any c > 0 and any `t ∈ N, `t ≥ ct log t,

sup
G∈G`t

EO
[
e
∫ t
0 ξ(Xs)ds1l{τBc

`t
<t}

]
≤ e−`t whp as t→∞. (4.16)

Moreover, for any G ∈ G
(ϑ)
∞ ,

EO
[
e
∫ t
0 ξ(Xs)ds1l{τBc

`t
<t}

]
≤ e−`t P-a.s. eventually as t→∞. (4.17)

Proof. For r ≥ `t and G ∈ G`t , let

Br :=

{
max
x∈Br

ξ(x) ≥ aLr + 2%

}
. (4.18)

By Lemma 2.5 and a union bound, we see that

sup
G∈G`t

P

⋃
r≥`t

Br

 ≤∑
r≥`t

sup
G∈G`t

P(Br) −→
t→∞

0, (4.19)

while, for G ∈ G
(ϑ)
∞ , by the Borel-Cantelli lemma,⋃

r≥`t

Br does not occur P-a.s. eventually as t→∞. (4.20)

We may therefore work on the event
⋂
r≥`t B

c
r. On this event, we may write

EO
[
e
∫ t
0 ξ(Xs)ds1l{τBc

`t
<t}

]
=
∑
r≥`t

EO
[
e
∫ t
0 ξ(Xs)ds1l{sups∈[0,t] |Xs|=r}

]
≤ eCt

∑
r≥`t

e%t log r PO (Jt ≥ r) , (4.21)

where Jt is the number of jumps of X up to time t, C = %(2 + log log dmax), and we use that
|Br| ≤ drmax. Note that Jt is stochastically dominated by a Poisson random variable with
parameter tdmax. Hence

PO (Jt ≥ r) ≤
(tdmax)r

r!
≤ exp

{
−r log

(
r

etdmax

)}
(4.22)

for large r. Using `t ≥ ct log t, we can check that, for r ≥ `t and t large enough,

r log

(
r

etdmax

)
− %t log r > 2r (4.23)
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and thus (4.21) is at most e−`te−`t+Ct+2 < e−`t . �

In order to be able to apply Proposition 3.1 in the following, we need to make sure that all
paths considered exit a ball with a slowly growing radius.

Lemma 4.3. [No short paths] For any γ ∈ (0, 1),

sup
G∈Gdtγe

EO
[
e
∫ t
0 ξ(Xs)ds1l{τBc

dtγe
>t}

]
U(t)

= o(1) whp as t→∞. (4.24)

Moreover, for any G ∈ G∞,

lim
t →∞

EO
[
e
∫ t
0 ξ(Xs)ds1l{τBc

dtγe
>t}

]
U(t)

= 0 P-a.s. almost surely. (4.25)

Proof. By Lemma 2.5 with gr = 2% log r, we may assume that

max
x∈Bdtγe

ξ(x) ≤ % log logLdtγe + 2% = γ% log t+ 2%+ o(1) as t→∞. (4.26)

By (4.11), for some constant C > 0,

EO
[
e
∫ t
0 ξ(Xs)ds1l{τBc

dtγe
>t}

]
U(t)

≤ eCt log(3) te−(1−γ)%t log t −→
t→∞

0. �

For the remainder of the proof we fix γ ∈ (α, 1) with α as in (2.27). Let

Kt := dt1−γ log te, r
(k)
t := kdtγe, 1 ≤ k ≤ Kt and `t := Ktdtγe ≥ t log t. (4.27)

For 1 ≤ k ≤ Kt and G ∈ G
(ϑ)
∞ , define

N (k)

t :=
{
π ∈P(O, V ) : supp(π) ⊂ B

r
(k+1)
t

, supp(π) ∩Bc

r
(k)
t

6= ∅
}

(4.28)

and set

U (k)

t := EO
[
e
∫ t
0 ξ(Xs)ds1l{π[0,t](X)∈N (k)

t }

]
. (4.29)

Recall the scale rt = %t/ log log t.

Lemma 4.4. [Upper bound on U (k)

t ] For any ε > 0 and any G ∈ G
(ϑ)
∞ , P-almost surely

eventually as t→∞,

sup
1≤k≤Kt

1

t
logU (k)

t ≤ % log(ϑrt)− %− χ̃(%) + ε. (4.30)

Proof. Before we apply Proposition 3.1, we first do a bit of analysis. For c > 0, let

Fc(r) := % log(ϑr)− r

t
(log log r − c) , r > 0. (4.31)

Note that Fc is maximized at a point rc,t satisfying

%t = rc,t log log rc,t − crc,t +
rc,t

log rc,t
. (4.32)

In particular, rc,t ∼ rt, which implies

sup
r>0

Fc(r) ≤ % log(ϑrt)− %+ o(1) as t→∞. (4.33)
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Next, fix k ∈ {1, . . . ,Kt}. For π ∈ N (k)

t , let

γπ := λ
r
(k+1)
t ,A

(π) + exp{−Sdtγe}, zπ ∈ supp(π), |zπ| > r(k)

t . (4.34)

By Proposition 3.1, almost surely eventually as t→∞,

1

t
logU (k)

t ≤ γπ +
|zπ|
t

(
log log r

(k+1)
t − cA + o(1)

)
. (4.35)

Using Corollary 2.8 and logLr ∼ ϑr, we bound

γπ ≤ % log(ϑr
(k+1)
t )− χ̃(%) + 1

2ε+ o(1). (4.36)

Moreover, |zπ| > r(k+1)

t − dtγe and

dtγe
t

(
log log r(k+1)

t − cA
)
≤ 2

t1−γ
log log(2t log t) = o(1), (4.37)

which allows us to further bound (4.35) by

% log(ϑr(k+1)

t )− r(k+1)

t

t

(
log log r(k+1)

t − 2cA
)
− χ̃(%) + 1

2ε+ o(1). (4.38)

Applying (4.33) we obtain
1

t
logU (k)

t < % log(ϑrt)− %− χ̃(%) + ε. �

Proof of upper bound in (1.14). To avoid repetition, all statements are assumed to be made

P × P-almost surely eventually as t → ∞. Let G = GW and note that GW ∈ G
(ϑ)
∞ almost

surely, where ϑ is as in (1.12). Define

U (0)

t := EO
[
e
∫ t
0 ξ(Xs)ds1l{τBc

dtγe
>t}

]
, U (∞)

t := EO
[
e
∫ t
0 ξ(Xs)ds1l{τBc

dt log te
≤t}

]
. (4.39)

Note that
U(t) ≤ U (0)

t + U (∞)

t +Kt max
1≤k≤Kt

U (k)

t (4.40)

and, since U (0)

t + U (∞)

t ≤ o(1)U(t) by Lemmas 4.2–4.3 and (4.14),

U(t) ≤ 2Kt max
1≤k≤Kt

U (k)

t and so
1

t
logU(t) ≤ log(2Kt)

t
+ max

1≤k≤Kt

1

t
logU (k)

t . (4.41)

By Lemma 4.4 and (4.27), for any ε > 0,

1

t
logU(t) ≤ % log(ϑrt)− %− χ̃(%) + ε+ o(1) (4.42)

therefore, P× P-almost surely,

lim sup
t→∞

{
1

t
logU(t)− % log

(
ϑ%t

log log t

)}
≤ −%− χ̃(%) + ε. (4.43)

Since ε > 0 is arbitrary, this completes the proof of the lower bound in (1.14). �

5. Proof of Theorem 1.5

In this section we give the proof of Theorem 1.5. The proof is based on the fact that, up to a
radius growing slower than log Φn (cf. (1.20)), the configuration model equals a Galton-Watson
tree with high probability. From this the result will follow via Theorem 1.1 and Lemma 4.2.

To describe the associated Galton-Watson tree, we define a random variable D? as the
size-biased version of D in Assumption (CM)(1), i.e.,

P (D? = k) =
kP (D = k)

E[D]
. (5.1)



THE PARABOLIC ANDERSON MODEL ON A GALTON-WATSON TREE 25

Proposition 5.1. [Coupling of UGn and GW] Let UGn = (Vn, En,On) be the uniform
simple random graph with degree sequence d(n) satisfying Assumption (CM), and let GW =
(V,E,O) be a Galton-Watson tree with initial degree distribution D0 = D and general degree

distribution Dg = D?. There exists a coupling P̃ of UGn and GW such that, for any mn ∈ N
satisfying 1� mn � log Φn,

lim
n→∞

P̃
(
BUGnmn (On) = BGWmn (O)

)
= 1. (5.2)

Proof. For CMn in place of UGn, this is a consequence of the proof of [vdH17b, Proposi-
tion 5.4]: the statement there only covers coupling |Bmn |, but the proof actually gives Bmn .
The fact that mn may be taken up to o(log Φn) can be inferred from the proof. In fact, mn

could be taken up to c log Φn with some c = c(ν) > 0. The result is then passed to UGn by
(1.16) (see e.g. [vdH17a, Corollary 7.17]). �

Proof of Theorem 1.5. Let Un(t) be the total mass for UGn and U(t) the total mass for GW
as in Proposition 5.1. Define

U◦n(t) := EOn
[
e
∫ t
0 ξ(Xs)ds1l{τBc

t log t
>t}

]
, (5.3)

and analogously U◦(t). By Lemma 4.2 and Proposition 5.1, whp as n→∞,

Un(tn) = U◦n(tn) + o(1) = U◦(tn) + o(1) = U(tn) + o(1), (5.4)

and so (1.21) follows from Theorem 1.1 after we note that ν in (1.17) is equal to E[D?−1]. �

Appendix A. Analysis of χ(ρ)

In this appendix we study the variational problem in (1.9). In particular, we prove the
alternative representations in Proposition 2.4, and we prove Theorem 1.2, i.e., we identify for
% ≥ 1/ log(dmin +1) the quantity χ̃(%) that appears in Theorems 1.1 and 1.5 as χG with G the
infinite tree with homogeneous degree dmin ∈ N\{1}, the smallest degree that has a positive
probability in our random graphs. In other words, we show that the infimum in (1.13) is
attained on the infinite tree with the smallest admissible degrees.

It is not hard to understand heuristically why the optimal tree is infinite and has the smallest
degree: the first part in (1.9) (the quadratic energy term coming from the Laplace operator)
has a spreading effect and is the smaller the less bonds there are. However, proving this
property is not so easy, since the other term (the Legendre transform from the large-deviation
term of the random potential) has an opposite effect. In the setting where the underlying
graph is Zd instead of a tree, this problem is similar to the question whether or not the
minimiser has compact support. However, our setting is different because of the exponential
growth of balls on trees. We must therefore develop new methods.

Indeed, we will not study the effect on the principal eigenvalue due to the restriction of a
large graph to a subgraph, but rather due to an opposite manipulation, namely, the glueing
of two graphs obtained by adding one single edge (or possibly a joining vertex). The effect of
such a glueing is examined in Section A.2. The result will be used in Section A.3 to finish the
proof of Theorem 1.2. Before that, we discuss in Section A.1 alternative representations for
χ and prove Proposition 2.4.

In this section, no probability is involved. We drop % from the notation at many places.
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A.1. Alternative representations. Fix a graph G = (V,E). Recall that P(V ) denotes the
set of probability measures on V , and recall that the constant χG = χG(%) in (1.9) is defined
as infp∈P(V )[IE(p) + %JV (p)] with I, J as in (1.8). As the next lemma shows, the constant χ̂
in (2.17) can be also represented in terms of I,J .

Lemma A.1. [First representation] For any graph G = (V,E) and any Λ ⊂ V ,

χ̂V (%;G) = inf
p∈P(V ) :
supp(p)⊂Λ

[IE(p) + %JV (p)] . (A.1)

In particular,

χ̂Λ(%;G) ≥ χG(%) = χ̂V (%;G). (A.2)

Proof. For the proof of (A.1), see [GM98, Lemma 2.17]. Moroever, (A.2) follows from (A.1).
�

We next consider the constant χ(0)

G in (2.18) for infinite rooted graphs G = (V,E,O). Note
that, by (2.8), χ̂Br(%;G) is non-increasing in r. Together with Lemma A.1 this implies

χ(0)

G (%) = lim
r→∞

χ̂Br(%;G) ≥ χG(%). (A.3)

Lemma A.2. [Second representation] For any rooted G ∈ G∞, χG(%) = χ(0)

G (%).

Proof. Write G = (V,E,O). By (1.9), Lemma A.1 and (A.3), it suffices to show that, for any
p ∈ P(V ) and r ∈ N, there is a pr ∈ P(V ) with support in Br such that

lim inf
r→∞

{IE(pr) + %JV (pr)} ≤ IE(p) + %JV (p). (A.4)

Simply take

pr(x) =
p(x)1lBr(x)

p(Br)
, x ∈ V, (A.5)

i.e., the normalized restriction of p to Br. Then we easily see that

JV (pr)− JV (p) = − 1

p(Br)

∑
x∈Br

p(x) log p(x) + log p(Br) +
∑
x∈V

p(x) log p(x)

≤ JV (p)

p(Br)
(1− p(Br)) −→

r→∞
0,

(A.6)

where we use log p(Br) ≤ 0 and p(x) log p(x) ≤ 0 for every x. As for the I-term,

IE(pr) =
1

p(Br)

∑
{x,y}∈E : x,y∈Br

(√
p(x)−

√
p(y)

)2
+

1

2

∑
{x,y}∈E : x∈Br, y∈Bc

r

p(x)

p(Br)
≤ IE(p)

p(Br)
+
dmax

2

p(Bc
r−1)

p(Br)
,

(A.7)

and therefore

IE(pr)− IE(p) ≤ IE(p)

p(Br)
(1− p(Br)) +

dmax

2

p(Bc
r−1)

p(Br)
−→
r→∞

0. (A.8)

�

Proof of Proposition 2.4. The claim follows from Lemmas A.1–A.2 and (A.3). �
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A.2. Glueing graphs. Here we analyse the constant χ of a graph obtained by connecting
disjoint graphs. First we show that glueing two graphs together with one additional edge does
not decrease the quantity χ:

Lemma A.3. [Glue two] Let Gi = (Vi, Ei), i = 1, 2, be two disjoint connected simple graphs,
and let xi ∈ Vi, i = 1, 2. Denote by G the union graph of G1, G2 with one extra edge between
x1 and x2, i.e., G = (V,E) with V := V1 ∪ V2, E := E1 ∪ E2 ∪ {(x1, x2)}. Then

χG ≥ min {χG1 , χG2} . (A.9)

Proof. Given p ∈ P(V ), let ai = p(Vi), i = 1, 2, and define pi ∈ P(Vi) by putting

pi(x) :=

{
1
ai
p(x)1lVi(x) if ai > 0,

1lxi(x) otherwise.
(A.10)

Straightforward manipulations show that

IE(p) =

2∑
i=1

aiIEi(pi)+
(√

p(x1)−
√
p(x2)

)2
, JV (p) =

2∑
i=1

[aiJVi(pi)− ai log ai] , (A.11)

and so

IE(p) + %JV (p) ≥
2∑
i=1

ai

[
IEi(pi) + %JVi(pi)

]
≥ min{χG1 , χG2}. (A.12)

The proof is completed by taking the infimum over p ∈ P(V ). �

Below it will be useful to define, for x ∈ V ,

χ(x,b)

G = inf
p∈P(V ),
p(x)=b

[IE(p) + %JV (p)], (A.13)

i.e., a version of χG with “boundary condition” b at x. It is clear that χ(x,b)

G ≥ χG.

Next we glue several graphs together and derive representations and estimates for the
corresponding χ. For k ∈ N, let Gi = (Vi, Ei), 1 ≤ i ≤ k, be a collection of disjoint graphs.

Let x be a point not belonging to
⋃k
i=1 Vi. For a fixed choice yi ∈ Vi, 1 ≤ i ≤ k, we denote

by Gk = (V k, Ek) the graph obtained by adding an edge from each y1, . . . , yk to x, i.e.,
V k = V1 ∪ · · · ∪ Vk ∪ {x} and Ek = E1 ∪ · · · ∪ Ek ∪ {(y1,O), . . . , (yk, x)}.

Lemma A.4. [Glue many plus vertex] For any % > 0, any k ∈ N, and any Gi = (Vi, Ei),
yi ∈ Vi, 1 ≤ i ≤ k,

χGk = inf
0≤ci≤ai≤1,
a1+···+ak≤1

{ k∑
i=1

ai

(
χ

(yi,ci/ai)

Gi
− % log ai

)

+

k∑
i=1

(
c

1/2
i −

(
1−

k∑
i=1

ai

)1/2)2
− %
(

1−
k∑
i=1

ai

)
log
(

1−
k∑
i=1

ai

)}
.

(A.14)

Proof. The claim follows from straightforward manipulations with (1.8). �

Lemma A.4 leads to the following comparison lemma. For j ∈ N, let

(Gji , y
j
i ) =

{
(Gi, yi) if i < j,

(Gi+1, yi+1) if i ≥ j,
(A.15)

i.e., (Gji )i∈N is the sequence (Gi)i∈N with the j-th graph omitted. Let G
j
k be the analogue of

Gk obtained from Gji , 1 ≤ i ≤ k, i 6= j, instead of Gi, 1 ≤ i ≤ k.
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Lemma A.5. [Comparison] For any % > 0 and any k ∈ N,

χGk+1
= inf

1≤j≤k+1
inf

0≤c≤u≤ 1
k+1

inf
0≤ci≤ai≤1,
a1+···+ak≤1

{
(1− u)

[ k∑
i=1

ai
(
χ

(yσj(i),ci/ai)

Gσj(i)
− % log ai

)
+

k∑
i=1

(
c

1/2
i −

(
1−

k∑
i=1

ai

)1/2)2
− %
(

1−
k∑
i=1

ai

)
log
(

1−
k∑
i=1

ai

)]
+ uχ

(yj,c/u)

Gj
+
(
c1/2 −

(
(1− u)

(
1−

k∑
i=1

ai

))1/2)2

− % [u log u+ (1− u) log(1− u)]

}
.

(A.16)

Moreover,

χGk+1
≥ inf

1≤j≤k+1
inf

0≤u≤ 1
k+1

{
(1− u)χ

G
j
k

+ inf
v∈[0,1]

{
uχ

(yj ,v)
Gj

+ 1{u(1+v)≥1}

[√
vu−

√
1− u

]2}
− % [u log u+ (1− u) log(1− u)]

}
.

(A.17)

Proof. Note that{
(ci, ai)

k+1
i=1 : 0 ≤ ci ≤ ai ≤ 1,

k+1∑
i=1

ai ≤ 1
}

=
k+1⋃
j=1

{(
(1−u)(ci,ai)

j−1
i=1 ,(c,u),(1−u)(ci,ai)

k
i=j

)
:

0≤c≤u≤ 1
k+1 ,0≤ci≤ai≤1,

∑k
i=1 ai≤1

}
,

(A.18)
from which (A.16) follows by straightforward manipulations on (A.14). To prove (A.17), note
that the first term within the square brackets in the first two lines of (A.16) equals the term
minimised in (A.14), and is therefore not smaller than χ

G
j
k
. �

Lemma A.6. [Propagation of lower bounds] If % > 0, M ∈ R, C > 0 and k ∈ N satisfy
% ≥ C/ log(k + 1) and

inf
1≤j≤k+1

χ
G
j
k
≥M, inf

1≤j≤k+1
inf

v∈[0,1]
χ

(yj,v)

Gj
≥M − C, (A.19)

then χGk+1
≥M .

Proof. Dropping some non-negative terms in (A.17), we obtain

χGk+1
−M ≥ inf

0≤u≤1/(k+1)

{
u
(
χ

(yj,v)

Gj
−M

)
− %u log u

}
≥ inf

0≤u≤1/(k+1)
{u (% log(k + 1)− C)} ≥ 0

(A.20)

by the assumption on %. �

The above results will be applied in the next section to minimise χ over families of trees with
minimum degrees.
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A.3. Trees with minimum degrees. Fix d ∈ N. Let T̊d be an infinite tree rooted at O
such that the degree of O equals d − 1 and the degree of every other vertex in T̊d is d. Let
T̊ (0)

d = {T̊d} and, recursively, let T̊ (n+1)

d denote the set of all trees obtained from a tree in

T̊ (n)

d and a disjoint copy of T̊d by adding an edge between a vertex of the former and the root

of the latter. Write T̊d =
⋃
n∈N0

T̊ (n)

d . Assume that all trees in T̊d are rooted at O.

Recall that Td is the infinite regular d-tree. Observe that Td is obtained from (T̊d,O) and a

disjoint copy (T̊ ′d ,O′) by adding one edge between O and O′. Consider Td to be rooted at O.

Let T (0)

d = {Td} and, recursively, let T (n+1)

d denote the set of all trees obtained from a tree

in T (n)

d and a disjoint copy of T̊d by adding an edge between a vertex of the former and the

root of the latter. Write Td =
⋃
n∈N0

T (n)

d , and still consider all trees in Td to be rooted at

O. Note that T (n)

d contains precisely those trees of T̊ (n+1)

d that have Td as a subgraph rooted

at O. In particular, T (n)

d ⊂ T̊ (n+1)

d and Td ⊂ T̊d.

Our objective is to prove the following.

Proposition A.7. [Minimal tree is optimal] If % ≥ 1/ log(d+ 1), then

χTd(%) = min
T∈Td

χT (%).

For the proof of Proposition A.7, we will need the following.

Lemma A.8. [Minimal half-tree is optimal] For all % ∈ (0,∞),

χT̊d(%) = min
T∈T̊d

χT (%).

Proof. Fix % ∈ (0,∞). It will be enough to show that

χT̊d = min
T∈T̊

(n)
d

χT , n ∈ N0, (A.21)

which we will achieve by induction in n. The case n = 0 is obvious. Assume that (A.21) holds

for some n ∈ N0. Any tree T ∈ T̊ (n+1)

d can be obtained from a tree T̃ ∈ T̊ (n)

d and a disjoint

copy T̊ ′d of T̊d by adding an edge between a point x̃ in the vertex set of T̃ to the root of T̊ ′d .
Applying Lemma A.3 together with the induction hypothesis, we obtain

χT ≥ min
{
χ
T̃
, χT̊ ′d

}
≥ χT̊d , (A.22)

which completes the induction step. �

Lemma A.9. [A priori bounds] For any d ∈ N and any % ∈ (0,∞),

χT̊d(%) ≤ χTd(%) ≤ χT̊d(%) + 1. (A.23)

Proof. The first inequality follows from Lemma A.8. For the second inequality, note that Td
contains as subgraph a copy of T̊d, and restrict the minimum in (1.9) to p ∈ P(T̊d). �

Proof of Proposition A.7. Fix % ≥ 1/ log(d+ 1). It will be enough to show that

χTd = min
T∈T

(n)
d

χT , n ∈ N0. (A.24)

We will prove this by induction in n. The case n = 0 is trivial. Assume that, for some n0 ≥ 0,
(A.24) holds for all n ≤ n0. Let T ∈ T (n0+1)

d . Then there exists a vertex x of T with degree
k + 1 ≥ d + 1. Let y1, . . . , yk+1 be set of neighbours of x in T . When we remove the edge

between yj and x, we obtain two connected trees; call Gj the one containing yj , and G
j
k the

other one. With this notation, T may be identified with Gk+1.
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Now, for each j, the rooted tree (Gj , yj) is isomorphic (in the obvious sense) to a tree in

T̊
(`j)

d , where `j ∈ N0 satisfy `1 + · · ·+ `k+1 ≤ n0, while G
j
k belongs to T

(nj)
d for some nj ≤ n0.

Therefore, by the induction hypothesis,

χ
G
j
k
≥ χT , (A.25)

while, by (A.13), Lemma A.8 and Lemma A.9,

inf
v∈[0,1]

χ
(yj ,v)
Gj

≥ χGj ≥ χT̊ ≥ χT − 1. (A.26)

Thus, by Lemma A.3 applied with M = χT and C = 1,

χT = χḠk+1
≥ χT , (A.27)

which completes the induction step. �

Proof of Theorem 1.2. First note that, since Tdmin
has degrees in supp(Dg), χ̃(%) ≤ χTdmin

(%).

For the opposite inequality, we proceed as follows. Fix an infinite tree T with degrees in

supp(Dg), and root it at a vertex Y. For r ∈ N, let T̃r be the tree obtained from Br = BT
r (Y)

by attaching to each vertex x ∈ Br with |x| = r a number dmin − 1 of disjoint copies of

(T̊dmin
,O), i.e., adding edges between x and the corresponding roots. Then T̃r ∈ Tdmin

and,

since Br has more out-going edges in T than in T̃r, we may check using (A.1) that

χ̂Br(%;T ) ≥ χ̂Br(%; T̃r) ≥ χT̃r(%) ≥ χTdmin
(%). (A.28)

Taking r → ∞ and applying Proposition 2.4, we obtain χT (%) ≥ χTdmin
(%). Since T is

arbitrary, the proof is complete. �
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