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ABSTRACT. We study the long-time asymptotics of the total mass of the solution to the par-
abolic Anderson model (PAM) on a supercritical Galton-Watson random tree with bounded
degrees. We identify the second-order contribution to this asymptotics in terms of a varia-
tional formula that gives information about the local structure of the region where the solution
is concentrated. The analysis behind this formula suggests that, under mild conditions on the
model parameters, concentration takes place on a tree with minimal degree. Our approach
can be applied to finite locally tree-like random graphs, in a coupled limit where both time
and graph size tend to infinity. As an example, we consider the configuration model or, more
precisely, the uniform simple random graph with a prescribed degree sequence.
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1. INTRODUCTION AND MAIN RESULTS

In Section [I.1] we give a brief introduction to the parabolic Anderson model. In Section [1.2
we give the basic notation. In Sections and we present our results for Galton-Watson
trees and for the configuration model, respectively. In Section we discuss these results.

1.1. The PAM and intermittency. The parabolic Anderson model (PAM) concerns the
Cauchy problem for the heat equation with a random potential, i.e., solutions u to the equation

Owu(t, z) = Au(t, x) + &(z)u(t, z), t>0,zeZ, (1.1)

where 2 is a space equipped with a Laplacian A, and £ is a random potential on Z". The
operator A + £ is called the Anderson operator. Although Z¢ and R? are the most common
choices for 42, other spaces are interesting as well, such as Riemannian manifolds or discrete
graphs. In the present paper we study the PAM on random graphs. For surveys on the
mathematical literature on the PAM until 2016, we refer the reader to [AL6, K16].

The main question of interest in the PAM is a detailed description of the concentration
effect called intermittency: in the limit of large time the solution u concentrates on small and
well-separated regions in space, called intermittent islands. This concentration effect can be
studied particularly well in the PAM because efficient mathematical tools are available, such
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as eigenvalue expansions and the Feynman-Kac formula. In particular, these lead to a detailed
description of the locations of the intermittent islands, as well as the profiles of the potential
& and the solution u inside these islands.

The analysis of intermittency usually starts with a computation of logarithmic large-time
asymptotics of the total mass, called Lyapunov exponents. There is an important distinction
between the annealed setting (i.e., averaged over the random potential) and the quenched
setting (i.e., almost surely with respect to the random potential). Often both Lyapunov
exponents admit explicit descriptions in terms of characteristic variational formulas that
contain information about how the mass concentrates in space, and serve as starting points
for deeper investigations. The ‘annealed’ and the ‘quenched’ variational formula are typically
connected but take two different points of view. They contain two parts: a rate function term
that identifies which profiles of the potential are most favourable for mass concentration, and
a spectral term that identifies which profiles the solution takes inside the intermittent islands.

From now on, we restrict to discrete spaces and to random potentials that consist of i.i.d.
variables. For Z9, the above intermittent picture was verified for several classes of marginal
distributions. It turned out that the double-exponential distribution with parameter o €
(0,00), given by

P(&(0) > u) = e_eu/g, u € R, (1.2)

is particularly interesting, because it leads to non-trivial intermittent islands and to interesting
profiles of both potential and solution inside. There are four different classes of potentials,
distinguished by the type of variational formula that emerges and the scale of the diameter of
the intermittent island (cf. [HKMO06]). The double-exponential distribution is critical in the
sense that the intermittent islands neither grow nor shrink with time, and therefore represents
a class of its own.

The setup of the present paper contains two features that are novel in the study of the PAM:
(1) we consider a random discrete space, thereby introducing another layer of randomness into
the model; (2) this space has a non-FEuclidean topology, in the form of an ezponential growth
of the volume of balls as a function of their radius. As far as we are aware, the discrete-space
PAM has so far been studied only on Z¢ and on two examples of finite deterministic graphs:
the complete graph with n vertices [FM90] and the N-dimensional hypercube with n = oN
vertices [AGHI6]. These graphs have unbounded degrees as n — oo, and therefore the Laplace
operator was equipped with a prefactor that is equal to the inverse of the degree, unlike the
Laplace operator considered here.

Our main target is the PAM on a Galton-Watson tree with bounded degrees. However,
our approach also applies to large finite graphs that are sparse (e.g. bounded degrees) and
locally tree-like (rare loops). As an illustration, we consider here the configuration model or,
more precisely, the uniform simple random graph with prescribed degree sequence. We choose
to work in the almost-sure (or large-probability) setting with respect to the randomnesses of
both graph and potential, and we take as initial condition a unit mass at the root of the
graph. We identify the leading order large-time asymptotics of the total mass, and derive a
variational formula for the correction term. This formula contains a spatial part (identifying
the subgraph on which the concentration takes place) and a profile part (identifying the shape
on that subgraph of both the potential and the solution). Both parts are new. In some cases
we can identify the minimiser of the variational formula. As in the case of Z¢, the structure
of the islands does not depend on time: no spatial scaling is necessary.

1.2. The PAM on a graph. We begin with some definitions and notations, and refer the
reader to [AT6, [K16] for more background on the PAM in the case of Z.
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Let G = (V, E) be a simple connected undirected graph, either finite or countably infinite.
Let Ag be the Laplacian on G, i.e.,

(Acf)(@) = > [fy)—f@), =zeV, f: VR (1.3)
(yten

Our object of interest is the non-negative solution of the Cauchy problem for the heat equation
with potential £: V' — R and localised initial condition,

Dulw,t) = (Agu)(wt)+E@ule,b), z€V,t>0,
u(z,0) = do(x), z eV,
where O € V is referred to as the origin or root of G. We say that G is rooted at O and call

G = (V,E,O) a rooted graph. The quantity u(t,x) can be interpreted as the amount of mass
present at time t at site  when initially there is unit mass at O.

(1.4)

Criteria for existence and uniqueness of the non-negative solution to (|1.4) are well-known
for the case G = Z% (see [GM90]), and rely on the Feynman-Kac formula

w(z,t) = Eo [exp { /0 t g(XS)ds} 10X, = w}} , (1.5)

where X = (X}):>0 is the continuous-time random walk on the vertices V' with jump rate 1
along the edges F, and Py denotes the law of X given Xy = O. We will be interested in the
total mass of the solution,

Ult) = Z:Vu(x, 1) = Eo [exp {/Ot £(Xs)ds}] . (1.6)

Often we suppress the dependence on G, ¢ from the notation. Throughout the paper, we
assume that the random potential £ = ({(x))zey consists of i.i.d. random variables satisfying:

Assumption (DE). For some o € (0, 00),
P(E0)>0)=1,  P(£0)>u) =e " for ularge enough. (1.7)

Under Assumption (DE), £(0) > 0 almost surely and £(z) has an eventually exact double-
exponential upper tail. The latter restrictions are helpful to avoid certain technicalities that
are unrelated to the main message of the paper and require no new ideas. In particular,
is enough to guarantee existence and uniqueness of the non-negative solution to on any
discrete graph with at most exponential growth, as can be inferred from the proof of the
Z%-case in [GM98]. All our results remain valid under or even milder conditions, e.g.
[GM98, Assumption (F)] plus an integrability condition on the lower tail of £(0).

The following characteristic variational problem will turn out to be important for the de-
scription of the asymptotics of U(t) when £ has a double-exponential tail. Denote by P (V)
the set of probability measures on V. For p € P(V), define

)= Y (Vi Ve ) . Je) = - Y p)lospx),  (18)

{zy}eE zeV

and set

xc(o) = peig(fv)[IE(p) + oJv (p)], 0 € (0,00). (1.9)

The first term in ([1.9)) is the quadratic form associated with the Laplacian, describing the
solution u(-,t) in the intermittent islands, while the second term in (1.9)) is the Legendre
transform of the rate function for the potential, describing the highest peaks of £(+) inside the
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intermittent islands. See Section [L.5] for its relevance and interpretation, and Section [2.3] for
alternate representations.

1.3. Results: Galton-Watson Trees. In this section we focus on our first example of a
random graph.

Let Dy, Dy be random variables taking values in N = {1,2,3,...}. The Galton-Watson
tree with initial degree distribution Dy and general degree distribution D, is constructed as
follows. Start with a root vertex O, and attach edges from O to Dy first-generation vertices.
Proceed recursively: after having attached the n-th generation of vertices, attach to each
one of them an independent (Dy — 1)-distributed number of new vertices, whose union gives
the (n + 1)-th generation of vertices. Denote by GW = (V, E) the graph obtained, by P its
probability law, and by E the corresponding expectation. The law of Dy — 1 is the offspring
distribution of GW, and the law of D, is the degree distribution. Write supp(Dy) to denote
the set of degrees that are taken by D, with positive probability.

We will work under the following bounded-degree assumption:
Assumption (BD).
dmin := minsupp(Dy) > 2, E[Dg] > 2, (1.10)
and, for some dmax € N, dmax > dmin,

max supp(Dy) < dmax- (1.11)

Under Assumption (BD), GW is almost surely an infinite tree. Moreover,
i 10818 (0)]
r

r—00
where B, (O) is the ball of radius r around O in the graph distance (see e.g. [LP16l pp.134—
135]). Note that Assumption (BD) allows deterministic trees with constant offspring dmin — 1
(provided dmin > 3).

To state our main result, we define the constant

=logE[Dg—1] =:9 >0 B —a.s., (1.12)

X(0) :=inf {x7(0): T infinite tree with degrees in supp(Dy)} (1.13)
with x¢ (o) defined in (1.9).

Theorem 1.1. [Quenched Lyapunov exponent for the PAM on GW)] Let G = GW =
(V, E,O) be the rooted Galton-Watson random tree satisfying Assumption (BD), and let ¥ be
as in (1.12). Let & = (&(x))zey be an i.i.d. potential satisfying Assumption (DE). Let U(t)
denote the total mass at time t of the solution u to the PAM on GW. Then, ast — oo,

%log U(t) = olog < ) —o0—Xx(0) +o(1), (P x B)-a.s. (1.14)

loglogt

The proof of Theorem [I.1]is given in Section

For o sufficiently large we can identify the infimum in (1.13). For d > 2, denote by 74 the
infinite homogeneous tree with degree equal to d at every node.
Theorem 1.2. [Identification of the minimiser] If ¢ > 1/log(dmin + 1), then X(0) =
X Ty (0)-

The proof of Theorem is given in Section [A] with the help of a comparison argument that
appends copies of the infinite dyin-tree to itself.

min
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1.4. Results: Configuration Model. In this section we focus on our second example of a
random graph.

For n € N, let 0™ = (dg"))?zl be a collection of positive integers. The configuration model
with degree sequence 0™ is a random multigraph (i.e., a graph that may have self-loops and
multiple edges) on the vertex set V,, := {1,...,n} defined as follows. To each ¢ € V,,, attach
d;") ‘half-edges’. After that, construct edges by successively attaching each half-edge uniformly
at random to a remaining half-edge. For this procedure to be successful, we must require that

d{” + -4 d is even for every n € N. (1.15)

Draw a root O, uniformly at random from V,,. Denote by CM,, = (V,, Ey, O,,) the rooted
multigraph thus obtained, and by *33,, its probability law. For further details, we refer the
reader to [vdH17al, Chapter 7.

We will work under the following assumption on 2™:
Assumption (CM): The degree sequences 3™ = (d™)"_;, n € N, satisfy (I.15). Moreover,

(1) There exists an N-valued random variable D such that d(OﬂT)L
(2) dmin := minsupp(D) > 3.
(3) There exists a dpax € N such that 2 < di") <dpax forallm e Nand 1 <i < n.

= D as n — oo.

In particular, 3 < dpin < dmax < 00 and D < dpay almost surely. It is possible to take 2™
random. In that case Assumption (CM) must be required almost surely or in probability with
respect to the law of 9, and our results below must be interpreted accordingly.

Proposition 1.3. [Connectivity and simplicity of CM,] Under Assumption (CM),
2

le P (CM,, is a simple graph) = e 271, (1.16)
where ED(D - 1)
= € [2,00). 1.1
Moreover,
li_)m B (CMy, is connected | CM,, is simple) = 1. (1.18)
Proof. See [vdH17al Theorem 7.12] and [EvdHI17, Theorem 2.3]. O

Proposition [L.3] tells us that for large n the set
Un(0™) 1= {simple connected graphs on {1,...,n} with degrees d(ln), ceyd (1.19)

is non-empty. Hence, we may consider the uniform simple random graph UG, that is drawn
uniformly at random from %;,(d™).

Proposition 1.4. [Conditional law of CM,, given simplicity]| Under the conditional law
Bn( - | CM,, is simple), CM,, has the same law as UG,

Proof. See [vdH17al Proposition 7.15]. O

As usual, for a sequence of events (Ay)nen, we say that A, occurs with high probability
(whp) as n — oo if the probability of A, tends to 1 as n — oo. This notion does not require
the events to be defined on the same probability space. We denote by disty(X,Y") the total
variation distance between two random variables X and Y (i.e., between their laws). Let

1 . -1
o, = (ﬁ v distry(do,. D)) , (1.20)

and note that, by Assumption (CM), ®,, — oo as n — oc.
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Theorem 1.5. [Quenched Lyapunov exponent for the PAM on UG,] For any n € N,
let G = UG, be the uniform simple random graph with degree sequence 0™ satisfying Assump-
tion (CM). For anyn € N, let £ be an i.i.d. potential on V,, satisfying Assumption (DE). Let
Un(t) denote the total mass of the solution to the PAM on G = UG, as defined in Section .
Fiz a sequence of times (tp)nen with t, — 0o and t, logt, = o(log ®,,) as n — oco. Then, with
high P x B,,-probability as n — oo,

1 oty ¥ ~
Zlog Up(ty) = olog [ =2 ) — o= 1), 1.21
- 1ogU(t,) = o1og (22 ) 0 ¥(o) + o(1) (1.21)

where ¥ :=logr > 0 with v as in (1.17), and X (o) is as in (1.13).

The proof of Theorem [I.5] is given in Section The main ingredients in the proof are
Theorem [I.1]and a well-known comparison between the configuration model and an associated
Galton-Watson tree inside a slowly-growing ball, from which the condition on ¢, originates.

Condition (1) in Assumption (CM) is a standard regularity condition. Conditions (2) and
(3) provide easy access to results such as Propositions above. As examples of degree
sequences satisfying Assumption (CM) we mention:

e Constant degrees. In the case where d; = d > 3 for a deterministic d € N and all
1 <4 < n, we have dp, = D = d almost surely, and UG, is a uniform regular random
graph. To respect , it is enough to restrict to n such that nd is even. In this
case distpy(dp, , D) =0, and so ®,, = n in ((1.20).

e Random degrees. In the case where (d;);cy forms an i.i.d. sequence taking values in
{3, ..., dmax}, classical concentration bounds (e.g. Azuma’s inequality) can be used to
show that, for any v € (0, %),

drv(do,,D) =o0(n"7) almost surely as n — oo, (1.22)

and so ®, > n”. The condition in can be easily satisfied after replacing d,
by d, +1 when dj + - - - + d,, is odd, which does not affect . With this change,
Assumption (CM) is satisfied. For more information about CM,, with i.i.d. degrees,
see [vdH17al, Chapter 7].

1.5. Discussion. Our main results, Theorems and identify the quenched logarithmic
asymptotics of the total mass of the PAM. Our proofs show that the first term in the asymp-
totics comes from the height of the potential in an intermittent island, the second term —p
from the probability of a quick sprint by the random walk in the Feynman-Kac formula from
O to the island, and the third term X (o) from the structure of the island and the profile of the
potential inside. Below we explain how each of these three terms comes about. Much of what
follows is well-known from the study of the PAM on Z? (see also [K16]), but certain aspects
are new and derive from the randomness of the ambient space and its exponential growth.

» Galton-Watson tree.

e First and second terms. The large-t asymptotics of the Feynman-Kac formula for
U(t) comes from those random walk paths (X (s))c[o,q that run within s; time units to some
favorable local region of the graph (the intermittent island) and subsequently stay in that
region for the rest of the time. In order to find the scale t; of the distance to the region and
the time s; of the sprint, we have to balance and optimise a number of crucial quantities: the
number of sites in the ball By, (O) around O with radius t;, the scale of the maximal value
of the potential within that ball, the probability to reach that ball within time s;, and the
gain from the Feynman-Kac formula from staying in that ball during ¢ — s; time units. One
key ingredient is the well-known fact that the maximum of m independent random variables
satisfying Assumption (DE) is asymptotically equal to hy, ~ ploglogm for large m. Another
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key ingredient is that B, (0) has approximately e vertices (see (I.12)). Hence, this ball
contains values of the potential of height ~ h..,» ~ plog (1), not just at one vertex but on
a cluster of vertices of arbitrary finite size. The contribution from staying in such as cluster
during =~ t time units yields the first term of the asymptotics, where we still need to identify
t;. A slightly more precise calculation, involving the probabilistic cost to run within s; time
units over t; space units and to afterwards gain a mass of size (¢ — s;)plog (r:9), reveals that
the optimal time is s; ~ v;/plogt;. Optimising this together with the first term olog (r:9)
over t;, we see that the optimal distance is v; = ot/ loglogt. The term —p comes from the
probability of making t; steps within s; = t;/plogt; time units.

e Third term. The variational formula Y (0) describes the second-order asymptotics of the
gain of the random walk from staying &~ ¢ time units in an optimal local region (the first-
order term has already been identified as glog (r;19)). Indeed, pick some finite tree T' that
is admissible in , i.e., has positive probability to occur locally in the graph G = GW.
Many copies of T" occur disjointly with positive density in G. In particular, they appear
within the ball By,(O) a number of times that is proportional to the volume of the ball.
By standard extreme-value analysis, on one of these many copies of T' the random potential
achieves an approximately optimal height (=~ olog (r4¢)) and shape. The optimality of the
shape is measured in terms of the negative local Dirichlet eigenvalue —Ar(€) of Ag + ¢ inside
T. The shapes g that & can assume locally are those that have a large-deviation rate value
L(g) =3, %@/ at most 1 (note that £(q) measures the probabilistic cost of the shape ¢ on
an exponential scale). All allowed shapes ¢ are present locally at some location inside the ball
B, (O) for large t. Each of these locations can be used by the random walk as an intermittent
island. Optimising over all allowed shapes ¢, we see that the second-order term of the long
stay in that island must indeed be expressed by the term

sup  [—Ar(q)]. (1.23)
q: L(g)<1

When T is appropriately chosen, this number is close to the number X(¢) defined in (1.13))
(cf. Proposition . This completes the heuristic explanation of the asymptotics in ([1.14)).

» Configuration Model.

The analogous assertion for the configuration model in (|1.21)) is understood in the same way,
ignoring the fact that the graph is now finite, and that size and time are coupled. As to the
additional growth constraint on ¢, logt, in Theorem its role is to guarantee that the ball
By, (0O) is small enough to contain no loop with high probability. In fact, this ball is very
close in distribution to the same ball in an associated Galton-Watson tree (cf. Proposition,
which allows us to carry over our result.

Minimal degree tree is optimal. What is a heuristic explanation for our result in Theorem
that the optimal tree is an infinitely large homogeneous tree of minimal degree dpi, at
every vertex? The first term in , the quadratic form associated with the Laplacian, has
a spread-out effect. Apparently, the self-attractive effect of the second term is not strong
enough to cope with this, as the super-linear function p — plogp in the definition of Jy in
is ‘weakly superlinear’. This suggests that the optimal structure should be infinitely
large (also on Z? the optimal profile is positive anywhere in the ambient space Z¢). The first
term is obviously monotone in the degree, which explains why the infinite tree with minimal
degree optimises the formula.

Hurdles. The exponential growth of the graph poses a number of technical difficulties that
are not present for the PAM on Z¢ or R?. Indeed, one of the crucial points in the proof of the
upper bound for the large-time asymptotics is to restrict the infinite graph G to some finite but
time-dependent subgraph (in our case the ball By, (0)). On Z?, a reflection technique that folds
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Z% into a box of an appropriate size gives an upper bound at the cost of a negligible boundary
term. For exponentially growing graphs, however, this technique can no longer be used because
the boundary of a large ball is comparable in size to the volume of the ball. Therefore we
need to employ and adapt an intricate method developed on Z¢ for deriving deeper properties
of the PAM, namely, Poisson point process convergence of all the top eigenvalue-eigenvector
pairs and asymptotic concentration in a single island. This method relies on certain path
expansions, which are developed in Section [3| and rely on results from [BKS1§].

1.6. Outline. The remainder of the paper is organised as follows. In Section [2| we collect
some basic notations and facts about graphs, spectral objects, alternate representations of
the characteristic formula X¢(0), and the potential landscape. In Section [3| we employ a path
expansion technique to estimate the contribution to the Feynman-Kac formula coming from
certain specific classes of paths. In Section |4 we prove Theorem In Section [5| we prove
Theorem In Appendix [A] we analyse the behavior of the variational formula y7 for trees
T under certain glueing operations, and prove Theorem

2. PRELIMINARIES

In this section we gather some facts that will be useful in the remainder of the paper. In
particular, we transfer some basic properties of the potential landscape derived in [BK16] and
[BKS18] for the Euclidean-lattice setting to the sparse-random-graph setting. In Section
we describe the classes of graphs we will work with. In Section we derive spectral bounds
on the Feynman-Kac formula. In Section we provide alternative representations for the
constant y in . In Section we obtain estimates on the maximal height of the potential
in large balls as well as on the sizes and local eigenvalues of the islands where the potential is
close to maximal. In Section [2.5|we obtain estimates on the heights of the potential seen along
self-avoiding paths and on the number of islands where the potential is close to maximal.

2.1. Graphs. All graphs considered in the paper are simple, connected and undirected, and
are either finite or countably infinite. For a graph G = (V, E), we denote by dist(x,y) =
distg(x,y) the graph distance between x,y € V', and by

deg(z) = degq(x) :=#{y € V: {y,x} € E}, (2.1)
the degree of the vertex x € V. The ball of radius ¢ > 0 around a vertex x is defined as
By(z) = BS (z) :=={y e V: distg(y,z) <},  L;:=|Byl. (2.2)
For a rooted graph G = (V, E,O), the distance to the root is defined as
|| := distg(z, O), zeV. (2.3)

The classes of graphs that we will consider are as follows. Fix a parameter dy.x € N. For
r € Ng = NU {0}, define

o — simple connected undirected rooted graphs G=(V,E,O) with (2 4)
T *7 | V finite or countable, |V |>r+1 and maxgcy degg(z)<dmax [ ° :

Note that if G € &,., then L, = |B,| > r + 1. Also define

G — ﬂ &, — simple connected undirected rooted graphs G=(V,E,O) with (2 5)
oo T V countable, |V|=c0 and max,cy degq(z) <dmax : :
reNg

When dealing with infinite graphs, we will be interested in those that have an exponential
growth. Thus we define, for 9 > 0,

60 = {G € G lim 28I _ 19}. (2.6)

r—00 T
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Note that GW € 6&2) almost surely, with ¢ as in ((1.12)).

2.2. Spectral bounds. Let G = (V, E) be a simple connected graph with maximal degree
dmax € N, where the vertex set V may be finite or countably infinite.

We recall the Rayleigh-Ritz formula for the principal eigenvalue of the Anderson Hamil-
tonian. For A C V and ¢: V — [—00,0), let AX)(q; G) denote the largest eigenvalue of the
operator Ag + ¢ in A with Dirichlet boundary conditions on V\A. More precisely,

M (@ G) = sup {{(A¢ + @)b, D)2y : ¢ €RY, suppd C A, ||y =1} (2.7)

We will often omit the superscript “(1)”, i.e., write Az (¢; G) = )\X)(q;G), and abbreviate
Ac(q) == Av(q; G). When there is no risk of confusion, we may also suppress G from the
notation, and omit ¢ when g = .

Here are some straightforward consequences of the Rayleigh-Ritz formula:
(1) For any I' C A,

max q(2) — dmax < A\ (¢;G) < AP (¢; G) < maxq(z). (2.8)
zel z€EA
(2) The eigenfunction corresponding to Aﬁ\l)(q; G) can be taken to be non-negative.
(3) If g is real-valued and T" C A are finite and connected in G, then the middle inequality
in is strict and the non-negative eigenfunction corresponding to )\X)(q; G) is
strictly positive.

In what follows we state some spectral bounds for the Feynman-Kac formula. These bounds
are deterministic, i.e., they hold for any fixed realisation of the potential £ € RY .

Inside G, fix a finite connected subset A C V, and let Hy denote the Anderson Hamiltonian
in A with zero Dirichlet boundary conditions on A = V\A (i.e., the restriction of the operator
Hg = Ag + £ to the class of functions supported on A). For y € A, let u{ be the solution of

owu(z,t) = (Hpu)(z,t), =€ A t>0, (2.9)
u(z,0) = 1y(z), x €A, :
and set UR (t) :== >, cp ui (2, t). The solution admits the Feynman-Kac representation
t
uf (z,t) = E, [exp {/0 §(Xs)ds} 71pae > t, Xy =}, (2.10)
where Tac is the hitting time of A°. It also admits the spectral representation
Al .
uf (z, 1) = e ol (9)ol (v), (2.11)
k=1
where AE\I) > )\5\2) > > )\XA“ and qu), gbif), ceey ngAU are, respectively, the eigenvalues and the

corresponding orthonormal eigenfunctions of Hp. These two representations may be exploited
to obtain bounds for one in terms of the other, as shown by the following lemma.

Lemma 2.1. [Bounds on the solution] For any y € A and any t > 0,
(1) 't
et)\A ¢§\1)(y)2 < ]Ey [efo S(XS)dS]]‘{TAC>t,Xt:y}:|
(1
<E, [eh X0t ] <V AL (212)

Proof. The first and third inequalities follow from (2.10H2.11)) after a suitable application of
Parseval’s identity. The second inequality is elementary. O
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The following lemma bounds the Feynman-Kac formula integrated up to an exit time.

Lemma 2.2. [Mass up to an exit time] For any y € A and v > A\,

E, [exp { /0 M ex) =) dsH <1+ jnf’;'fg)'. (2.13)

Proof. See [GKMOT, Lemma 4.2]. O

The following lemma provides control on the principal eigenfunction.

Lemma 2.3. [Representation of the principal eigenfunction| For any x,y € A,

O () m :
m =E, [exp {/0 (€(Xu) = AY) du} {7, < TAC}] . (2.14)
Proof. See [MP16, Proposition 3.3]. O

2.3. About the constant x. We next introduce alternative representations for y in ((1.9) in
terms of a ‘dual’ variational formula. Fix g € (0,00) and a graph G = (V, E)). The functional

['V(qa Q) = Z eq(m)/g € [07 OOL q: V= [—OO, OO)) (215)
zeV

plays the role of a large deviation rate function for the potential £ in V' (compare with (1.7)).
Henceforth we suppress the superscript “(1)” from the notation for the principal eigenvalue

(2.7), i.e., we write

M(G:G) =2 (¢:G),  AcCV, (2.16)
and abbreviate Ag(q) = Av(q; G). We also define
Xa(g;G) = — L (g G) €10,00),  Xalo) == Xv(e; G). (2.17)
q: V—|—00,00),
Ly (g;0)<1

The condition Ly (q;0) < 1 on the supremum above ensures that the potentials ¢ have a
fair probability under the i.i.d. double-exponential distribution. Finally, for an infinite rooted
graph G = (V, E,O), we define

X& (p) = inf X, (0: G). (2.18)

Both x® and X give different representations for .

Proposition 2.4. [Alternative representations for x| For any graph G = (V, E) and any
ACV,

Xa(o; G) < xalo), xv(0:G) = Xa(o) = xal(o). (2.19)
IfG=(V,E,0) € &, then

x¢ (o) = lim X5, (0:G) = xc(e). (2:20)

Proposition [2.4 will be proved in Section
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2.4. Potentials and islands. We next consider properties of the potential landscape. Recall
that (£(z))zev are i.i.d. double-exponential random variables. Set

ar, := ologlog(L V e°). (2.21)
The next lemma shows that ar, is the leading order of the maximum of £ in B,.

Lemma 2.5. [Maximum of the potential] Fiz r — g, > 0 with lim, o g = co. Then

1 _or
GSSQI;T P < gé%?g(m) —ar, | > 102}@) < max{ﬂ,e G } Vi > 262 (2.22)
Moreover, for any ¢ > 0 and any G € es?.’.?), P-almost surely eventually as r — oo,
201
max &(x) —ar, | < 08T (2.23)

z€B; - Or

Proof. Without loss of generality, we may assume that g, < 2plogr. Fix G € &,. and estimate

gr
_1 “olog L _rlogr _gr
) —e ;Lr(log Ly)e elogLr <e e <e e (2.24)

I

P (max&(a:) <ar, —

-
TE€Bn log L,

provided r > 2e2. On the other hand, using €* > 1+ z, z € R, we estimate

- _elog log Ly+ 7 l%'rg r Lr _9r
P ;réanf(ac)ZaLr—l—logr =1—(1-e <e ¢. (2.25)

Noting that the bounds above do not depend on G, so the case G € &,. is concluded.

For the case G € (’5&2), let g, := %Qlog r. Note that the right-hand side of (2.22)) is summable
over r € N, so that, by the Borel-Cantelli lemma,
201
< gr < glogr
log L, or

max €(z) - ar,

a; P-almost surely eventually as r — oo. O
rED,

For a fixed rooted graph G = (V,E,0) € &,, we define sets of high excedances of the
potential in B, as follows. Given A > 0, let

I, 4 =11, 4(€) :={z € B: £&(2) > ar, — 2A} (2.26)
be the set vertices in B, where the potential is close to maximal. For a fixed o € (0,1), define
Sy = (logr)“ (2.27)

and set
Dy A= Dy a(§) :={z € B,: distg(z,II; 4) < S,} DII, 4, (2.28)

i.e., Dy 4 is the S,-neighbourhood of II, 4. Let €, 4 denote the set of all connected components
of D, 4 in G, which we call islands. For C € €, 4, let

ze := argmax{{(z): z € C} (2.29)

be the point with highest potential within C. Since £(0) has a continuous law, z¢ is P-a.s. well
defined for all C € €, 4.

The next lemma gathers some useful properties of €, 4.

Lemma 2.6. [Maximum size of the islands] For every A > 0, there exists My € N such
that the following holds. For a graph G € &,., define the event

B, :={3C € €, 4 with |CNIL, 4| > Ma}. (2.30)
Then ), .cn, SWPgews, P(Br) < co. In particular,
lim sup P(B,) =0, (2.31)

—00 GE@M‘
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and, for any fired G € B, P-almost surely eventually as r — oo, B, does not occur. Note
that

on BS all C € €, 4 satisfy: |C NI, 4] < Ma, diamg(C) < 2M4S,, |C| < Mad3r,..  (2.32)
Proof. The claim follows from a straightforward estimate based on (|1.7) (see [BK16, Lemma
6.6)). 0

Apart from the dimensions, it will be also important to control the principal eigenvalues of

(@)

islands in €, 4. For this we restrict to graphs in G-

Lemma 2.7. [Principal eigenvalues of the islands| For any ¢ > 0 and any G € 05533,),

P-almost surely eventually as r — oo,

all C € €, 4 satisfy: A\’ (&G) < ar, — Xe(o; G) +e. (2.33)

Proof. We follow [GM98|, Lemma 2.11]. Let ¢ > 0, G = (V, E,0) € esé’f), and define the event

B. — {there exists a connected subset ACV with AﬂBr;éQ),}
T

A<M adiiy and A (66)>ar, —%a (0;G)+e (2.34)

with M4 as in Lemma Note that, by (1.7)), ef(@)/e ig stochastically dominated by C'V E,
where E is an Exp(1) random variable and C' > 0 is a constant. Thus, for any A C V, using

[2.17), taking v := Ves/¢ > 1 and applying Markov’s inequality, we may estimate

P (A& G) > ar, = Xa(e:G) +¢) <P (La(§ —ar, =€) > 1) =P (y7'£La(€) > ylog L)
< e el plev Lald)] < o vlos LTKJYA‘

(2.35)
for some constant K, € (1,00). Next note that, for any x € B,, n € N, the number of
connected subsets A C V with z € A and |A| = n is at most e®” for some ¢; = ¢o(dmax) > 0
(see e.g. [Gr99, Proof of Theorem (4.20)]). Using a union bound and applying log L, ~ vr,
we estimate, for some constants ¢, co > 0,

LMAdISTAZXJ 1
P(B,) < e (y"DlogLs Z e®" K < c1 exp {—%197" + czdgf;ir)a} <e 3" (2.36)
n=1
when r is large. Now the Borel-Cantelli lemma implies that, P-almost surely eventually as
r — 00, B, does not occur. The proof is completed by invoking Lemma [2.6 O

For later use, we state the consequence for GW in terms of x(p) in (1.13).

Corollary 2.8. [Uniform bound on principal eigenvalue of the islands| For G = GW
as in Sectz’on ¥ > asin (1.12), and any € > 0, P x P-almost surely eventually as r — oo,
max A\, (&G) < ar, —x(0) + ¢ (2.37)

Cel, 4

Proof. First note that GW € 05532) almost surely, so Lemma [2.7] applies. By Lemma [2.5
for any constant C' > 0, the maximum of ¢ in a ball of radius CS, around O is of order
O(loglogr). This means that O is distant from II, 4, in particular, dist(O, D, 4) > 2 almost
surely eventually as r — oo. For C € €, 4, let T be the infinite tree obtained by attaching
to each x € 9C := {y ¢ C: Iz € C with z ~ y} # O an infinite tree with constant offspring
dmin — 1. Then T¢ is an infinite tree with degrees in supp(Dy) and, by Proposition

Xc(0;GW) = Xe(o;1e) < xre(0) < X(0). O



THE PARABOLIC ANDERSON MODEL ON A GALTON-WATSON TREE 13

2.5. Connectivity. We again work in the setting of Section We recall the following
Chernoff bound for a Binomial random variable Bin(n,p) with parameters n, p (see e.g.
[BKS18, Lemma 5.9]):

P (Bin(n, p) > u) < exp {—u <log nﬁp - 1)} Vu > 0. (2.38)

Lemma 2.9. [Number of intermediate peaks of the potential] For any 8 € (0,1) and
any € € (0,3/2), the following holds. For G € &, and a self-avoiding path 7 in G, set

Nz = Nz(§) := [{z € supp(): £(2) > (1 —¢)ay, }. (2.39)
Define the event
there exists a self-avoiding path 7 in G with
Br = {cupp(rs 29, | supp(m)| (108 L) and N Gor byt }- (2:40)

Then ) ,cn, SUPges, P(Br) < co. In particular,

lim sup P(B,) =0 (2.41)
r—00 G€®r
and, for any fired G € S, P-almost surely eventually as r — oo, all self-avoiding paths w in
G with supp(r) N B, # 0 and |supp(r)| > (log L,)? satisfy N < %,
Proof. Fix € (0,1) and ¢ € (0,3/2). For any G € &, (1.7)) implies

pri=P(£(0) > (1 —¢)ar,) = exp {—(log L,)' ¢} (2.42)

Fix z € B, and k € N. The number of self-avoiding paths = in B, with |supp(n)| = k and

7o = x is at most d* . For such a m, the random variable N, has a Bin(p,, k)-distribution.

Using ([2.38]) and a union bound, we obtain

P(EI self-avoiding 7 with | supp(w)| = k,mo = « and N > k/(log LT)E>

_ 1+ eloglog L,
< —k( (log L)% —logdpaxy — ———2"") 4 (24
< exp { (( og L) og oz L,)° ) } (2.43)

Note that, since L, > r and the function x — loglogx/(log )¢ is eventually decreasing, for
r large enough and uniformly over G € &,., the expression in parentheses above is at least
3(log L;)'~%. Summing over k > (log L,)? and z € B,, we get

p <E| self-avoiding 7 such that |supp(r)| > (log L,)” and (2.39) does not hold)
(2.44)

< 2L, exp {—%(log Lr)1+ﬁ_2€} < cjexp {—02(10g Lr)1+6}

for some positive constants ci, c2, §, uniformly over G € &,.. Since L, > r, (2.44)) is summable
in 7 (uniformly over G € &,.). The proof is concluded invoking the Borel-Cantelli lemma. [J

A similar computation bounds the number of high exceedances of the potential.

Lemma 2.10. [Number of high exceedances of the potential] For any A > 0 there is
a C > 1 such that, for all § € (0,1), the following holds. For G € &, and a self-avoiding path
win G, let

Ny = |{zx € supp(7): &(x) > ar, — 24} (2.45)
Define the event

there exists a self-avoiding path ™ in G with

B, = {supp(ﬂ)ﬂBT;ﬁ@, | supp(7)|>C (log Lr-)? and N> Lsupp(ml } : (246)

(log Lr)5
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Then Y ,.cn, SUPges, P(Br) < 0o. In particular,
lim sup P(B,) =0 (2.47)

r—00 GE@T

and, for any fixred G € B, P-almost surely eventually as r — oo, all self-avoiding paths w in
G with supp(m) N B, # 0 and |supp(r)| > C(log L,)? satisfy

| supp(m)|

Ny = |{z € supp(m): &{(x) > ar, —2A}| < (Tog L,)° (2.48)

Proof. Proceed as for Lemma [2.9) noting that this time
pr:=P(&(0) > ar, —2A4) =L (2.49)
where € = e_%, and taking C' > 2/e. O

3. PATH EXPANSIONS

We again work in the setting of Section In the following, we develop a way to bound the
contribution of certain specific classes of paths to the Feynman-Kac formula. In Section [3.1|we
state a key proposition reducing the entropy of paths. This proposition is proved in Section 3.4
with the help of a lemma bounding the mass of an equivalence class of paths, which is stated
and proved in Section [3.3] The proof of this lemma requires two further lemmas controlling
the mass of the solution along excursions, which are stated and proved in Section [3.2

3.1. Key proposition. Fix a graph G = (V, E,0) € &,. We define various sets of nearest-
neighbour paths in G as follows. For £ € Ny and subsets A, A’ C V, put

o € A, mp € N, }
)

AN {41,
%(A,A)._{(wo,..‘,w)ev e cEvI<i<t

(3.1)
PAN) = | ZuAN),
LeNg
and set
Py = Py(V,V), P = P(V,V). (3.2)
When A or A’ consists of a single point, we write z instead of {z}. For 7 € %, we set |r| := £.
We write supp(m) := {mo, ..., 7|} to denote the set of points visited by 7.

Let X = (Xi)t>0 be the continuous-time random walk on G that jumps from z € V to
any neighbour y ~ z with rate 1. We denote by (T} )ren, the sequence of jump times (with
Tp :=0). For £ € Ny, let

7 (X) = (Xo,...,X1,) (3.3)
be the path in &, consisting of the first £ steps of X and, for ¢t > 0, let
T(Xjoy) = 7 (X),  where £; € Ny satisfies Ty, <t < Tp,41, (3.4)

denote the path in & consisting of all the steps taken by X between times 0 and t¢.
Recall the definitions from Section [2.4] For G € &,, m € & and A > 0, define

Ara(m) == sup {A' (& G): C € €, 4, supp(m) NC NI, 4 # 0}, (3.5)

with the convention sup ) = —oo. This is the largest principal eigenvalue among the compo-
nents of €, 4 in G that have a point of high exceedance visited by the path 7.

The main result of this section is the following proposition. Hereafter we abbreviate
log® x := logloglog .
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Proposition 3.1. [Entropy reduction]| For every fized dmax € N, there exists an Ay =
Ap(dmax) > 0 such that the following holds. Let o € (0,1) be as in and let k € (o, 1).
For all A > Ay, there exists a constant c4 = cA(dmax) > 0 such that, with probability tending
to one as r — oo uniformly over G € &,, the following statement is true: For each x € B,
each N C P(x, B;) satisfying supp(r) C B, and max;<<|x| distg(ms, ) > (log L))" for all
m €N, and each assignment ™+ (Yr, zz) € R X V satisfying

Yo > (Ana(m) +e757) v (ag, — A) for allm e N (3.6)
and
Zr € supp(m) U U C forallme N, (3.7)
CECT,A:

supp(m)NCNIL,. 470
the following inequality holds for all t > 0:

t P .
log E, [efo '5(X3)ds]l{ﬁ(x[o’t])€j\/}} < sgjr\)[{t% — (log® L, — ca) distg(, z,r)}. (3.8)
Moreover, for any G € &, P-almost surely eventually as r — oo, the same statement is true.

The key to the proof of Proposition [3.1] in Section [3.4]is Lemma [3.5] in Section whose
proof depends on Lemmas [3.2 in Section We emphasize that all these results are
deterministic, i.e., they hold for any fixed potential £: V' — R.

3.2. Mass of the solution along excursions. Fix G = (V, E,O) € &,. The first step to
control the contribution of a path to the total mass is to control the contribution of excursions

outside II, 4 (recall (2.26])).
Lemma 3.2. [Path evaluation] For ¢ € No, 7 € &, and v > maxo<;<|-|{§(m) — deg(m;)},
deg(m;
70(X) = W] — H — eg(m;) (3.9)

Er, [exp {/OT‘Z (€(Xs) =) ds} 07— [€(mi) — deg(mi)]

Proof. The left-hand side of (3.9 can be evaluated by using the fact that T, is the sum of ¢
independent Exp(deg(m;)) random variables that are independent of 7 (X). The condition
on v ensures that all integrals are finite. (|

-1

For a path m € & and € € (0, 1), we write
M* = ‘{0 <i<|ml: {(m) < (1—¢)ar, }
with the interpretation that My® = 0 if |r| = 0.

, (3.10)

Lemma 3.3. [Mass of excursions| For every A,e > 0 there exist ¢ > 0 and ng € N such
that, for allr > ng, ally > ar, — A and all m € P satisfying m; ¢ I, o for all0 < i < £ :=|n|,

Er, [exp { /0 e - ds}

where qa = (1 4+ A/dmax)~t. Note that ; € I1, A is allowed.

r,e

(X)) = 77] < ghelelos™ L) M= (3.11)

Proof. By our assumptions on m and -y, we can use Lemma Splitting the product in
the right-hand side of (3.9)) according to whether &(m;) > (1 — €)ay, or not, and using that
&(m) <ar, —2A for all 0 < i < |r|, we bound the left-hand side of (3.11)) by

¢ €CLL _A —‘{0Sl<£ E(m)g(l—s)aLTH
qA [QAT] .

dm ax

(3.12)
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Since ay, = ologlog L, > ploglogr, for large r the number within square brackets in ([3.12)) is
at least gaco(loglog L,)/2dmax > 1. Hence (3.11) holds with ¢ :=log(1V 2dmax(qac0)™"). O

3.3. Equivalence classes of paths. We follow [BKS18, Section 6.2]. Note that the distance
between I, 4 and DJ 4 in G is at least S, = (log L,)“.

Definition 3.4. [Concatenation of paths] (a) When 7 and 7' are two paths in &P with
Tir| = m, we define their concatenation as

ron = (7r0,...,7T|7r|,7rll,...,7r|’7r,‘)E 2. (3.13)
Note that |7 o 7’| = || + |7'|.

(b) When )z # T, we can still deﬁne the shifted concatenation of m and ©’ as wo 7/, where

7' o= (M| W) + T = Ty -+ W] + Ty — ). The shifted concatenation of multiple paths is

defined inductively via associativity.

|7’

Now, if a path m € & intersects I, 4, then it can be decomposed into an initial path, a
sequence of excursions between II, 4 and D{ ,, and a terminal path. More precisely, there
exists m, € N such that

r=7MoaWo...0oxm) oqglmm) oz (3.14)
where the paths in satisfy
e 2(V, HTA) with 77 ¢1L.4, 0<i<|7®]
79 e P4, D5 ,)  with &% €Dpa, 0<i< |z 1<k <mg—1, (3.15)
7® e L@(DTA,HTA) with 7" ¢1.4, 0<i<|7®], 2<k<my, '
7™ e P(, 4, V) with 7" D, 4, 0<i< |7,
while
7€ P, V)and 7w ¢ A Vi >0 if 7070 € P (I, 0, D ), (3.16)

o € Dypa, 7| =0 otherwise.

Note that the decomposition in (3.14)—(3.16]) is unique, and that the paths #®, 7™ and 7
can have zero length. If 7 is contained in B,, then so are all the paths in the decomposition.

Whenever supp(m) NI, 4 # () and € > 0, we define

M
e D el R ZMW (3.17)
=1

to be the total time spent in exterior excursions, respectlvely, on moderately low points of the
potential visited by exterior excursions (without their last point).

In case supp(m) NII, 4 = 0, we set my := 0, s := |7| and kz° := Mz°. Recall from (3.5)
that, in this case, Ay a(7m) = —o0.

We say that 7,7’ € & are equivalent, written ' ~ 7, if m; = my, @D = 7 for
alli = 1,...,my, and @ = 7. If 7' ~ 7, then sy, k77 and A, 4(7') are all equal to the
counterparts for .

To state our key lemma, we define, for m, s € N,
P = {re P my=m, sy =s}, (3.18)

and denote by
Cra:=max{|C|]: C€ & 4} (3.19)
the maximal size of the islands in €, 4.
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Lemma 3.5. [Mass of an equivalence class| For every A,e > 0 there exist ¢ > 0 and
ro € N such that, for all ¥ > 1o, all m,s € Ny, all 7 € 29 with supp(m) C By, all
¥ > Apa(m) V(ar, —A) and all t > 0,

B, [efg(g(x“)ﬂ) e e mw}]
10} Amax Croa N\ [ 24 \° (ccloe® L, \k"
< () <1 f —max ) elemlos™ Le)ke® (3 99
o A Y — )\T,A(ﬂ-) Amax ( )
Proof. Fix A,e > 0 and let ¢ > 0, ng € N be as given by Lemma [3.3] Set
b= eld€Xu=ndu g < g <h< oo (3.21)
We use induction on m. Suppose that m = 1, let £ := |7#"|. There are two possibilities: either

7o belongs to D, 4 or not. First we consider the case Ty € D, 4, which implies that |7| = 0.
By the strong Markov property,

T,
Er, |:I(2;]1{7T(X[O,t])~7r}} < Er [qutn T x)=zmy Mr, <t M x,  r,eD, 4 VuG[O,thA}}

=Eqr, [Igéﬂ{W(é)(X)ir(l)}]l{Tg<t} (Eﬁ(gn [IS_UH{TDCA»—U}D ] : (3.22)
™ u=Ty

Put z = 7?21). Since z € II, 4, we may write C, to denote the island in €, 4 containing z.

Since 7pe , = 7¢c Pr-a.s., Lemma [2.1] and the hypothesis on v allow us to bound the inner

expectation in (3.22) by |C.|'/2. Applying Lemma we further bound (3.22) by

¢
c— (3) - €
.|/ * B, [Ige]l{ﬂ(a(x):fr(l)}} < C;ﬁ( aa ) olemlos™ LM, (3.23)

dmax

which proves (3.20)) for m =1 and 7 € D, 4.
Next consider the case 7o € Dy ,. Abbreviating o = inf{u > Ty: X,, ¢ D, 4}, write

Eny |1 0ir(xp )mm) | < Ero | 10000 00,0ty (Bro [ U p=m] ) |- (3:24)

Let ¢, := |7| and note that, since 7y, ¢ II, 4, by the hypothesis on v we have

Ly
—u T, qA —log® L, )ML®
Eﬁ-o |:I[§ ]l{ﬂ.(X[oytiu]):ﬁ.}] < Efro |:[0‘Z ]]_{F(g*>(X):7—T_}i| < < > e(c og ) (325)

dmax

where the second inequality holds by Lemma On the other hand, by Lemmas [2.2] and

Tcg

B [I(()T]l{w@)(x):ir(l)}} =Enr, {Ig’zﬂ{ﬂ(a(x):ﬁm}} E. {Io }
dmax Cr.A > < qgA >Z (c—log(s) L,n)MT’E

< (1+ ; e #(1) 3.26

o ( Y- >\7‘,A (77) dmax ( )

Putting together (3.24)—(3.26)), we complete the proof of the case m = 1. The case m = 0
follows from (3.25)) after we replace @ by = and ¢t — u by ¢.

Suppose now that the claim is proved for some m > 1, and let 7 € 2("+15)  Define

7= 7@ 0 7@ 0.0 7 o 70D o 7. Then 7' € 2™ where s = ' + [#"] and

kx® = M75) + k7. Setting £ := |71, 0 := inf{u > Ty: Xy ¢ Dy a} and x := 7, we get

Ery [161{x(x0 )~r}] < Eng [16’ Lo (x)=#(1), o<t} (Ez 26" W00 a)or'}] )szg] ;o (327
from which (3.20)) follows via the induction hypothesis and ([3.26]). O




18 FRANK DEN HOLLANDER, WOLFGANG KONIG, RENATO S. DOS SANTOS

3.4. Proof of Proposition

Proof. The proof is based on Lemma First define
co := 1+ 3loglog dmax, Ay = dmax (6360 — 1) . (3.28)

Fix A > Ay, 8 <aand € € (0,3/2) as in Lemma Let 79 € N be as given by Lemma
and take r > rg so large that the conclusions of Lemmas hold, i.e., assume that
the events B, from both lemmas do not occur with either G = (V, E,0) € &, or G € &
accordingly. Fix x € B,. Recall the definitions of C, 4 and 2(m:3) - Noting that the relation
~ defined below is an equivalence relation in 22(™*) we define

%m’s) := {equivalence classes of the paths in &(z, V)N @W’S)}. (3.29)

Lemma 3.6. [Bound equivalence classes] |%? ﬂm Y1<]2 dmaxCr a]™d for all m, s € Ng.

max

Proof. The estimate is clear when m = 0. To prove that it holds for m > 1, write OA =
{z ¢ A: distg(z,A) = 1} for A C V. Then |0C UC| < (dmax + 1)|C] < 2dnaxCr.a. We
define a map ®: &, ms) Ps(x,V) x {1,...,2dnaxCr a}™ as follows. For each A C V
with 1 < |A] < 2dyaxChra, fix an injection fA A — {1,...,2dnaxCr a}. Given a path
m e 2 0 P(x,V), decompose 7 as in (3.14), and denote by T € Ps(x,V) the shifted

concatenation (cf. Definition of #M, ..., #™ 7. Note that, for 2 < k < m, the point 7?(() )
lies in OCy, for some Cy, € €, 4, while 7y € dC UC for some C € €, 4. Thus, we may set

®(7) := (7, facs (76", - -+ fac, (76", facue (7o) (3.30)
As is readily checked, ®(7) depends only on the equivalence class of m and, when restricted
to equivalence classes, ® is injective. Hence the claim follows. O

Now take N C & (z,V) as in the statement, and set
Nms) .= {equivalence classes of paths in N N Q(m’s)} C %m’s). (3.31)

For each M € N/ (m.5) " choose a representative my € M, and use Lemma (3.6) to write

B [ o] = B B[O )
m,s€ENo Afe N (m,s)

m js Xy )du
< Z (deaXCT ) dmax sup E |:ef0 £(Xu) ]]{W( Ot])NW}:| N (332)
m,s€Ng TEN (M)

where we use the convention sup® = 0. For fixed # € N™%) by ([B.6)), we may apply (3.20)
3.23

and Lemma to obtain, for all r large enough and with ¢y as in (3.28

)

(Qdmax)mdfnaxEx |:ef0t §(X“)du]l{Tr(X[o,t])"*7T}] < et%recomsrq;94e(cilog(3> Lr)k:"s . (3.33)

We next claim that, for r large enough and © € N(™5),
s> [(m—1)V1]5,. (3.34)

Indeed, when m > 2, |supp(#®)| > S, for all 2 < i < m. When m = 0, |supp(wr)| >
max;<¢<|r| |T¢ — 2| > (log L;)® > S, by assumption. When m = 1, the latter assumption
and Lemma together imply that supp( ) N D; 4 # 0, and so either [supp(7™)| > S, or

| supp(7#™M)| > S,. Thus, (3.34) holds by (3.17) and (| -
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Note that g4 < e™3%, so

Sy coSr ,Sr coSym (m—=1)Sy _
q + e 0 'rq + e 0Rr q 4e CQST
Z E : ecomST.q:s4 _ A A ZmZZ A < <1 (335)
1—qa 1—-qa

m2>0s>[(m—1)V1]S,

for r large enough. Inserting this back into (3.32]), we obtain

log E, [ef(f f(Xs)ds]l{Tr(Xo,t)eN}] < SE/I\)/ {t% + (¢ —log® Ly) k:f}. (3.36)

Thus the proof will be finished once we show that, for some ¢’ > 0, whp (respectively,
almost surely eventually) as n — oo, all 7 € N satisfy

ko > dist(w, 20)(1 — 2(log L) 7). (3.37)

To that end, we define for each 7 € N an auxiliary path 7, as follows. First note that by
using our assumptions we can find points 2/, 2" € supp(7) (not necessarily distinct) such that

distg(x, 2") > (log L,.)", distg (2", 2x) < 2M4S,, (3.38)

where the latter holds by Lemmal[2.6] Write {21, 20} = {2/, 2"} with 21, 2o ordered according to
their hitting times by 7, i.e., inf{¢: my = 21} <inf{l: my = 2z5}. Define 7, as the concatenation
of the loop erasure of m between x and z; and the loop erasure of m between z; and z3. Since
7 is the concatenation of two self-avoiding paths, it visits each point at most twice. Finally,
define 7, ~ 7 by substituting the excursions of 7, from II, 4 to D A by direct paths between
the corresponding endpoints, i.e., substitute each 7 716 ) with |70 = 4;, (78)0 = x4 € II, 4 and
(7, = yi € Dy 4 by a shortest-distance path 7 with the same endpoints and |7\"| =
distg(x;, yi). Since m, visits each x € II, 4 at most 2 times,

ke > ke > M2 — 2| supp(m,) N1IL. 4] (Sy + 1) > M° — 4] supp(m,) N1,

(3.39)
Note that Mzy" > |{x € supp(m): &(x) < (1 —¢)ar, }| — 1 and, by (3.38), |supp(my)| >
ih 2.10

distg(z, 2') > (log L,)* > (log L,)*t% for some 0 < & < e. Applying Lemmas
and using (2.27)) and L, > r, we obtain, for r large enough,

2 485, 1
kle > Dl (1= - — | > Ol 1= = K 4
> Fsuwp(e)] (1 o o ) 2 lswnm)l (1= o)+ (G0
On the other hand, since |supp(m,)| > (log L,)* and by (3.38)) again,
|supp(7y)| = (|Supp(7r*)| + ZMAST) — 2M4S,
2M 4SS,
(log Ly )*

> (diste(x, 2") +2MaS,) (1 - (3.41)

1
> dist Dll=— -
- 1S G(x7z ) < (log LT)E )

Now ([3.37)) follows from (3.40)—(3.41)). O

4. PROOF OF THEOREM [L.1]

This section is devoted to the proof of Theorem We note that, after replacing d,ax by
dmax V Dg if necessary, we may assume without loss of generality that

Gwe e (4.1)
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4.1. Lower bound. In this section we give the proof of the lower bound for the large-t
asymptotics of the total mass. This proof already explains the random mechanism that
produces the main contribution to the total mass. This mechanism comes from an optimization
of the behavior of the random path in the Feynman-Kac formula, which in turn comes from
the existence of a favorite region in the random graph, both in terms of the local graph
structure and the high values of the potential in this local graph structure. The optimality
is expressed in terms of a distance to the starting point O that can be reached in a time
o(t) with a sufficiently high probability, such that time t — o(t) is left for staying inside the
favorite region, thus yielding a maximal contribution to the Feynman-Kac formula. The latter
is measured in terms of the local eigenvalue of the Anderson operator A + &, which in turn
comes from high values of the potential £ in the local region.

We write the total mass of the solution of (2.9) in terms of the Feynman-Kac formula as

U(t) = Eo [exp { /Ot £(X,) dsH, (4.2)

where (Xs)s>0 is the continuous-time random walk on GW, i.e., the Markov chain with gen-
erator Agyy = A, the Laplacian on GW, starting from the origin O. As usual in the literature
of the PAM, this formula is the main point of departure for our proof.

Fix € > 0. By the definition of Y, there exists an infinite rooted tree T = (V', E',)) with
degrees in supp(Dy) such that xr(0) < X(0) + ¢. Let Q. = BI'(Y) be the ball of radius r
around ) in T. By Proposition and , there exist a radius R € N and a potential
profile ¢: Bg — R with £g,(q;0) <1 (in particular, ¢ < 0) such that

Aor(@:T) > —Xop(0:T) — 36 > —X(0) — €. (4.3)

For ¢ € N, let By = By(O) denote the ball of radius ¢ around O in GWW. We will show next
that, almost surely eventually as £ — oo, By contains a copy of the ball Qg where £ is lower
bounded by ¢loglog|By| + q.

Proposition 4.1. [Balls with high exceedances| ‘B xP-almost surely eventually as { — oo,
there exists a vertex z € By with Bry1(z) C By and an isomorphism ¢ : Bry1(z) — QRry1
such that & > ploglog|By| + qo ¢ in Br(z). In particular,

ABg(z)(§;GW) > ologlog | By — X(0) — ¢ (4.4)

Any such z necessarily satisfies |z| > cf P x P-almost surely eventually as ¢ — oo for some
constant ¢ = ¢(p,9, x(0),€) > 0.

Proof. First note that, as a consequence of the definition of GW, it may be shown straight-
forwardly that, for some p = p(T, R) € (0,1) and B-almost surely eventually as £ — oo, there
exist N € N, N > p|By| and distinct z1,...,zn5 € By such that Bryi(2) N Bry1(zj) = 0 for
1<i#j<N and, for each 1 <i < N, Bri1(z;) C By and Br41(z;) is isomorphic to Q1.
Now, by (L.7), for each i € {1,..., N},

P(¢ > ologlog |Bs| + ¢ in Br(z)) = | Bg|~£@r (D), (4.5)

Using additionally that |By| > ¢ and 1 —z < e™*, x € R, we obtain
N
P(Ai € {1,...,N}: &> ploglog|By| + q in Br(z)) = (1 - |B«|“QR<Q>) <o

which is summable in ¢ € N, so the proof of the first statement is completed using the Borel-
Cantelli lemma. As for the last statement, note that, by (2.8)), Lemma and L, ~ 9r,

A, (& G6W) < HGI%X &(z) <ar, +o(1) <ar, +ologed +o(1) < ar, —x(o) — ¢ (4.6)
x cl

provided ¢ > 0 is small enough. O
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Proof of the lower bound in (1.14]). Let z be as in Proposition For any s € (0,t), we
obtain a lower bound for U(t) as follows (write 7, for the hitting time of z):

U(t) > Eo exp / (X du} U7 <y Ux,eBa(z) vuelr ¢ }}}

(4.7)
—E, [efo (Xdug, L, [ef&f S Xu)duy, Xuewue[o,y]}] ’v:t_Tj :

where we use the Markov property at time 7,. We first bound the last term in the integrand
in (4.7). Since £ > ploglog|By| + ¢ in Bg(z),
E. [efov Ny B \me[o,v]}] > eveloslosl B, [eﬁ B I e VuE[O,’U]}}
> evgloglogIBelevAQR(q;T)gég;(y)? (4.8)
> exp {v (eloglog |Be| — X(0) —€) },

for large v, where we used that Br1(z) is isomorphic to Qgr+1 and applied Lemma and
(4.3). On the other hand, since £ > 0,

E@ exp / &(X du ]l{TZ < s}} > Po(r, <), (4.9)

and we can bound the latter probability from below by the probability that the random walk
runs along a shortest path from the root O to z within a time at most s. Such a path (y,)lz|
has yo = O, y,) = 2, ¥i ~ yi—1 for i = 1,...,]z|, has at each step from y; precisely deg(yl)
choices for the next step with equal probablhty, and the step is carried out after an exponential
time F; with parameter deg(y;). This gives

£ 2
Po(r, <) > (131 degl(yi))P (;E < s) > dlPoig . o(]]z],00)), (4.10)

where Poi, is the Poisson distribution with parameter 7, and P is the generic symbol for
probability. Summarising, we obtain

U#) > d-lle dins [ in ) (o 10g10g Bl -x(0)—<]

max |Z|!

~ dmax |2
Zexp{—dmins+(t—s) [ologlog |By| — x(0) — €] — ]z\log<d |5‘>} (4.11)

min

=~ dmax g
= exp {_dmins + (t — s) [eloglog | B| — X(¢) — &] — {log < ) } ,

Amin S

where for the last inequality we assume s < |z| and use ¢ > |z|. Further assuming that
¢ = o(t), we see that the optimum over s is obtained at
¢

= — =o(t). 4.12
dmin + 0loglog |By| — x(0) — ¢ (*) ( )

Note that, by Proposition this s indeed satisfies s < |z|. Applying (1.12) we get, after a
straightforward computation, almost surely eventually as t — oo,

1 1 _ 14
n log U(t) > ologlog |By| — glog logl —Xx(0) —+ 0O (t) . (4.13)
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Analysing the main terms above and using log|By| ~ ¥/, we find that the optimal ¢ satisfies
£loglogt — @ ~ to, i.e., £ ~ pt/loglogt = v;. For this choice we obtain

1 _ 1
glog U(t) > ologlog |By,| — tloglogt, — x(0) —e + O <1oglogt> : (4.14)

Substituting log | B,| ~ ¥r and the definition of t;, we obtain, 8 x P-almost surely,

Jim inf {1 log U(#) — olog ( > } > —o— (o) —e. (4.15)

t—r00
Since € > 0 is arbitrary, the proof of the lower bound in ([1.14)) is complete. (]

loglogt

4.2. Upper bound. In this section we prove the upper bound in (1.14]). A first step is to
reduce the problem to a ball of radius ¢logt¢. Here we include more general graphs.

Lemma 4.2. [Spatial truncation]| For any ¢ > 0 and any ¢, € N, £, > ctlogt,

sup Ep [efg S(Xs)dsll{TBc <t}] <e ™ whp ast — . (4.16)
Ge®y, 4

Moreover, for any G € (’5&2),

Eo

elo £(XS)GL(”]I{TBZ <t}} <e ™ P-as. eventually ast — oco. (4.17)

Proof. For r > ¢; and G € &y,, let
B, = {max&(ac) >ar, + 2@} . (4.18)
QTGBT
By Lemma and a union bound, we see that

sup P B | < sup P(B,) — 0, (4.19)
ces,, TLZJ& ' g;teecjgt " o0

while, for G € Y, by the Borel-Cantelli lemma,

U B, does not occur P-a.s. eventually as t — oo. (4.20)
r>0

We may therefore work on the event (.-, B;. On this event, we may write

Le(Xs)ds _ Le(Xs)ds
Eo |:ef0 £(Xs) ]l{TB}ft <t}:| = Z Eo [efo £(Xs) ]I{SUPse[o,t] |Xs\:r}]

r>0
< ety BT, (> 1), (4.21)
>0
where J; is the number of jumps of X up to time ¢, C' = o(2 + log log dmax), and we use that
|B,| < dj Note that J; is stochastically dominated by a Poisson random variable with

max*
parameter tdny.x. Hence

(tdmax)" r
> < —< — .
Po (Je>71) < S exp rlog — (4.22)

for large r. Using ¢; > ctlogt, we can check that, for » > ¢; and t large enough,

”
rlog <etdmax> — otlogr > 2r (4.23)
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and thus ([£.21)) is at most e e 0HCHH2 < o=, O

In order to be able to apply Proposition [3.1]in the following, we need to make sure that all
paths considered exit a ball with a slowly growing radius.

Lemma 4.3. [No short paths] For any v € (0,1),

Eo [efgg(XS)ds]l{TBc >t}:|

[t7]

sup =o(l) whp ast — oo. (4.24)
GEQS[tﬂ U(t)
Moreover, for any G € G,
Eo [efg §Xa)dsq, >t}:|
lim M =0 P-a.s. almost surely (4.25)
i 0 8. : .
Proof. By Lemma [2.5] with g, = 2plog r, we may assume that
max £(z) < ologlog Liv1 + 20 = yelogt + 20+ o(1) as t — oo. (4.26)
TEB

By (4.11]), for some constant C' > 0,

¢
Eo» efo g(XS)dS]]{TBC i >t} ,

[t < eCtlog(“i)tef(lf'y)gtlogt 0. ]
U(t) t—o0

For the remainder of the proof we fix v € (a,1) with « as in (2.27). Let
K= [t"logt], =kt 1<k<K, and £ :=KJ['] >tlogt. (4.27)
For 1 <k < K; and G € 6&2), define
NE = {w € Z(0,V): supp(m) C Brgkﬂ),supp(w) N ngk) # @} (4.28)

and set

U® = Eo [efé §(Xs)dsg (4.29)

{W[o,t](X)@\/t(k)}] '
Recall the scale v, = ot/ log log t.

Lemma 4.4. [Upper bound on U™*] For any ¢ > 0 and any G € 0582), P-almost surely
eventually as t — oo,

1 ~
sup - log U™ < plog(¥t;) — 0 — X(0) + €. (4.30)
1<k<K;

Proof. Before we apply Proposition [3.1] we first do a bit of analysis. For ¢ > 0, let

F.(r) := plog(vr) — % (loglogr —¢), r > 0. (4.31)
Note that F.. is maximized at a point r.; satisfying
ot =rciloglogres — crey + Tet . (4.32)
logre

In particular, r.; ~ t;, which implies

sup F.(r) < olog(dr) — o+ o(1) as t — oo. (4.33)
>0
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Next, fix k € {1,..., K;}. For 7 € N, let

Vo 1= )\rgk-i,-l),A(ﬂ') + exp{—Sr1}, Zx € supp(7), |za| > 7. (4.34)
By Proposition 3.1} almost surely eventually as ¢ — oo,
1 ™
: log UM < 4 + ‘Zt’ (log log rgkﬂ) —ca+ 0(1)) ) (4.35)
Using Corollary and log L, ~ Yr, we bound
7 < 0log(9rf* ") — X(o) + e + o(L). (4.36)
Moreover, |z;| > r{"*" — [t7] and
[17] loo log #*+D < 2 log 1 1 = 4
T (loglogri"™ —cy4) < iy log og(2tlogt) = o(1), (4.37)
which allows us to further bound (4.35)) by
(k+1)
olog(Vr+) — TtT (loglog D 2ca) — X(0) + 3¢ + o(1). (4.38)
1 ~
Applying (4.33) we obtain n log U < olog(ey) — 0 — X(0) + €. O

Proof of upper bound in (1.14]). To avoid repetition, all statements are assumed to be made

B x P-almost surely eventually as t — co. Let G = GW and note that GW € @g) almost
surely, where ¥ is as in (1.12]). Define

© ._ yE(Xs)d () ._ s E(X5)d
U :=Eo [e)o8X) Moy o0 |> U =Eo elo €(X) Wiy <] (439)
Note that
< 7O 4 70 (*) ‘
Ut)<U~" +U>~ + K,  max U, (4.40)
and, since U” 4+ U™ < o(1)U(t) by Lemmas and (4.14]),
1 log(2K) 1
< 2K ) ~1 <= ~logU™. 4.41
U(t) < tléré%)%tUt and so . ogU(t) < ; +1£%§Qt ogU; (4.41)
By Lemma and (4.27)), for any € > 0,
1 ~
+logU(?) < olog(Vre) — o — X(e) +e+o(1) (4.42)
therefore, B x P-almost surely,
1 Yot -
li —logU(t) — ol < —p-— . 4.43
lﬁ?ﬁp{t ogU(t) 90g<10g10gt>}_ o—X(o) +e (4.43)
Since € > 0 is arbitrary, this completes the proof of the lower bound in ([1.14]). O

5. PROOF OF THEOREM [L.5

In this section we give the proof of Theorem[I.5 The proof is based on the fact that, up to a
radius growing slower than log ®,, (cf. (1.20])), the configuration model equals a Galton-Watson
tree with high probability. From this the result will follow via Theorem and Lemma 4.2

To describe the associated Galton-Watson tree, we define a random variable D, as the
size-biased version of D in Assumption (CM)(1), i.e.,
kP(D = k)

P(D. =k = —p

(5.1)
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Proposition 5.1. [Coupling of UG, and GW]| Let UG, = (V,, E,,O,) be the uniform
simple random graph with degree sequence 0™ satisfying Assumption (CM), and let GW =
(V,E,O) be a Galton-Watson tree with initial degree distribution Dy = D and general degree
distribution Dy = D,. There exists a coupling P of UG, and GW such that, for any m, € N
satisfying 1 < my, < log @y,

lim P (B49(0,) = BIY(0)) = 1. (5.2)

n—oo

Proof. For CM,, in place of UG, this is a consequence of the proof of [vdHI7b, Proposi-
tion 5.4]: the statement there only covers coupling |By,, |, but the proof actually gives By, .
The fact that m,, may be taken up to o(log ®,,) can be inferred from the proof. In fact, m,
could be taken up to clog ®,, with some ¢ = ¢(v) > 0. The result is then passed to UG, by
(1.16) (see e.g. [vdHI17al Corollary 7.17]). O

Proof of Theorem [1.5. Let Uy, (t) be the total mass for UG, and U(t) the total mass for GW
as in Proposition Define

YA L ¢(Xs)ds
US(t) := Ep, |elo&Xs) ﬂ{fologm} , (5.3)
and analogously U°(t). By Lemma and Proposition whp as n — oo,
Un(tn) = U, (tn) + o(1) = U°(ty) + 0o(1) = U(t,) + o(1), (5.4)

and so (1.21]) follows from Theorem [1.1]after we note that v in (1.17) is equal to E[D,—1]. O

APPENDIX A. ANALYSIS OF x(p)

In this appendix we study the variational problem in . In particular, we prove the
alternative representations in Proposition [2.4] and we prove Theorem i.e., we identify for
0 > 1/1og(dmin + 1) the quantity (o) that appears in Theorems and as xg with G the
infinite tree with homogeneous degree dp,in € N\{1}, the smallest degree that has a positive
probability in our random graphs. In other words, we show that the infimum in (1.13]) is
attained on the infinite tree with the smallest admissible degrees.

It is not hard to understand heuristically why the optimal tree is infinite and has the smallest
degree: the first part in (the quadratic energy term coming from the Laplace operator)
has a spreading effect and is the smaller the less bonds there are. However, proving this
property is not so easy, since the other term (the Legendre transform from the large-deviation
term of the random potential) has an opposite effect. In the setting where the underlying
graph is Z? instead of a tree, this problem is similar to the question whether or not the
minimiser has compact support. However, our setting is different because of the exponential
growth of balls on trees. We must therefore develop new methods.

Indeed, we will not study the effect on the principal eigenvalue due to the restriction of a
large graph to a subgraph, but rather due to an opposite manipulation, namely, the glueing
of two graphs obtained by adding one single edge (or possibly a joining vertex). The effect of
such a glueing is examined in Section[A:2] The result will be used in Section [A-3]to finish the
proof of Theorem [I.2] Before that, we discuss in Section [A] alternative representations for
x and prove Proposition [2.4]

In this section, no probability is involved. We drop o from the notation at many places.
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A.1. Alternative representations. Fix a graph G = (V, E). Recall that P(V') denotes the
set of probability measures on V', and recall that the constant yg = xg(0) in is defined
as infpep[IE(p) + 0Jv(p)] with I, J as in (L.8). As the next lemma shows, the constant X
in can be also represented in terms of I,.J.

Lemma A.1. [First representation]| For any graph G = (V,E) and any A C V,

Xv(e:G) = inf  [Ig(p) + oJv(p)]. (A1)
peP(V):
supp(p)CA
In particular,
Xa(0;G) = xa(o) = Xv(0; G). (A.2)

Proof. For the proof of (A.1]), see [GM98, Lemma 2.17]. Moroever, (A.2) follows from (A.1)).
O

We next consider the constant xy in (2.18) for infinite rooted graphs G = (V, E, O). Note
that, by (2.8), X5, (0; G) is non-increasing in r. Together with Lemma this implies

x¢ () = lim ¥5,(0:G) 2 xc(o). (A.3)
r—00
Lemma A.2. [Second representation] For any rooted G € oo, xc(0) = X (0).

Proof. Write G = (V, E,O). By (1.9), Lemma and ({A.3)), it suffices to show that, for any
p € P(V) and r € N, there is a p, € P(V) with support in B, such that

liminf {/p(p,) + oJv(pr)} < Ie(p) + 0Jv(p)- (A.4)
Simply take
@)
pr(z) = oB) ev, (A.5)

i.e., the normalized restriction of p to B,. Then we easily see that

Jv(pr) — Jv(p) = —p(; ) > p(z)logp(x) +logp(By) + > p(x)logp(z)
y ( )T TEB, zeV (AG)
vip
S p(Br) (1 - p(BT>) 7_;}0 07

where we use log p(B;) < 0 and p(z)logp(z) < 0 for every z. As for the I-term,

IE(pr):p(; oo (V@) - Vo)

" {x,y}eE: xvyeB'r

c (A.7)
1 p(l‘) IE(P) dmaxp(Br—l)
i {x,y}EE;BmyeBg (B S p(B) " 2 pB)
and therefore
Ig(py) — Ig(p) < ;’fg ; (1—p(B,)) + d“;" b ;f;;)l) — 0 (A.8)
]

Proof of Proposition|2.4. The claim follows from Lemmas and (A.3)). O
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A.2. Glueing graphs. Here we analyse the constant y of a graph obtained by connecting
disjoint graphs. First we show that glueing two graphs together with one additional edge does
not decrease the quantity x:

Lemma A.3. [Glue two| Let G; = (V;, E;), i = 1,2, be two disjoint connected simple graphs,
and let x; € Vi, i = 1,2. Denote by G the union graph of G1, Go with one extra edge between
x1 and x9, i.e., G = (V,E) with V := V1 UV, E:= E1 U Ey U{(z1,22)}. Then

Xa 2 min {XG1 ) XGQ} . (Ag)
Proof. Given p € P(V), let a; = p(V;), i = 1,2, and define p; € P(V;) by putting

1 .

=p(z)ly,(z) ifa; >0,
ple) = § P OL) |
1z, (z) otherwise.

Straightforward manipulations show that

2
p) =S ailn o)+ (Vi) — Vo) . ) =
=1

(A.10)

la; Jv,(pi) — ailoga;], (A.11)

M

=1
and so
2
Te) +oJv@) > ) o i 15, (00) + 0., (p2)] = min{xe, v (A12)
The proof is completed by taking the infimum over p € P(V). O
Below it will be useful to define, for z € V,
@ = inf [Ig(p) + oJ A3
XG pe(g;(w[ e(p) + oJv(p)], (A.13)
p(x)=b

i.e., a version of yg with “boundary condition” b at z. It is clear that Xg’b) > xaG-

Next we glue several graphs together and derive representations and estimates for the
corresponding y. For k € N, let G; = (V;, E;), 1 < i < k, be a collection of disjoint graphs.
Let = be a point not belonging to Ule V;. For a fixed choice y; € V;, 1 < i < k, we denote
by G, = (Vi, Ey) the graph obtained by adding an edge from each 1,...,y, to z, i.e.,
Vi =VuU-- UV U{z} and E, =FEiU---UE,U{(y1,0),...,(yx, )}

Lemma A.4. [Glue many plus vertex| For any o >0, any k € N, and any G; = (V;, E;),
y, €V, 1 <i<k,

k
(y ci/ag)
o] inf { a; < L lo a-)
XG, = 0<ci<a;<1, Z t T olos

a1+-+arp<l i=1 (A14)
L2 k 1/24 2 k k
+Z(Ci —(1—2%) ) —g(l—ZaOlog(l—ZaO}.
i=1 i=1 i=1 i=1
Proof. The claim follows from straightforward manipulations with (|1.8]). O

Lemma leads to the following comparison lemma. For j € N let

) {(Gi,yi) if i < g, (A.15)

G]
( (Gi+l7 yi+1) lf 1 2 j7

z’z

ie., (Gg)ieN is the sequence (G;)ien with the j-th graph omitted. Let éi be the analogue of
G, obtained from G7, 1 <i <k, i # j, instead of G;, 1 <i < k.
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Lemma A.5. [Comparison]| For any ¢ > 0 and any k € N,
k
We (i)-Ci/a4)
=~ = inf inf inf 1—u [Za' J — pologa;
NGt = 1gjein 1 0<c¢;<a;<l, {( ) ; Z(XGUM ologai)

0SCSUSERT it rap<l

(A (50 - ofi- S (- o)

1= =1 =1 (A.lﬁ)

+ uxgj’c/u) + (cl/2 — ((1 —u) <1 — Zai))lﬂy

—olulogu + (1 —u)log(l — u)] }

Moreover,

> inf inf {(1 — U)X
T 1K<kt 1 Gk
Osusgi

XGyi

+ inf {uxg’;f’”)+n{u(1+v)21}[\/77—m]2} (A.17)

vel0,1]

—olulogu + (1 —u)log(l — u)] }
Proof. Note that

{(Ci,az‘)killi 0<¢ <a; < 17]§:1ai < 1} = kol { Ol_uxcmi){;f7(C’U)’(1_u)(6i’ai)§:j): } ,

0<e<u< i 0<e<a; <1, ai<1

i=1 j=1 k1

(A.18)
from which follows by straightforward manipulations on (A.14)). To prove (A.17)), note
that the first term within the square brackets in the first two lines of (A.16) equals the term

inimised in (A.14] d is theref t ller th —i - 0
minimised in , and is therefore not smaller than X

Lemma A.6. [Propagation of lower bounds] If o > 0, M € R, C' > 0 and k € N satisfy
0>C/log(k+1) and

. . . (y5,v)
f > M f f 7> M-C A.19
1gjuglk+1XGi = 13]1‘Igllc+1 vél[%),l} Xy = ’ ( )

then XGria > M.

Proof. Dropping some non-negative terms in (A.17)), we obtain

. (y5,v)
XGrypr — M > inf : {u (ng — M) —ou logu}

© 0<u<1/(k+1 (A.20)
> inf log(lk+1)—C)} >0
2 cus iy {u(elog(k+1) - C)} =

by the assumption on p. O

The above results will be applied in the next section to minimise x over families of trees with
minimum degrees.
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A.3. Trees with minimum degrees. Fix d € N. Let 74 be an infinite tree rooted at O
such that the degree of O equals d — 1 and the degree of every other vertex in 74 is d. Let
jd(o) = {7&} and, recursively, let jd(”“) denote the set of all trees obtained from a tree in
jd(") and a disjoint copy of 7021 by adding an edge between a vertex of the former and the root
of the latter. Write jd = UneNo ,7;(“. Assume that all trees in jd are rooted at O.

Recall that 7y is the infinite regular d-tree. Observe that 7y is obtained from (7, ©) and a
disjoint copy ( od’, O") by adding one edge between O and O’. Consider T; to be rooted at O.
Let ﬂd@ = {74} and, recursively, let Zl("“) denote the set of all trees obtained from a tree
in %(") and a disjoint copy of Ta by adding an edge between a vertex of the former and the
root of the latter. Write J; = UneNo ﬂd(”), and still consider all trees in 7y to be rooted at
O. Note that %(m contains precisely those trees of ﬂod("“) that have 7, as a subgraph rooted
at O. In particular, yd(") C %("H) and 7 C jd.

Our objective is to prove the following.
Proposition A.7. [Minimal tree is optimal] If o > 1/log(d + 1), then
x7,(e) = min xr(0)-

For the proof of Proposition we will need the following.
Lemma A.8. [Minimal half-tree is optimal] For all ¢ € (0, 00),
X1, (0) = min xr(0)-

€74
Proof. Fix g € (0,00). It will be enough to show that

X4, = min xr, n € N, (A.21)
Teg™

which we will achieve by induction in n. The case n = 0 is obvious. Assume that ( - holds
for some n € Ny. Any tree T € 9("“) can be obtained from a tree T € 9(") and a disjoint
copy 7:{ of Ty by adding an edge between a point z in the vertex set of T to the root of 7021’.

Applying Lemma together with the induction hypothesis, we obtain
X7 > min {Xf:Xj’—d/} 2 X, (A.22)
which completes the induction step. ]

Lemma A.9. [A priori bounds]| For any d € N and any o € (0, 00),
X1, (0) < x7,(0) < x7,(0) + 1. (A.23)

Proof. The first inequality follows from Lemma [A.8 [A§ For the second inequality, note that T3
contains as subgraph a copy of ’7:1, and restrict the minimum in ) top € 77(7:1) ]

Proof of Proposition[A.7. Fix o > 1/log(d + 1). It will be enough to show that

X7, = min xr, n € Np. (A.24)
Teg™

We will prove this by induction in n. The case n = 0 is trivial. Assume that, for some ng > 0,
holds for all n < ng. Let T € ﬂd("om. Then there exists a vertex z of T" with degree
k+1>d+1. Let yi,...,yx+1 be set of neighbours of z in 7. When we remove the edge
between y; and x, we obtain two connected trees; call G; the one containing y;, and éi the
other one. With this notation, 7' may be identified with G} 1.
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Now, for each j, the rooted tree (Gj,y;) is isomorphic (in the obvious sense) to a tree in
ﬂod(ej), where £; € Ny satisfy £1 + -4 11 < ng, while G}, belongs to ﬂd(nj) for some n;j < ny.

Therefore, by the induction hypothesis,

Xgi 2 XT (A.25)
while, by , Lemma and Lemma
vei%ju X(gj’v) > XG; = Xy 2 XT — 1. (A.26)
Thus, by Lemma [A3] applied with M = y7 and C =1,
XT = XGpyy = XT (A.27)
which completes the induction step. ]

Proof of Theorem[1.4 First note that, since Tz, has degrees in supp(D,), X(0) < x7,  (0)-
For the opposite inequality, we proceed as follows. Fix an infinite tree T' with degfnelgs in
supp(Dy), and root it at a vertex V. For r € N, let T, be the tree obtained from B, = BI(Y)
by attaching to each vertex x € B, with |z| = r a number dyi, — 1 of disjoint copies of
and,

min

(’i}lmin, 0), i.e., adding edges between z and the corresponding roots. Then T, €
since B, has more out-going edges in T" than in 7)., we may check using (A.1)) that

(0)- (A.28)

Taking r — oo and applying Proposition we obtain xr(0) > XT3 y (0). Since T is
arbitrary, the proof is complete. [l

XB.(0;T) > XB,(e: T;) > x7.(0) > X7,

min
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