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Abstract.

The goal of the present paper is to describe three topics in the
area of complex networks that constituted a mini-course delivered at
the 12th Mathematical Society of Japan – Seasonal Institute, held at
Kyushu University in Fukuoka, Japan, 31/07–09/08, 2019. The topics
are: (I) Spectra of adjacency matrices, (II) Equivalence of ensembles,
(III) Exploration and mixing times. Topics (I) and (II) are part of
the ongoing attempt to understand structure of networks, topic (III)
to elucidate functionality of networks.

§1. Outline

In Section 2, which is based on joint work with Arijit Chakrabarty,
Rajat Hazra and Matteo Sfragara [7], we consider inhomogeneous Erdős-
Rényi random graphs on n vertices. We study the empirical spectral dis-
tribution of the adjacency matrix An in the limit as n→∞ in a regime
that interpolates between sparse and dense. In particular, we show that
the empirical spectral distribution of An when properly scaled converges
to a deterministic limit weakly in probability. For the special case where
the connectivity probability between two vertices has the product prop-
erty, we give an explicit characterisation of the limit distribution. The
result is applied to statistical inference of sociability patterns in social
networks.

In Section 3, which is based on joint work with Diego Garlaschelli,
Michel Mandjes, Joey de Mol, Andrea Roccaverde, Tiziano Squartini
and Nicos Starreveld [9], [10], [11], [12], [13], we consider random graphs
subject to topological constraints. We compare two probability distri-
butions on the set of simple graphs on n vertices induced by a given
constraint: (1) The microcanonical ensemble, where the constraint is
hard, i.e., has to be satisfied for every realisation of the graph; (2) The
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canonical ensemble, where the constraint is soft, i.e., has to be satisfied
on average. We say that breaking of ensemble equivalence occurs in the
limit as n→∞ when the relative entropy of the two ensembles per ver-
tex (in the sparse regime), respectively, per edge (in the dense regime) is
strictly positive. We present two examples of constraints where breaking
of ensemble equivalence occurs, namely, when the constraint is on the
degree sequence and when the constraint is on the total number of edges
and triangles. The result is applied to model selection for real-world
networks.

In Section 4, which is based on joint work with Luca Avena, Hakan
Guldas and Remco van der Hofstad [1], [2], we consider the mixing
time of random walks on random graphs. Many real-world networks,
such as WWW, are dynamic in nature. It is therefore natural to study
random walks on dynamic random graphs. We consider random walk on
a random graph with prescribed degrees. We investigate what happens
when at each unit of time a fraction αn of the edges is randomly rewired,
where n is the number of vertices. We identify three regimes for the
mixing time in the limit as n → ∞, depending on the choice of αn.
These regimes exhibit surprising behaviour. The results are relevant for
Google PageRank.

§2. Spectra of adjacency matrices

Spectra of random matrices have been analysed for almost a century.
In recent years, many interesting results have been derived for spectra
of random matrices associated with networks. The question that will be
addressed in this section is: What can be said about the spectrum of the
adjacency matrix of a large inhomogeneous Erdős-Rényi random graph?

Fig. 1. Erdős-Rényi random graph.
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2.1. SETTING

Let (εN )N∈N be a sequence of positive numbers such that

lim
N→∞

εN = 0, lim
N→∞

NεN =∞.

Let f : [0, 1]×[0, 1]→ [0,∞) be a continuous function such that f(x, y) =
f(y, x) for all x, y ∈ [0, 1]. Fix N ∈ N, and consider the inhomogeneous
Erdös-Rényi random graph ERN on N vertices where an edge is placed
between the pair of vertices {i, j} with probability

εN f
(
i
N ,

j
N

)
, 1 ≤ i, j ≤ N,

independently for different edges. Write P for the law of ERN .
Let AN be the adjacency matrix of ERN . Write

λi(AN ), 1 ≤ i ≤ N,

for the real eigenvalues of AN . The empirical spectral distribution of AN
is defined as

ESD(AN ) =
1

N

N∑
i=1

δλi(AN ),

which is a random probability distribution on R.

2.2. Scaling

Theorem 1. There exists a compactly supported symmetric proba-
bility measure µ on R such that, weakly in P-probability,

lim
N→∞

ESD
(
AN

/√
NεN

)
= µ.

Furthermore, if

min
x,y∈[0,1]

f(x, y) > 0,

then µ is absolutely continuous with respect to Lebesgue measure. The
density of µ can be characterised implicitly via an integral equation for
its Stieltjes transform.

(A weaker version of the above theorem also appeared in [18].)
It is possible to identify µ when

f(x, y) = r(x)r(y), x, y ∈ [0, 1],

for some continuous function r : [0, 1]→ [0,∞).
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Theorem 2. If f is of product form, then

µ = µr � µs,

where
µr = LAW[r(U)], U = UNIF[0, 1],

µs = standard Wigner semicircle law,

and � denotes free multiplicative convolution.

Fig. 2. Wigner semicircle law.

In free probability, the Wigner semicircle law takes over the role
of the normal law in classical probability. The so-called free cumulants
replace the classical cumulants, in the sense that partitions are replaced
by non-crossing partitions. Just as the cumulants of degree ≥ 2 are all
zero if and only if the distribution is normal, the free cumulants of degree
≥ 2 are all zero if and only if the distribution is the Wigner semicircle
law.

Theorem 3. Theorems 1–2 can be generalized to the situation where
the function f is random, depends on N and converges to a deterministic
limit as N →∞.

Key ingredients of the proof are: centering, Gaussianisation, per-
turbation, decoupling, and combinatorics from free probability.

2.3. Application 1: social networks

Consider a community of N individuals, represented by the ver-
tices in ERN . Data is available about which individuals are acquainted.
Based on this data, the sociability pattern of the community has to be
inferred statistically.

Let ρ denote a probability measure on [0,∞) with bounded support.
Let (Ri)1≤i≤N be i.i.d. random variables drawn from ρ. Think of Ri as
the sociability index of individual i. Pick N so large that

0 ≤ εNRiRj ≤ 1 ∀ 1 ≤ i, j ≤ N.
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Fig. 3. A social network.

Suppose that i, j are acquainted with probability εNRiRj , which is rep-
resented by an edge in ERN between vertices i, j. The data that is
available is the adjacency matrix AN . The statistical inference problem
is to estimate ρ from AN . To standardise ρ, we assume that∫ ∞

0

xρ(dx) = 1.

Since, weakly P-a.s.,

lim
N→∞

1

N

N∑
i=1

δRi
= ρ,

Theorem 3 gives that, weakly in P-probability,

lim
N→∞

ESD
(
AN

/√
NεN

)
= ρ� µs.

In practice, εN is unknown, which can be worked around by arguing
that, weakly in P-probability,

lim
N→∞

ESD

(√
N

Tr(A2
N )

AN

)
= ρ� µs.

The procedure is that ρ�µs can be statistically estimated from AN .
Subsequently, ρ can be estimated because the moments of ρ � µs are
functions of the moments of ρ and µs. Indeed, since the moments of
µs are known, the moments of ρ can be recursively computed from the
moments of ρ � µs. Since ρ is compactly supported, it can in turn be
computed via its moments.

2.4. Application 2: configuration model

Let SN be the set of simple graphs on N vertices. We fix the degrees
of all the vertices, namely, vertex i has degree d∗i , where

~d ∗N = {d∗i }1≤i≤N
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is a sequence of positive integers of which we only require that it is
graphical, i.e., there is at least one simple graph matching these degrees.
The Gibbs canonical ensemble PN is the unique probability distribution
on SN with the following two properties:

(I) The average degree of vertex i, defined by∑
G∈SN

di(G)PN (G),

equals d∗i for all i ≤ i ≤ N .
(II) The entropy of PN , defined by

−
∑
G∈SN

PN (G) logPN (G),

is maximal.

PN models a random graph of which we have no prior information other
than the average degrees.

Property (II) forces PN to take the form [14]

PN (G) =
1

ZN (~θ ∗)
exp

[
−

N∑
i=1

θ∗i di(G)

]
, G ∈ SN ,

where ~θ ∗N = {θ∗i }1≤i≤N is the unique sequence of Lagrange multipliers
such that property (I) is satisfied. Reparametrisation yields

PN (G) =
∏

1≤i<j≤N

(p∗ij)
AN [G](i,j) (1− p∗ij)1−AN [G](i,j), G ∈ SN ,

where AN [G] is the adjacency matrix of G, and

p∗ij =
x∗i x

∗
j

1 + x∗i x
∗
j

, x∗i = e−θ
∗
i , 1 ≤ i 6= j ≤ N.

Property (I) requires that

d∗i =
∑

1≤j≤N
j 6=i

p∗ij , 1 ≤ i ≤ N,

which constitutes a set of N equations for N unknowns.
Abbreviate

mN = max
1≤i≤N

d∗i .
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We focus on the regime

lim
N→∞

mN =∞, lim
N→∞

mN/
√
N = 0.

It turns out that in this regime

p∗ij = [1 + o(1)]
d∗i d
∗
j

σN
, N →∞,

with
σN =

∑
1≤i≤N

d∗i .

Pick
εN = m2

N/σN .

Then
lim
N→∞

εN = 0, lim
N→∞

NεN =∞,

and
p∗ij = [1 + o(1)] εN (d∗i /mN )(d∗j/mN ).

Under the assumption that

lim
N→∞

1

N

N∑
i=1

δd∗i /mN
= ρ

for some probability measure ρ, Theorem 3 gives that, weakly in P-
probability,

lim
N→∞

ESD
(
AN

/√
NεN

)
= ρ� µs.

This identifies the scaling of the ESD for the network that is modeled
by the soft configuration model as a function of the imposed average
degrees.

Challenges for the future are:

B What can we say in the sparse regime and in the dense regime?
B How can we deal with more general classes of random graphs?

§3. Equivalence of ensembles

3.1. Statistical physics

Systems consisting of a very large number of interacting particles
can be described by statistical ensembles, i.e., probability distributions
on spaces of configurations. Two important examples are:
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I. micro-canonical ensemble.
II. canonical ensemble.

The former fixes the energy of the system, the latter fixes the average
energy of the system, with temperature as the control parameter. The
two ensembles capture physically different microscopic situations. For
both the entropy is maximal subject to the constraint. The canonical
ensemble is easier to compute with than the micro-canonical ensemble,
because the constraint is soft rather than hard.

In textbooks of statistical physics the two ensembles are assumed (!)
to be thermodynamically equivalent, i.e., to have the same macroscopic
behaviour. Here the idea is that for large systems the energy is typically
close to its average value.This assumption is certainly reasonable for
systems with interactions that are short-ranged. But, counterexamples
have been found for systems with interactions that are long-ranged.

3.2. Complex networks

We will be interested in large random graphs, i.e., the two ensembles
live on the set SN of all simple graphs with N vertices where N →∞.

Fig. 4. A realisation of a large random graph.

Given are a vector-valued function ~C on SN , and a specific vector
~C∗ called the constraint.

I. The micro-canonical ensemble is defined by

Pmic
N (G) =

{
1/Ω~C∗ if ~C(G) = ~C∗,
0 else,

where Ω~C∗ = |{G ∈ SN : ~C(G) = ~C∗}|.
II. The canonical ensemble is defined by

P can
N (G) =

1

N (~θ∗)
e−

~θ∗ · ~C(G),
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where N (~θ∗) is the normalising constant and ~θ∗ is to be chosen

such that
∑
G∈SN

~C(G)P can
N (G) = ~C∗.

Interpretation:

• Pmic
N models a random graph of which no information is avail-

able other than the constraint.
• P can

N models a random graph of which no information is avail-
able other than the average constraint.

Which of the two ensembles should be used to model a real-world net-
work depends on the a priori knowledge that is available about the
network.

3.3. Ensemble equivalence

Pmic
N and P can

N are said to be equivalent when their relative entropy
per vertex defined by

sN
(
Pmic
N | P can

N

)
=

1

N

∑
G∈SN

Pmic
N (G) log

(
Pmic
N (G)

P can
N (G)

)
.

tends to zero as N → ∞. Because in both ensembles all G ∈ SN such
that ~C(G) = ~C∗ have the same probability, we get the simpler formula

sN
(
Pmic
N | P can

N

)
=

1

N
log

(
Pmic
N (G∗)

P can
N (G∗)

)
for any G∗ such that ~C(G∗) = ~C∗. This greatly simplifies the compu-
tation, since we need not carry out the sum over SN and only need to
compute with a single graph G∗.

As shown in [17], relative entropy is the sharpest tool to detect
breaking of ensemble equivalence. In the remainder we illustrate break-
ing of ensemble equivalence via a number of examples.

3.4. Constraint of the degree sequence

In the configuration model, each vertex gets a prescribed number of
half-edges, which are paired off randomly to form edges.

Consider a graph G = (V,E) with vertex set V = {1, . . . , N} and
edge set E such that all the vertices have prescribed degrees. In other
words, consider the constraint

~C∗ = ~d ∗N = (d∗1, . . . , d
∗
N ) ∈ NN0 .

Suppose that the degrees are moderate, corresponding to what is called
the sparse regime:

max
1≤i≤N

d∗i = o(
√
N), N →∞.



10 F. den Hollander

Fig. 5. Example with N = 6 and ~dN = (1, 3, 1, 3, 2, 4).

Let

fN =
1

N

N∑
i=1

δd∗i = empirical degree distribution.

Define

g(k) = log

(
k!

kke−k

)
, k ∈ N0.

k

g(k)

∼ 1
2 log k

k →∞

Fig. 6. Picture of k 7→ g(k).

Theorem 4. Suppose that

lim
N→∞

‖fN − f‖`1(g) = 0

for some limiting degree distribution f . Then

s∞ = lim
N→∞

sN
(
Pmic
N | P can

N

)
= ‖f‖`1(g).

The interpretation is that each vertex with degree k contributes an
amount g(k) to the relative entropy. Note that there is breaking of
ensemble equivalence for all f 6= δ0, i.e., breaking is the rule rather than
the exception. The proof is based on graph counting (micro-canonical)
and percolation theory (canonical).

It turns out that g(k) is the relative entropy of Dirac(k) with respect
to Poisson(k). What this says is that, in the limit as N →∞,

• Micro-canonical ensemble: vertices have a fixed degree.
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• Canonical ensemble: vertices have a random degree.

We illustrate the above with two examples.

Example 1: fN = δk with k = o(
√
N). For k-regular graphs:

s∞ = g(k) > 0.

Fig. 7. The 5-regular graph.

Example 2: fN (k) = CN k
−τ , 1 ≤ k ≤ kcutoff(N), with kcutoff(N)

= o(
√
N) and τ ∈ (1,∞) a tail exponent. For scale-free graphs:

s∞ ≈
1

2(τ − 1)
+ 1

2 log(2π) > 0.

Fig. 8. A graph with hubs.

3.5. Constraint of the total number of edges and triangles

Interesting behaviour shows up when we pick

~C∗ = (number of edges,number of triangles)

=

(
T ∗1

(
N
2

)
, T ∗2

(
N
3

))
, T ∗1 , T

∗
2 ∈ [0, 1].
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This corresponds to the so-called dense regime, in which the number of
edges per vertex is of order N . The quantity of interest is now

s∞ = lim
N→∞

1

N2
log

(
Pmic
N (G∗)

P can
N (G∗)

)
,

where we scale by N2 instead of N .

Theorem 5. See the figure below.

(0, 1

8
)

tr
ia
n
gl
e
d
en
si
ty

T
∗ 2

edge density T ∗

1

(0,0)

(0,1)

(1,0)( 1
2
, 0)

(1,1)

s∞ = 0

s∞ > 0

s∞ > 0

s∞ = ?

T ∗

2
= T

∗
2

3

1

T ∗

2
= T ∗

1
(2T ∗

1
− 1)

T ∗

2
= T ∗3

1

Fig. 9. Between the blue curves the edge-triangle densities
are admissible [16]. Breaking of ensemble equivalence
occurs everywhere except on the red curves. In the
white region between the red curve and the lower blue
curve it is not known what happens.

Breaking of ensemble equivalence occurs when (T ∗1 , T
∗
2 ) is frustrated. The

proof is based on the theory of graphons, which are continuum limits of
adjacency matrices of graphs [5], [6]. We derive a variational formula for
s∞ with the help of the large deviation principle for graphons associated
with the Erdős-Rényi random graph [8].

What happens close the line T ∗2 = T ∗31 ? It turns out that anomalous
behaviour shows up:

Theorem 6. For T ∗1 ∈ (0, 1),

lim
ε↓0

ε−1 s∞(T ∗1 , T
∗3
1 + ε) = C+ ∈ (0,∞),

lim
ε↓0

ε−2/3 s∞(T ∗1 , T
∗3
1 − ε) = C− ∈ (0,∞),

where C+, C− are computable functions of T ∗1 that are, however, not so
easy to identify.
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In summary, we have obtained a complete classification of break-
ing of ensemble equivalence in random graphs with constraints on the
degree sequence, respectively, the total number of edges and triangles.
Breaking occurs when the number of constraints is extensive or when
the constraints are frustrated.

Challenges for the future are:

B Can we estimate the relative entropy away from the Erdős-
Rényi curve?

B What happens when other constraints than edge-triangles are
considered?

§4. Exploration and mixing times

4.1. Searching on networks

Search algorithms on networks are important tools for the organ-
isation of large data sets. A key example is Google PageRank, which
assigns a weight to each element of a hyperlinked set of documents,
such as the World Wide Web, with the purpose of measuring its relative
importance within the set.

The weights are assigned via exploration and are obtained recur-
sively. A hyperlink counts as a vote of support: a page that is linked to
by many pages with a high rank receives a high rank itself.

Fig. 10. An example of GooglePageRanks weights in a small
network.

4.2. Searching on complex networks

B Networks are modelled as graphs, consisting of a set of vertices
and a set of edges connecting pairs of vertices.

B Complex networks are modelled as random graphs, where the
vertices and the edges are chosen according to some probability
distribution.



14 F. den Hollander

B Search algorithms are modelled as random walks, moving along
the network by randomly picking an edge incident to the vertex
currently visited and jumping to the vertex at the other end.

The question we ask is: How long does it take the random walk to explore
the random graph properly? The answer to this question is important
because it tells us how long the search algorithm must run.

The mixing time of a random walk is the time it needs to approach
its stationary distribution. For random walks on static random graphs,
the mixing time has been the subject of intensive study. However, since
many networks are dynamic in nature, it is natural to study random
walks on dynamic random graphs. This line of research is very recent in
the mathematics literature.

As we saw in Section 3, the configuration model is a random graph
with a prescribed degree sequence. It is popular because of its mathe-
matical tractability and its flexibility in modelling real-world networks.
In what follows we consider a discrete-time dynamic version of the con-
figuration model, where at each unit of time a certain fraction of the
edges is rewired.

Static version. Let G(~dN ) denote the set of all graphs onN vertices
with a prescribed degree sequence

~dN = (di)
N
i=1,

N∑
i=1

di = even.

We draw a random graph uniformly from the set G(~dN ). The outcome
may have self-loops and multiple edges. The stationary distribution of
the random walk equals

π(i) =
di∑N
j=1 dj

, 1 ≤ i ≤ N,

and does not depend on the outcome of the draw. One way to generate
the random graph is by randomly pairing half-edges (recall Section 3).

For random walk on the static configuration model, the mixing time
is known to be

[1 + o(1)] c logN, N →∞,

with
1

c
= lim
N→∞

∑N
i=1 log di∑N
i=1 di

,

subject to certain regularity assumptions on the degrees [15], [3], [4].
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→

Fig. 11. A transition for the dynamic configuration model.
Bold edges on the left are the ones chosen to be
rewired. Bold edges on the right are the newly
formed edges.

Dynamic version. For fixed N , draw a starting graph η and a
starting vertex i, and proceed as follows. At each time t ∈ N:

(1) Draw edges randomly with probability αN ∈ (0, 1).
(2) Rewire these edges by breaking them into half-edges and pair-

ing these half-edges again randomly.
(3) After the rewiring, let the random walk make a step to a ran-

domly chosen neighbouring vertex.

We make the following assumptions:

• The degrees must be moderate, i.e., not too large.
• The random walk is non-backtracking, i.e., immediate jumps

back along edges are not allowed.
• limN→∞ αN = 0, i.e., the dynamics is slow.

4.3. Mixing time

Let Pη,i denote probability with respect to the joint process of ran-
dom graph and random walk with starting graph η and starting vertex
i. Let Xt denote the location of the random walk at time t ∈ N, and
write

Dη,i(t) = 1
2

N∑
j=1

|Pη,i(Xt = j)− π(j)|

to denote total variation distance between the distribution of Xt and the
stationary distribution π. It turns out that there is are three regimes:

(1) limN→∞ αN (logN)2 =∞: supercritical regime.
(2) limN→∞ αN (logN)2 = β ∈ (0,∞): critical regime.
(3) limN→∞ αN (logN)2 = 0: subcritical regime.

Theorem 7. With high probability, i.e., for a set of (η, i) with prob-
ability tending to 1 as N →∞, the following hold.
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(1) Supercritical regime:

Dη,i(s/
√
αN ) = e−s

2/2 + o(1), s ∈ [0,∞).

(2) Critical regime:

Dη,i(s logN) =

{
e−βs

2/2 + o(1), s ∈ [0, c),
o(1), s ∈ [c,∞).

(3) Subcritical regime:

Dη,i(s logN) =

{
1− o(1), s ∈ [0, c),
o(1), s ∈ [c,∞).

Here, c is the constant in the static version.

1 t
√
αN

D(t)

Fig. 12. Scaled mixing profile in the supercritical regime.

1 t/c log N

D(t)

Fig. 13. Scaled mixing profile in the critical regime.

1 t/c log N

D(t)

Fig. 14. Scaled mixing profile in the subcritical regime.
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In the supercritical regime the mixing time is of order

1/
√
αN � logN,

and does not depend on the degree sequence. In the critical regime and
the subcritical regime the mixing time is of order logN and depends on
the degree sequence.

The proof is based on a stopping time argument: the first time the
random walk moves along an edge that has been relocated is close to a
strong uniform time.

Challenges for the future are:

B What effect do hubs have on the mixing time?
B What happens when only edges touched by the random walk

can be rewired?
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Erdős-Rényi random graph, European J. Comb. 32 (2011) 1000–1017.

[ 9 ] D. Garlaschelli, F. den Hollander, J. de Mol, T. Squartini, Breaking of
ensemble equivalence in networks, Phys. Rev. Lett. 115 (2015) 268701.

[10] D. Garlaschelli, F. den Hollander, A. Roccaverde, Ensemble nonequivalence
in random graphs with modular structure, J. Phys. A: Math. Theor. 50
(2017) 015001.



18 F. den Hollander

[11] D. Garlaschelli, F. den Hollander, A. Roccaverde, Covariance structure be-
hind breaking of ensemble equivalence, J. Stat. Phys. 173 (2018) 644–662.

[12] F. den Hollander, M. Mandjes, A. Roccaverde, N.J. Starreveld, Ensemble
equivalence for dense graphs, Electr. J. Prob. 23 (2018), Paper no. 12,
1–26.

[13] F. den Hollander, M. Mandjes, A. Roccaverde, N.J. Starreveld, Breaking
of ensemble equivalence for perturbed Erdős-Rényi random graphs, sub-
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