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ABSTRACT. This paper addresses the analysis of the queue-length process of single-server
queues under overdispersion, i.e., having arrival and/or service rates that are not constant but
instead randomly evolve over time. Several variants are considered, using concepts as mixing
and Markov modulation, resulting in different models with either endogenously triggered or
exogenously triggered random environments. Only in special cases explicit expressions can
be obtained, e.g. when the random arrival and/or service rate can attain just finitely many
values. While for more general model variants exact analysis is challenging, one can derive
limit theorems in the heavy-traffic regime. In some of our derivations we rely on evaluating
the relevant Laplace transform in the heavy-traffic scaling using Taylor expansions, whereas
other results are obtained by applying the continuous mapping theorem.

AMS SUBJECT CLASSIFICATION (MSC2010). Primary: 60K25; Secondary: 60J60, 90B22

AFFILIATIONS. Onno Boxma is with EURANDOM and the Department of Mathematics and
Computer Science; Eindhoven University of Technology; P.O. Box 513, 5600 MB Eindhoven;
The Netherlands (email: o.j.boxma@tue.nl). Mariska Heemskerk and Michel Mandjes are
with Korteweg-de Vries Institute for Mathematics, University of Amsterdam; Science Park
904, 1098 XH Amsterdam; The Netherlands (email: j.m.a.heemskerk|m.r.h.mandjes@uva.nl).
Version: November 26, 2019.

ACKNOWLEDGMENTS. The research of all authors is partly funded by the NWO Gravitation
Programme NETWORKS (Grant Number 024.002.003). The research of the first and last
author is partly funded by an NWO Top Grant (Grant Number 613.001.352).

1. INTRODUCTION

After the publication, exactly fifty years ago, of The Single Server Queue |10], much research
effort has been devoted to relaxing modeling assumptions that are commonly imposed in
queueing theory. Over the past decades this led to various generalizations of the standard
single-server queue, thus pursuing to get a handle on more versatile and realistic model
variants.

Perhaps the most prominent generalization concerned the introduction of Markov modulation.
Under this paradigm, one can depart from the usual assumption that the arrival and service
processes are of the renewal type. In its most elementary form, the distributions of the
interarrival times and service times change at transition epochs of a Markovian background
process; in addition, there are variants where this happens at arrival or service completion
epochs. A key model is the Markov-modulated M /M /1 queue: when the background process
moves to, say, state j, the arrival rate becomes \; while the service rate becomes ;. Service
modulation comes in different flavors: (i) customer-based, (ii) server-based, and what could be
called (iii) real-time updated service modulation. In the first case the state of the background
process determines the service requirement of a customer upon arrival, whereas in the second
case the service duration is determined by the background state at service initiation. However,
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only models with real-time updated service rates fit in the so-called Quasi-Birth-Death (QBD)
framework: they are described by Markov chains defined on a level-phase state space, where
level transitions are skipfree.

Queues with a Quasi-Birth-Death structure form a particularly interesting class of Markov-
modulated queues. Triggered by the pioneering work of Neuts |30], and thanks to major
contributions by e.g. Latouche, Ramaswami, and Taylor, the theory of QBD queues is well
developed. It provides elegant matrix expressions for key performance measures which can
be evaluated through efficient numerical algorithms. For general overviews we refer to the
book [26] and the proceedings [27,[28]. An important generalization is provided by queues
with Markov additive input, which can be viewed as Markov-modulated Lévy processes that
are reflected at 0; we refer to |7, Ch. XI| for an authoritative exposition.

Recently it has been attempted to generalize the single-server queue in other directions.
Various data studies indicated that often the variance of the number of arrivals in a given time
window exceeds the corresponding mean, a phenomenon often referred to as overdispersion.
This observation led one to question the standard assumption of Poisson arrivals (under
which the variance would equal the mean). In order to create overdispersion in a model for
call center traffic, in |[19] the authors suggest to use a Poisson mizture model for the number
of arrivals in an isolated time slot: the deterministic arrival rate A of the Poisson distribution
is replaced by a random variable A.

Following up on the idea of a random arrival rate, the standard Poisson arrival process as a
whole can be replaced by a Coxian arrival process, i.e., by a Poisson process for which the
intensity itself is a stochastic process A(-) = {A(t),¢ > 0}. Infinite-server queues with Coxian
input can be analyzed in great detail, essentially due to the property that individual customers
do not interfere with each other. The most elementary variant is the one in which the intensity
is resampled, in an i.i.d. manner, at equidistant epochs [17]. This framework is extended
in [18|, allowing the sample rates to be dependent in an autoregressive manner. In [23] the
object of study is the infinite-server queue with A(-) corresponding to a ‘shot-noise’ intensity
process, whereas in other recent papers A(-) is a Hawkes (‘self-exciting’) process [13,24].
While infinite-server queues with Coxian input allow explicit analysis, this usually does not
hold for their single-server counterparts. See [4] for an early contribution to the analysis
of a specific insurance risk model (which can be considered dual to a single-server queue)
with a Coxian claim arrival process; the authors derive large-deviations results for the ruin
probabilities.

The aim of the present paper is to explore single-server queues under overdispersion, where
this overdispersion is realized by imposing specific mixing mechanisms. It turns out that for
these models exact analysis is in general highly challenging. This is why we resort to the
heavy-traffic scaling, in which the system load approaches unity. In this regime for various
model variants explicit limiting results can be derived.

Related literature — Markov modulation and mixing. Above we already gave a few key
references on QBD processes and Markov-modulated queues. In addition, we would like
to mention a paper of Regterschot and de Smit [33], making an important methodological
contribution by developing a matrix Wiener-Hopf approach to study the M/G/1 queue
with Markov-modulated arrivals and service requirements (where the service modulation
is customer-based). Another notable contribution is by Prabhu and Zhu [31]|, who work
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with a very similar but more comprehensive model, using techniques based on infinitesimal
generators to analyze the waiting time, idle time, and busy period.

An early example of mixing in the queueing literature is provided in [1]. Here a GI/G/1
queue is considered, with the service times being exponentially distributed, but with a mean
that is a Pareto distributed random variable. The attractive feature of this construction is
that the resulting service-time distribution has an explicit Laplace transform, even though
the distribution is heavy-tailed. A similar procedure has been followed in [11]: for Pareto
distributed service times with one of its parameters being Gamma distributed, a mathemat-
ically convenient Laplace transform was identified. This class of distributions was further
generalized in [2], considering two classes of so-called Beta mixtures of exponentials. In [32],
the waiting-time distribution of a single-server queue is analyzed for models in which the
arrival rate, the service rate or the traffic load, is random. The paper also covers a duality
result between such queueing models and a class of insurance risk models, thus allowing one
(i) to obtain some new results for insurance risk models in which a parameter is random, and
(ii) to translate some insurance risk results, with mixing, from [5] to queueing results.

In the references featuring in the previous paragraph, the random parameter was sampled
once and for all. In [22| other sampling procedures are explored; specifically, if parameters
are resampled after each busy period, then quite detailed results can be obtained.

Related literature — heavy-traffic. Heavy-traffic analysis has a tradition within the queueing
literature that goes back to the 1960s. It concerns the study of scaled random quantities
within the framework of queueing systems, in the asymptotic regime where the queue’s load is
increasingly heavy. One of its pioneers, Kingman [20,21], derived the asymptotic distribution
of the scaled steady-state sojourn time and queue length (and the waiting time) in a GI/G/1
queue; both quantities converge to exponentially distributed random variables, under the
condition that the interarrival times and service times have finite variance. The proof is
classical: in the corresponding transform the load of the system is increased to 1, so as
to obtain the transform of the exponential distribution in the limit. Later also path-level
heavy-traffic limit results were established: when scaling time as well, usually relying on the
continuous mapping theorem, it was shown that the queue-length process weakly converges to
reflected Brownian motion. Such limit theorems are particularly useful for queues that do not
allow an explicit performance analysis, bearing in mind that, conveniently, for the limiting
(Brownian-motion related) objects a broad range of closed-form expressions is known. In [37]
an overview, covering various heavy-traffic limit results, is given. We also refer to the textbook
treatments in |7, Section X.7] and |14, Ch. V|. Heavy-traffic analyses for Markov-modulated
single-server queues are given in e.g. |6,9/15}36].

Main results and organization of the paper. Section [2| sketches an approach to analyze the
M/M/1 queue in which the arrival rate A and the service rate M are resampled at i.i.d.
exponentially distributed intervals. The main goal of the section is to point out that exact
analysis is within reach when A and M can attain only finitely many values, but complications
arise otherwise. With these complications in mind, in the remainder of the paper we mainly
focus on heavy-traffic analysis. In the next section we analyze three different overdispersed
queueing models, each with its own resampling mechanism.

In Section [3| we consider the most basic model: an M/M/1 queue where the rate vector
(A, M) is resampled (in an i.i.d. manner) at Poisson epochs, with (A, M) attaining only
finitely many values. It takes a little thought to realize that this model is a special case of the
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Markov-modulated M/M /1 queue, with the Markovian background process having a finite
state space. For this more general model we first show how the Laplace transform of the
steady-state distribution of the number of customers @), jointly with the background state J,
can be determined (Section [3.1)). Then in Section [3.2] we study the heavy-traffic scaling limit
of Q: by letting the traffic load p tend to 1 in the Laplace transform we prove that (1 — p)@
converges to an exponentially distributed random variable. In Section We narrow our
scope to the case where (A, M) are resampled, under which the parameter of the limiting
exponential distribution simplifies considerably.

Section {4 is also concerned with an M/M/1 queue with resampling of the arrival rate and
service rate, but now the support of (A, M) is not restricted to finitely many values, and the
resampling intervals are not necessarily exponentially distributed. We first determine the
mean, variance and covariance of the cumulative arrival process and cumulative potential
service process. Those results are subsequently used to show, using the continuous mapping
theorem, that an appropriately scaled version of the queue-length process converges to
reflected Brownian motion when the traffic load approaches unity.

While the resampling mechanisms featuring in Sections [3| and [4] can be seen as exogenously
triggered, the resampling in Section [5|is endogenous: we consider an M/G/1 queue in which
at every service completion the arrival rate is resampled. After providing an exact analysis of
the transient queue-length distribution right after service completions, we use the obtained
results to show that a scaled version of the queue-length process (where the scaling involves
both space and time) converges to reflected Brownian motion when the traffic load p 1 1. Also
in this context we succeed in proving that (1 — p)@ converges to an exponentially distributed
random variable.

We conclude the paper in Section [6] with a brief discussion and some suggestions for further
research. Importantly, the Sections focus on three different models; for this reason, we
introduce for each of them specific notation in the corresponding section.

2. EXACT RESULTS: AN EXPLORATION

In this section we consider an M /M /1 queue with the special feature that at Poisson epochs, the
underlying rates (A, M) are resampled from some componentwise non-negative distribution
(hence not necessarily independently from each other). Let ¢~* be the value of the mean
‘inter-sample time’. The main objective of this section is to examine to what extent the
resulting queueing system allows a closed-form solution.
Starting point are the following results from |10, Section 1.4.4| for the transient behavior
of a birth-death process with constant birth and death rates. Let (); denote the number of
customers in the M/M/1 queue at time ¢ > 0. Assume that, at time 0 and until £ ~ exp(q),
the rates are given by Ag = A and My = pu, with traffic load p := A/u. Let 1 = x1(\, i, q)
and x9 = 22(\, 11, ¢) be the roots of F(2) = F(z |\, i, q) := A\z? — (A + p+ q)z + p, where z;
is the larger one:

A p+qg+ VO +pu+q)?— 4 A p+qg— A+ p+q)?2 — 4
- , Ty = - (1)

2\ 2\

Then, according to [10, (4.27) on p. 80| (taking into account the scaling with respect to p
mentioned there), for [z| < 1landi=1,2,...,

X1

E(ZQE\(QO,AmMo) = (i,)vﬂ)) = sz /OZ qe "P(Q; = j|(Qo, Ao, Mo) = (i, A, p))dt
j=0 1=



q (1 — 2)abt™ — (1 — a9) 2"

p(l—x2)(pz? = (L4 p+q/n)z+1)

o (1- 2)rst — (1 — 3y) 2"

I eI e 2

As is well-known [10, p. 190], the smaller root x5 can be interpreted as the Laplace-Stieltjes

transform E[e™"] of the busy period P in an M/M/1 queue with arrival rate A and service
rate u, given that A\ < p.

From now on we assume that E[A] < E[M], implying that the system is stable. If the system
was already in steady state at time 0, and with ) denoting the steady-state queue length,
then we can write )y = () and

q(l—z):cgE[xg] qz E[29]
(—m)F(z)  Fls) 3)

Note that the queue length Q)¢ at the resample epoch £ has the same steady-state distribution

E[2% | (Ao, Mo) = (A, p)] =

as (o, as at time ¢ rates (A1, M) are resampled in an i.i.d. fashion from the same distribution
as (Mg, My). Hence we can obtain an expression for the probability generating function (PGF)
of () from by integrating both sides with respect to A and p (recalling the dependence of
F(z) and 25 on A and p):

E[
E[-? 1—z/ / v % TP o e da, M e dp)
A=0 ,LLO )

/ /
A=0 H= 0

/ / TS e Medp)

JFC)
1+qz/m/ﬂo

The crucial insight is that a major complication arises from the fact that the numerator in

P(A € A\, M € dp). (4)

Hence,

E[z°] = q(1— (5)

P(A € d\, M € dp)

the right-hand side of still contains an unknown expression. More than that, since x5 is a
function of A and p, there may be multiple unknowns E[x?], even infinitely many as A and
M need not live on a finite state space.

To study this complication in greater detail, we proceed by briefly pointing out the crucial
difference between the case in which the vector (A, M) has a finite support (i.e., can attain
finitely many values), and the case in which this vector can take on infinitely many values.
First consider the case that (A, M) can attain two values, i.e., we assume that, for m; € (0, 1),

]P)(A:)\l,./\/l:[h):ﬂ'l, P(A:)\Q,M:MQ):Wgzl—Tﬁ. (6)

In this case, writing x5; to indicate its dependence on the values of A\; and pu;, and with
Fi(2) = M2? — (\i + i + )2 + s, (B) reduces to
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the only unknowns being E[z$] for i = 1,2. After multiplication by Fj(z) Fy(z), the
denominator in the right-hand side of (7)) is a polynomial D(z) in z of order 4, with a zero at
z = 1 and three other zeros which can be explicitly obtained via Cardano’s formula. When
the stability condition m Ay + Ay < 7y + mapo holds, one of those zeros lies in (0,1). In
fact, it is easily verified that D(0) = pype > 0, D(1) = 0, and D’(1) > 0 iff that stability
condition holds. The zero in (0, 1) and the zero z = 1 should also be zeros of the numerator
in (7)), which gives rise to two linear equations in the two above-mentioned unknowns. We
conclude that this problem is solvable.

When the vector (A, M) can attain a larger, but still finite, number of values, one typically
aims for a Rouché-type argument to prove that there is a specific number of zeros in |z| < 1.
We do not discuss this further, because this model can be viewed as a special case of a
Markov-modulated M/M/1 queue, which has been analysed in detail, cf. [33]. Via an intricate
argument, it is there proven for the case of a background process with d states (and while
studying the waiting time rather than queue length) that a particular determinant has, in
steady state, exactly d — 1 zeros in the right-half plane and one at zero. That knowledge can
be exploited to determine the vector of waiting-time transforms (of length d, distinguishing
between waiting times of customers arriving in different background states).

However, this approach breaks down when the state space of the background process is
not finite. In particular, when the support of (A, M) is uncountable, the numerator in the
right-hand side of is an unknown function of z, and the denominator may have zeros on a
contour in |z| < 1. It is far from obvious how to exploit that knowledge to find the numerator
in (5).

The main conclusion of this section is that, in order to obtain exact results, complications
arise when the support of (A, M) is not finite. Classical queueing-theoretic techniques fail,
and new approaches need to be developed. In the next sections we focus on the heavy-traffic
regime, in which rather explicit results can be obtained.

3. EXOGENOUSLY TRIGGERED RESAMPLING, FINITE SUPPORT

In this section we consider a heavy-traffic analysis of a Markov-modulated M/M/1 queue
with finitely many background states. It covers the setting discussed in Section 2} an M/M/1
queue in which at Poisson epochs the arrival rate and service rate are resampled from a
distribution with finite state space. As it turns out, in this special case the (parameter of
the) heavy-traffic limiting distribution simplifies considerably.

3.1. Model description. In this section we consider the following Markov-modulated
M/M/1 queue. There is a background process, which is assumed to be irreducible, and which
jumps from 7 to j # ¢ with rate ¢;;, with ¢,5 € {1,...,d}. We define ¢; := —¢;; := Z#i -
When the background state is 7, the arrival rate is \; > 0 and the service rate is p; > 0. As
before, (); denotes the queue length at time ¢ and () the steady-state queue length.

As a first step, we characterize the PGF of Q). Let p;(k,7) be the probability that at time ¢
there are k customers (with k € Ny) and the background state is i (with i € {1,...,d}). As
A | 0, we obtain by a classical Markovian argumentation, for any k € Ny,

Peralk, i) = NAp(k—1,4) 11y + wAp(k+1,7) + Z ¢iA pi(k, j) +
J#i
(1 - ()\z + ,Uz'l{k>1} + %)A) pt(kv Z) + O(A)
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Multiplying by z* and summing over k yields, in a standard manner, a relation in terms of
the PGF of Q;. A and @)y, jointly with the corresponding states of the background process.
By subtracting ]E[thl{ J,=i}) from both sides of this relation, dividing by A, and letting A | 0,
we obtain the differential equation

d
EE[ZQt]-{JtIi}] = Xi(z = 1) E[z%1 =] +

d

1

i <Z - 1) E[z% 1migoo] + Y i B9 10—5].
i=1

We send t to oo to obtain a system of differential equations for the steady-state queue length
@, jointly with the state J of the background process. Denoting the corresponding PGF by
fi(z) :=E[291(,_3], it thus follows that

0=Xi(z—1) fi(2) + p (% - 1) (filz) = B:) + qui fi(2), (8)

where (3; denotes P(Q) = 0, J = 7). This equation can, for any z € (0,1) and for a given vector
of probabilities (3, be rewritten as a system of linear equations. Concretely, with the (i, j)-th
entry of the matrix A(z) given by

1
aij(2) = N (2 = Dlgi=gy + (; - 1) Y=gy + a0,
and the i-th entry of the vector b(z | 3) given by
1

bi(2]B) = (; - 1) Bi,
we arrive at the equation A(z) f(z) = b(z|B). We thus obtain, modulo the invertibility of
the matrix A(z),

f(z) = (A(2)) 7" b(z| B).

By Cramer’s rule, we have that, with A;(z) defined as A(z) but with the i-th row replaced
by b(z|B), and with «;(2) := det A;(z) and «(z) := det A(z),
;(2)
i(2) = . 9
1) =55 0
We have thus found the PGF of @, jointly with the background state J, in terms of the
vector of probabilities 8. Using the fact that zeros of the denominator of (9)) should be zeros

of the corresponding numerator as well, these probabilities can in principle be found. As it
will turn out below, however, their precise value does not affect the heavy-traffic results.

3.2. Heavy-traffic scaling limit. Now that we have an expression for the PGF of (), this
can be exploited to get insight into its heavy-traffic behavior. Following the ideas of |3, Ch.
VI|, we do so by expanding f(z) in z = e=(!=7)% as p 1 1, with p := 7w/ . Here 7 denotes
the row vector of steady-state probabilities for the background process. To this end, we first
study the behavior of a(z) and «a;(z) as z 1 1.

o Note that a;;(1) = gj;; due to the singularity of the transition rate matrix (g;;)¢,_;, it
is directly seen that o(1) = 0.
o As fi(z) € 0,1] for all z € (0, 1), we conclude that also ;(1) =0, fori =1,...,d.
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o To study o/(1), we first observe that a(z) = det A(z), with A(2) defined as A(z)
with the first row replaced by the sum of all rows; i.e., the (1, j)-th entry is v;(z) :=
Aj(z —1) 4+ p;(1/2 — 1) (recalling that the rows of the transition rate matrix sum to
0). Using standard rules for evaluating determinants,

a(z) = - 1(2)8,(2).

where §;(z) is the determinant of the appropriate (d — 1) x (d — 1) cofactor matrix.

We hence find
d

/(1) =) (1) (1) + (1) (1))
j=1

To evaluate the right-hand side of this equation, we first note that ~,(1) = 0. Also,
v;(1) = Aj — p;j. We are thus left with evaluating ¢;(1).

We proceed by showing that d;(1) is proportional to 7;, as follows. The vector 7 can
be found by solving the linear system of equations Z?Zl miq;i =0fori=1,...,d (of
which one equation is redundant) together with w1 = 1. It follows that this system of
equations can be written as T ' = ey, with the (4, j)-th element of T being defined
by 1if i = 1 and by g¢;; else, and e; defining the first unit vector. The vector 7 can
again be evaluated using Cramer’s rule. More concretely, with 7} being equal to the
matrix 7" but with the j-th column replaced by e; and ¢ := detT", we find

T =t detT].

It is immediately verified that detT; = §;(1) = tm; (recalling that a;;(1) = g;;).
Upon combining the above, we get o/(1) =t (wA —7wp) = —twp (1 —p).
o In addition, by L’Hopital’s rule,
d

d
1=) P(J=i)= lim E[z91 gy = lim
=1 =1 =1

a
Q

Oéi(Z)_ : ;(D
a(z) e (1)’

i=1

Q

so that 3¢ a/(1) = o/(1) = —twp (1 — p) as well. Realize that ¢ depends on the
transition rates gj; only, i.e., not on the arrival rates \; and service rates p;.

We thus find that, for a given s > 0,
a(e” 07 — (1= (1= p)s + 11— s>+ O (1 = p)?))
=a(l) +a’'(1)(— (1= p)s + 3(1 = p)*s*) + 30" (1)(1 = p)*s* + O ((1 = p)°)
=twp(l—p)Ps+ia”’(1)(1—p)°s*+0((1-p)?).

Along the same lines,
d d
S (e 07) = trp (1= p)%s + 13 al(1)(1 = p)%s2 4+ 0 (1 = p)?).
i=1 i=1
We conclude that L,
lim E[e~Q1—)] = tmp+ 35 21:1 (1) s
ptl twp+ 5a"(1) s
As P(Q = 0) vanishes when p 1 1, we deduce that the expression in goes to 0 as s — o0.
This immediately entails that Zle af(1) — 0 as p 1 1. Recognizing the Laplace transform
of the exponential distribution, we have proven the following result.

(10)
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Theorem 3.1. As p T 1, we have that (1 — p)@Q converges to an exponentially distributed
random variable with mean o'(1)/(2t wp).

Remark 3.1. Upon inspecting the above derivation, we see that we have actually proved a
somewhat stronger statement, namely asymptotic independence of () and J in the regime
where p 1 1. More precisely, as p 1 1, using that PGFs uniquely characterize their underlying
(joint) distribution, we have that ((1 — p)@, J) converges to (Q, J), where @ is exponentially
distributed with mean o’(1)/(2t wp) and J has distribution P(J = i) = 7;, where, remarkably,
Q and J are independent; cf. the results in e.g. [6,[15]36].

3.3. Heavy-traffic scaling limit in the resampling model. We proceed by considering
a special case of a Markov-modulated M/M/1 queue, namely the one that corresponds to
resampling the arrival rate and service rate at Poisson epochs, as was introduced in Section [2|
To this end, we follow the construction set up in [12, Section 3|. Let 7 some row vector
of probabilities summing to 1. Take, for a given ¢ > 0, the transition rate matrix equal to
q1m — ql,, with 1 an all-ones vector and I; the d-dimensional identity matrix. As follows
from the reasoning in |12, we have thus constructed a model in which the arrival and service
rate pair (A, M) is resampled, in an i.i.d. manner, after exponentially distributed times (with
mean ¢~ '). At every resampling time, they attain the values (\;, u;) with probability ;.
Notably, this construction allows for the A and M to be dependent, but their support needs
to be finite.

In Section we determined the heavy-traffic scaling limit by expanding the determinants
of A(z) and A;(z) at z T 1. In the special resampling setting defined above, however, it turns
out that these expansions allow an explicit form. Define E(s) = A(e®), i.e.,

E(s) :== E(s) + q1m, E(s) := —qls + diag{\}(e® — 1) + diag{p}(e™* — 1).

Due to the fact that F(s) can be written as the sum of a diagonal matrix and a rank-one
matrix, its eigenvalues can be characterized as roots of a function from R to R, as can be
seen as follows. To this end, we write

det(E(s) — 01;) = det(E(s) — 01,) det(Iy + (E(s) — 01;) 'q 1m).

For A and B matrices of dimensions m x n and n x m, respectively, we have det([,,, — AB) =

det(I,, — BA). We thus conclude that

det(E(s) — 01;) = det(E(s) — 01;) det(I; + m(E(s) — 01;) 'q1)

=det(E(s) — 01,) (1_27” — q _3_1)+9>'

pile

We conclude that the eigenvalues 0;(s) up to 04(s) (for a fixed s, that is) are the solutions to

. 1
=: U (0).
g —1)—pi(es—=1)+46 (6)
The existence of these (real) eigenvalues follows from the fact that there are poles at
0=—qg+ X (e*—1)+u;(e®=1),i=1,...,d, at which Wy(-) jumps from —oo to oo, whereas
U, (-) converges to 0 as § — +oo. This means that d — 1 of the roots are between two
subsequent poles, whereas the largest root is larger than the largest pole.
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o As s — 0, by observing that the locations of all poles converge to —g¢, it follows that
all but one eigenvalues, say 6;(s) up to 04_1(s), converge to —q. Also, the largest one,
say 04(s), converges to 0 as s — 0.

o We then determine ¢(1) for j =1,...,d — 1. For the moment we assume that the
ki == A\; — p; are all distinct; the case in which some of the x; coincide can be dealt
with analogously, with slightly more effort. Without loss of generality we can put the
ki in increasing order, i.e. k1 < --+ < Kq. Recalling that e*—1 = s+o(s) ande™*—1 =
—s+o(s) as s — 0, it thus follows that, as s — 0, 0;(s) € [—q + K;8, —¢ + Kj115).
Write 6;(s) = —q + fjs + o(s) for f; € [k, k;+1). To find the f;, we wish to solve, in
the regime where s — 0,

1 ¢ 1

-=)) T
¢ o (fi—ri)s

Multiplying both sides by s, sending s to 0, and distinguishing between positive and
negative terms, we conclude that we have to solve

J d
I
m— = m—.
= Li—w S R

Observe that the left-hand side is oo for f; = k; and is decreasing in [k, k;4+1), whereas
the right-hand side is increasing in the same interval and is oo for f; = ;4. This
implies that there is a unique solution to the equation, which we simply call f;. We
have thus determined 0(0) = f;, for j =1,...,d — 1.

We proceed by computing 6,(0). From the relation ¢=!' = W (0(s)) it follows by
implicit differentiation to s, for any j € {1,....d}, with &;(s) := ¢ — N\i(e®* — 1) —
pi(e™" = 1) +6;(s),

d -
—N\ie® + e+ 0.(s
OZZ z K j( )

ﬂ'.
— §ij(s)?
Inserting s = 0 directly yields that ¢/,(0) = —mp (1 — p), which in the sequel we will
write as —(1 — p) EM.
o Differentiating once more, we arrive at

2

= &ij(s)® " & ()2

Again plugging in s = 0, we obtain in self-evident notation (with e.g. EA := 7w ) that

2E(A — M)?
91(0) = EA + EM + 2EA =M
q
The values of 67(0), ..., 60, _,(0) are not relevant in our analysis, as will turn out below.

Using that a determinant is the product of the eigenvalues, we have that e(s) := det E(s) =
01(s) - - - 04(s). Noting that e(0) = 0, we wish to expand e(s) as €/(0)s + 3€”(0)s* + O(s®) as
s — 0. Using that 64(0) = 0 and 6,;(0) = —¢ for j = 1,...,d — 1 we find, by applying the
standard rules for differentiation of products, that

¢(0) = 60) [[6:0) = ~(1~ D EM - (~)*"
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Likewise, for the second derivative we find

¢(0) = 84(0) [T :(0) + 84(0) " 650 T] 0600)

j#d k). d
d—1
=0;(0)- (=)™ = (1= p)EM - f;- ()"
j=1

The next step is to use the above findings to evaluate e(—(1 — p)s) as p 1 1. We obtain that,
for any given s,

e(—(1—=p)s) = —=€'(0) (1 = p)s + 3¢"(0) (1 = p)*s* + O ((1 — p)°)
= (1= p)’EM - (=q)" s + 5 (1= )*05(0) - (—9)" 's* + O (1 = p)°) .

Having expanded the determinant e(s) of F(s) = A(e®) and evaluated it in —(1 — p)s, we can,
in a fully analogous fashion, do the same for the determinants e;(s) of E;(s) := A;(e®), and
sum these over .. We thus obtain, by dividing the numerator and denominator by (1 — p)?s,
that

1
lim E[e~@1-5] = :
o1 14 6s

with ¢ := 0(0)/(2E EM); in the limiting regime (p 1 1), we can rewrite 6/7(0) to arrive at
2
0(0) = o3 v := (Var A — 2Cov(A, M) +Var/\/l)a +2EM.

Theorem 3.2. As p 1 1, we have that (1 — p)Q converges to an exponentially distributed
random variable with mean o3 \/(2EM).

4. EXOGENOUSLY TRIGGERED RESAMPLING, UNCOUNTABLE SUPPORT

The model considered in this section is an M/M/1 queue in which the arrival rate and service
rate are resampled, but now the support of (A, M) can be uncountable. Another difference
with the previous section is that the resampling does not necessarily take place at Poisson
epochs.

4.1. Model description. The inter-sample intervals are i.i.d. and distributed according to
a non-negative random variable ¢ with density fe(-). We assume that at time 0, the time

until the next resampling (say &) has the residual lifetime distribution, i.e., it has the density

feto) == = o [ st

in other words, the resampling process is in stationarity. Above we tacitly assumed that
E¢ < oo; in the sequel we also need that E[¢?] < oo.

We proceed by describing the cumulative input process A(-) and cumulative potential service
process S(-). At any resample epoch the new arrival rate and service rate are sampled;
these bivariate random quantities are i.i.d. and distributed as a componentwise non-negative
two-dimensional random vector (A, M). In addition, we let A(t) and M(t) be the arrival
rate and service rate, respectively, that apply at time . Throughout this section we assume
that both Var A and Var M are finite.
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4.2. Arrival and potential service process. As the resampling process starts in station-
arity, it is clear that EA(t) =t - EA and ES(t) =t - EM. We therefore shift our attention
to computing the variances and the covariance, relying on the law of total variance. The
starting point is the representation of A(t) and S(¢) in terms of Poisson processes with
random parameter:

A(t) = Pois (/OtA(s) ds) ,  S(t) = Pois (/Ot/\/l(s) ds> :

We show how the calculation for Var A(t) is done; the calculation for Var S(t) can be done
fully analogously. The law of total variance entails, with A(-) = (A(s))scp4:

va(t) == Var A(t) = E[Var(A(t) | A(+))] + Var (E[A(t) | A(+)]) - (11)
Clearly, )
E[A(t) | A(-)] = Var(A(t) | A() = / A(s) ds.
The first term in therefore equals

E[Var(A(t) | A(-)] = E UOtA(s) ds} - /t EA(s)ds = EA(t) = t - EA.

0
Now focus on the second term in . Using standard properties, we obtain

Var (E[A(t) | A(+)]) = 2/0 /OS Cov (A(r),A(s)) drds.

The crucial insight is that Cov(A(r), A(s)) equals Var A if r and s are in the same resampling
interval, and 0 else. With & denoting the stationary residual lifetime pertaining to &, we thus
obtain

Var (E[A(t) | A(+) —2VarA// £>s—r)drds.

Notice that, by a standard calculation, with g(u) := P(§ > u)

Eg// E>s—1) drds—/ // dudrds-// / u) dudy dr
_ / / / T () dy dr du
(/ (/tu/ dydr—l—/tu/ dydr) du+/ // dydrdu)
— (/O(tu—%uz) ol )du+2t2/t e )du).

We have thus found the following expression (and its counterpart for the service process);
here vg(t) := Var S(¢).

Proposition 4.1. The variances of the cumulative arrival and service process are given by,
fort >0

Var A Y
va(t) =t-EA+2 E (/O(tu—Eu) P& > u) du + t/t ]P’(§>u)du>,

and

vs(t):t-EM+2%é\/l) (/Ot(tu—iu) P& > u) du + tg/tOOIP’(§>u)du>.
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Example 4.1. It can be checked that for the special case that £ is exponentially distributed
with parameter 6 > 0 (implying that ¢ is exponentially distributed with parameter § as well),

/ / (E>s5—71) drds—g—ﬁ( — e, (12)

va(t) =t-EA+2Var A (5 - 5—12(1 6_&)) )

for t > 0. L]

As a consequence

The next step is to evaluate Cov(A(t), S(t)) by the law of total covariance. We have, with
P(-) = (A(s), M(5))secjo,y denoting the parameter process in the interval s € [0, ],

cas(t) == Cov(A(t), S(t)) = E[Cov(A(t), S(t) | P(-))] + Cov(E[A() [ P(-)], EIS () | P(-)))-
The first term on the right-hand side is clearly 0: conditioned on P(-), the arrival and service

processes are independent. The second term on the right-hand side can be dealt with as
before. We thus obtain the following result.

Proposition 4.2. The covariance between the cumulative arrival and service process is given
by, fort >0

cas(t) = 2%5’/\/1) (/Ot(tu — L) P(§ > w) du+ 1 /too P(¢ > u) du) .

Our next objective is to show that v4(t), vs(t), and ca g(t) behave essentially linear as ¢t — oo;
this finding will later play a role in the derivation of functional limit theorems. We start by
considering v(t)/t as t — oco. By L’Hopital’s theorem, this limit equals

V A
ar / min{u, t}P( > u) du.
By a straightforward calculation (applying dommated convergence and integration by parts),

E[E]

ES

The limit of vg(t)/t as t — oo (which we call vg) and the limit of ¢4 g(t)/t as t — oo (which
we call ¢4 ) can be determined in the same fashion. We state this result as a corollary.

lim v/ (t) = EA + lim 2
t—00 t—o0

we obtain

UAI:thA() EA + VarA——
t—oo T

Corollary 4.1. The constants v4, vs, and cas are given by

E 2 E 2 2
IEEZE]’ vg = EM 4 Var M ]55]’ cas = Cov(A, M) HE:‘?{]

An alternative derivation of these expressions can be found in Appendix [A} the methodology

vg = EA +Var A

presented there is particularly useful, as it also facilitates the derivation of higher moments
in a relatively straightforward manner.

4.3. Weak convergence to reflected Brownian motion. After having studied some
properties of the arrival and potential service process, we now shift our attention to the
queueing process. Our objective is to establish in the heavy-traffic regime, under a time-scaling,
weak convergence of the queueing process to reflected Brownian motion.

Assuming the system starts empty at time 0, the number of customers in the queue at time ¢
can be written as

sup (A(t) — A(s) — (S(t) = S(5)));

0<s<t
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this representation involving the potential service process applies due to the fact that the
service times are exponential (albeit with some random value), cf. the remark in |37, bottom
of p. 290].

In this subsection we impose the parameterization EA = p EM, and consider the regime
p T 1. Clearly, the queueing process, which we denote by (Q,(t)):>0 to stress the dependence
on p, blows up as p 1 1. However, after appropriately rescaling time and space, one obtains a
non-trivial limiting process. More specifically, we will study the behavior of

((1 - p)Q, <ﬁ))t>o (13)

for p 1 1; observe that time is stretched by a factor (1 — p)? where space is compressed by a
factor 1 — p. We do so by showing that the process (B,(t))=o, with

By(t) = (1—p) A, (ﬁ) —(1-p)S (ﬁ) ,

converges weakly to a Brownian motion; we write A,(-), with subscript p, to make visible
that we choose EA equal to p EM. By ‘continuous mapping’ this convergence then also yields
that converges weakly to reflected Brownian motion.

Let Pi(-) and Py(-) be defined as two independent unit-rate Poisson processes. Then, with

fo=1/(1=p)?
B,(t) = (1 p)P, (/Otfp Ay(s) ds) —(1-p)P (/Otfp M(s) ds) , (14)

where the subscript p has been added to A(-) to indicate the dependence on p.
In the first place,

t
imEB,(t) = lim —— (EA — EM) = —t EM.
im EB,(t) = lim +—( M) M

Also, representation implies that for some martingale K,(-)
dB,(t) = (1 — p)fp Ap(tfp) dt — (1 = p) f, M(Lf,) dt + dEK,(2).

Using similar computations as before,
tfp tfp
lim Var ((1 — p)/ Ay(s)ds — (1 — p)/ M(s) ds)
Pl 0 0
tf tf,
= lim(1 — p)* Var (/ Ay(s)ds — / M(s) ds)
0 0

ptl

= lim(1 — p)* Var(A — M) /tfp /S P(§ > s —r)drds
o Jo

Pl
E[¢?]
E[¢]

In addition, with (X(-)); denoting the quadratic variation process of X(-) at time ¢, using

standard properties of pure jump processes,
d
T EolD)e = (L= pl* [ Ap(tfp) + (1= p)* S, ML) = Dp(tf) + M(LF,),
so that, as p 1 1,

(K ()) = — (/Otfp Ay(s)ds + /Otpr(@ ds) 2t EM.

=t (VarA — 2Cov(A, M) + VarM)
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Combining the above, we conclude that, as p 1 1, B,(-) converges weakly to a process B(-)
given by

B(t) =—tEM+ OAM * W(t),
with W (-) a standard Brownian motion and

o = (VarA —2Cov(A, M) + VarM) % +2 EM. (15)

After applying the continuous mapping theorem, we have thus found the following result.

Theorem 4.1. As p 11, with Q(t) := supgc,,(B(t) — B(s)),

((1 —)Q, (ﬁ))% L Q1)) 0.

Remark 4.1. In this remark we analyze how large 012\7 m can be. Given that both A and M
are non-negative, one is inclined to believe that one cannot achieve a correlation coefficient
between A and M with value —1. This is, however, not true, as follows from the following
argument.

Consider two non-negative random variables X and Y, having (without losing any generality)
unit mean. Let X have a given distribution, and define

1 /1
Y = ——X+1)1
g (1) o

where, with p(s) :=P(X < s),

1 1
¥(s) =E K‘;X + 1) 1{o<x<s}} = =~ [X Ljocx<q] +p(s).

It is immediately seen that Y is indeed non-negative with mean equal to 1.
Now, under obvious mild regularity conditions that ensure the existence of the expectations
involved, as s — 00,

Cov(X,Y)=E[XY]—-1= ﬁﬂﬂ K—EXQ + X) 1{0<X<s}:| -1

B _s R [X2 1{0<X<s}} +(14+sHE [X 1{0<X<s}] —p(s)
—s71E [X 1{0@(@}} + p(s)
—Var(X) — (E[X])? 4+ E[X] _Var(X).

~Y =

S S

Likewise, again as s — oo,

1 1 2
A\ _ 2 _ 2
ar(Y) _E[Y ] —1= —¢2(S)E |:<—S2X — gX + ].) 1{0<X§5}:| -1
SizE [XQ 1{0<X§s}} — QSil]E [X 1{0<X<3}} —|—p($) — (—SilE [X 1{0<X§s}} —|—p(8))2

(—=s7'E [X Ljoex<sy] + p(s))?

Var(X)
sz
Conclude that this choice of Y (for a given X)) yields a correlation coefficient —1 as s grows
large. This means that one can achieve a correlation coefficient arbitrarily close to —1.
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Applying this observation to the expression for the variance in for any € > 0 and any
non-negative A, one can construct a non-negative M that is negatively correlated with A in
such a way that

E 2
af\jM > (\/VarA + \/Var/\/l)2 % +2EM — ¢.

Remark 4.2. Based on Theorem one would expect that the stationary number of
customers under the heavy-traffic scaling would converge to the stationary version of B(-)
reflected at 0, which has an exponential distribution with mean o3 ,,/(2EM). Establishing
such a result, however, would require interchanging two limits, namely ¢t — oo and p 1 1. For

specific models, an argumentation developed in [34] can be followed, but it is not clear how

this could be applied in our setting.

5. ENDOGENOUSLY TRIGGERED RESAMPLING

In this section we consider an M/G/1 queue with the special feature that at every service
completion the arrival rate is resampled. We refer to this mechanism as ‘endogenously
triggered resampling’, as the resampling is not due to an exogenous, independently evolving
process.

5.1. Model description. In the model we consider, the service times are i.i.d. samples
from some general non-negative distribution, distributed as a generic random variable S
with Laplace-Stieltjes transform o(-). The distinguishing feature of the model we study in
this section is that at every service completion the arrival rate is resampled from a general
distribution with non-negative support; the sequence of arrival rates is assumed i.i.d., each of
them being distributed as the generic random variable A.

To make sure the queueing system under study is stable, we have to assume EA < ES. Later,
when considering the heavy-traffic regime, we will assume the finiteness of the corresponding
second moments.

5.2. Transform of the stationary number of customers. Let N, be the number of
customers arriving during the n-th service time, and @,, the stationary number of customers
present at the n-th service completion. It is evident that @, 1 =q (Qn — 1)" + N,11, with
the two terms in the right-hand side of this distributional equality being independent. We
obtain the following relation:

o0 [e.9]

Bz =3 FP(Qn = 1)" =) =P(Qu=0)+ 3 _ = ""P(Qn = j)

(Z zj]P)(Qn = ]) - ]P(Qn = O))

- (1 - 1) P(Qn = 0) + 222

z z

=P(Q,=0)+

[SE

With, for n € Ny, k,(2) := E29" and v(z) := Ez™ (which evidently does not depend on n),
we thus obtain the recursion

v(z) ((1 - 1) P(Q, = 0) + ““—(’Z)) = Fonn (2).

z zZ
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Our next step is that we consider the transform of x,,(z) at a geometrically distributed time
epoch, which, as it turns out, can be expressed in closed form. To this end, we multiply the
above recursion by (1 — r)"r (for some r € [0,1)) and sum over n € Ny. We thus obtain

S r)ra(e) ((1 - 1) P(Qn = 0) + “"<Z>) S )R (2):

z z

n=0 n=0
(technically, the geometric distribution is a shifted geometric distribution, having probability
mass at 0). Our objective is to identify the double transform
K(r,z):= Z(l —7)"r K (2),
n=0
assuming that we know the distribution of Qo (i.e., ko(z) is known). Observing that
P(Q, = 0) = £,(0), we thus obtain the identity

v(z) (1 - 1) K(r,0) + MK(T, z) = . ! (K(r,z) —rro(z)).

zZ z -Tr

Isolating K (r, z), we can express this double transform in terms of K (r,0) and rg(2): some
elementary algebra yields
rzko(z) — (1 —=7r)(1 — 2)v(z) K(r,0)

z—(1—=r)v(z)
The unknown function K(-,0) can be eliminated by observing that, for a given r € [0, 1],
each root of the denominator must correspond to a root of the numerator. Observe that, for
a given r € (0,1), the function z — (1 — r)r(2) is increasing and convex, and attains values
in (0,1), which immediately implies that z = (1 — r)v(z) has a unique root z(r) € (0,1).
The fact that this is a root of the numerator as well yields that

r20(r) ko(z0(r)) 1T Ro(20(7))

(L =) (1 = 2(r)v(zo(r))  1—2(r)’

We thus arrive at the following result.

K(r,z) =

K(r,0) =

Theorem 5.1. Forr,z € (0,1),

T2 Ko(2) B (1 —r)(1=2)r(2) .  fio(2(r))
z=(=rp(z)  z=(=rp(z)  1-z()

In the same way, the stationary behavior can be dealt with; the object of study is the

K(r,z) =

stationary number of customers ). We have to impose EN < 1 to ensure the existence
of a stationary distribution. It is evident that, under the stability assumption imposed,
Q =4 (Q —1)" + N, with the two terms in the right-hand side being independent. Then a
standard argumentation, similar to the one used above, yields

E:Q D =N "UP(Q- 1)t =) =PQ=0)+Y #'PQ=))

=P(Q=0)+1(isz(Q:j)—P(Q=0)> - (1-2)r-0+ 22

¥ -
Jj=0

Upon combining the above, with x(z) := Ez9,

K(2) = v(z) ((1 - é) P(Q = 0) + @) .
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Solving x(z) from this equation directly yields (where one should recall that v(z) > z for all
z € [0, 1], which is due to P(N = 0) > 0 and v/(1) = EN < 1, in combination with the fact
that v(-) is convex on [0, 1])

1—2
K(z) = V(Z)m P(Q = 0).

Because of k(1) = 1, we find by L’Hopital’s rule that P(Q =0) =1—1/(1) =1 — EN.

The above reasoning has been frequently used to obtain the stationary distribution in the
M/G/1 queue, but it is important to observe that it does not use that the interarrival times
are i.i.d. random variables from the same exponential distribution. Indeed, it allows for the
arrival rate to be resampled at every service completion. In the resampling model we study
in this section, with g(-) denoting the density of A,

o(z) = / oML - 2)) g(\) d\ = Eo (A(L  2)). (16)
0
We end up with the following result, using that EN = EA ES.
Theorem 5.2. Under the stability constraint EA ES < 1, for z € (0,1),

k(z) =v(z) L-=

= (1 -EAES), (17)

with v(-) given by (16)).

5.3. Heavy-traffic scaling limit. In this subsection we consider the regime in which
p:=EAES goes to 1. The main result is that the distribution of (1 — p)@ converges to an
exponential distribution, in line with classical heavy-traffic results that have been derived in
a plethora of queueing models. As we will see, the parameter of the exponential distribution
features the second moments of A and S, which from now on we assume to exist.

As a first result, however, we will show that, under a certain time-scaling, the marginal
transient distributions of the process (Q,), converge to their reflected Brownian motion
counterpart. We follow an argumentation developed in |14, Chapter 5|. We scale the queueing
process by (1 — p) and time by a factor (1 — p)~2, in line with the usual heavy-traffic scaling.
We wish to find the limit, as p 1 1, for given r, s > 0, of

K ((1 —p)*r, 67(17,0)5) :
To this end, we first wish to identify so(r, p) solving, in the regime p 1 1,
e 10" = (1— (1—p)*r)v (e 7).

We do so by expanding both sides as polynomials in 1 — p, so as to obtain the following
equation:

1—(1=p)s+35(1—p)°s”=(1-(1-p?)-
(1= V(D)1 = p)s — 11— p)%2) + L (1)(1 = p)%2) + O((1 = *).

Using that p = ¢/(1), we obtain the following equation after subtracting 1 from both sides

and dividing by (1 — p)*:

/(1) s*+s—r=0(1-p).

_ -1+ /14201 L0 —p).

V”(].)

We thus conclude that

So(r)
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We assume that, as p 1 1, ko(e"77)%) — Ry (s) for some transform Fo(-); this means that the
initial distribution converges to some limiting distribution under the heavy-traffic scaling.
Now using the result stated in Theorem [5.1], we conclude after some standard computations
that, as p 1 1,

r S

— p)?r,e”17P)s Ko(s) — ——Ro(so(r)) | -
B (= 0 e 070) o5 e (o) = st

r—s—3

In this expression we recognize the Laplace transform for the position of reflected Brownian
motion after an exponentially distributed time (with mean r~!), given the initial level
has transform Fg(-); cf. for example |14, Theorem 4.1]. A direct verification yields that
V(1) = EN(N —1) = E[A?| E[S?]. Define B(t) as —t + /v"(1)/2- W (t), with W (-) standard
Brownian motion. In addition, let QI(-) be the reflection of B ( ) at 0, Wlth initial condition
QM(O) = z. From the above argumentation, an application of the Lévy convergence theorem
provides us with the following result.

Theorem 5.3. Suppose (1 —p)Qo = x > 0. Then we have for any t > 0 that (1 — p)Qy/1—p)>
converges to Q¥ (t) as p 1 1.

To study the stationary heavy-traffic behavior, we use a classical argumentation based on
the Laplace-Stieltjes transform ((17)). Based on the fact that the stationary distribution of
reflected Brownian motion is exponential, Theorem |5 ﬂ 5.3 suggest that (1 — )Q Converges in
distribution to an exponentially distributed random variable with mean % E[A?] E[S?]. T

the remainder of this subsection we make this claim precise.

We evaluate x(e~(177)%), for s > 0 given, in the regime that p 1 1. The starting point is

p(e—0=P) = /0 T o (ML= e 09)) g\ dA,

By expanding e~(7P)% we first rewrite the expression from the previous display as
o A
/ o <)\(1 —p)s — 5(1 —p)’s*+0((1 - ,03))> g(\) dA.
0

Subsequently applying a Taylor expansion of ¢(-) at 0, we obtain that v(e~1=?)%) can be
expressed as

[ (100 (M1 s = G- o2 ) £ TERA - 2+ 0= ) ) s
which can be interpreted as
1—(1-p)s EAES + 1(1 - p)*s> EAES + (1 — p)*s* E[A’] E[S*] + O((1 — p*)).

To study the behavior in the heavy-traffic limit, we now consider the individual elements in
the right-hand side of (17] . evaluated in e~(1=?)_ The numerator reads

V(e’(l’p)s) (1 e~ (1=¢) ) (1 —EAES) ~ (1 —p)?*s + O((l — p3)),

with ‘~’ denoting that the ratio of the left- and right-hand side converges to 1 as p 1 1. The
denominator expands as

(1 p)s + 30— pP*S* BN E[S?) + O((1 — ).
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Upon combining the above, and by dividing both numerator and denominator by (1 — p)?s,

we obtain that, as p 11,
1

1+ L E[AYE[S?]s

k(e UP8) -

We thus obtain the following result.

Theorem 5.4. As p T 1, we have that (1 — p)@Q converges to an exponentially distributed
random variable with mean 1 E[A?] E[S?].

Remark 5.1. Theorem [5.4| covers the heavy-traffic distribution in the ordinary M/G/1 queue
as a special case. In that case the arrival rate is deterministic, such that E[A?] = (EA).
With a bit of rewriting, we find that in this case (1 — p)@ converges to an exponentially
distributed random variable with mean $E[S?]/(ES)2.

6. CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

In this paper we have considered various single-server queues under overdispersion. While
their infinite-server counterparts allow for explicit analysis, these queues can rarely be dealt
with in a straightforward manner. Focusing on M/M/1 queues with resampled arrival and
service rates, closed-form expressions for the queue length can only be derived if these rates
can attain just finitely many values (Section . In the heavy-traffic regime, however, explicit
convergence results can be derived; specifically, we have shown that a scaled version of the
steady-state queue length converges to an exponentially distributed random variable (Sections
and . We also considered a model in which the arrival rate is resampled upon service
completion (rather than at i.i.d. resampling times, independently of the queue’s dynamics);
also in this setting heavy-traffic analysis has been performed (Section .

In the area of queues under overdispersion there are still many open problems. The most
prominent question is posed in Section [2} can we find the queue-length distribution if the
arrival and service rates are repeatedly sampled from a distribution with countably infinite
or even uncountable support? As we demonstrated, the conventional queueing-theoretic
approach, expressing the corresponding Laplace transform through a system of finitely many
equations with equally many unknowns, clearly does not apply.

As overdispersion was observed in various types of service systems [8,29,38| that are typically
modeled as many-server queues (such as call centers), one would like to get a handle on such
queues with resampled rates as well. The ultimate goal would be to design staffing rules for
many-server queues under overdispersion; see e.g. [18].

Acknowledgments. The authors would like to thank Bo Klaasse and Rudesindo Ntunez-
Queija for useful comments and suggestions.

A. APPENDIX: ALTERNATIVE COMPUTATION OF THE ASYMPTOTIC VARIANCE

The asymptotic (co-)variances va, vg, and ¢4 g can be computed in an alternative way, using
results from large deviations theory [16]; a similar approach has been followed in e.g. |25,35].
With this approach, also higher (centered) moments of A(t)/t and S(t)/t can be calculated
in closed form in the regime that ¢ — 0o, as we point out below.

Let X (-) be a stochastic process with stationary increments, and let ¢ be larger than EX (1).
Define the asymptotic cumulant generating function

~(0) := lim %logEexp(@X(t}),

t—o00
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assumed to be finite in an open neighborhood of the origin. Then, according to [16], as
u — 00,

1
alogP(Ht >0:X(t) —ct >u) = —0%,

where 0* solves cf = v(0), or
.1
tlgg n log Eexp(6X(t)) —cf = 0.

Interestingly, in case there is a regenerative structure underlying the process X (-), there is a
second way of computing 6*. Let T,, be time epochs such that X(7,,) — X (7},—1) are i.i.d.,
and let T':= T7. Then we equivalently have

1
alogIP’(Eln >0:X(T,) — T, > u) — =0,
where (the same!) 6* solves
log Eexp(8(X(T) — ¢T)) = 0. (18)

The idea is that we are going to exploit the fact that, obviously, both procedures should lead
to the same (c, 0) pairs.

In our setup, we identify & with T the regeneration points are the resample epochs. For
reasons that will become clear later, we study the process X, (¢) that is a linear combination
of the arrival and service process: we define X, (t) := aA(t) + (1 — «)S(¢t) for « € R. We

show how to compute
( Var X, (t)

o\ = lim —— 2
X t—o00 ’

which can be checked to equal 7”(0). In the sequel, we study the function ¢(0) := v(0)/60; as
both ¢(-) and ~y(-) depend on «, we will consistently write c,(-) and 7,(-). Once having found
v&?), it turns out that with the right choices of a@ we can compute vg4, vs, and ca g.

Let Z(-) be the moment generating function of the resampling time £. It takes an elementary
calculation (by conditioning on the value of A and M in the interval under consideration, as
well as on the duration of the inter-sample interval) to verify that

valc,0) == Eexp(0(Xo(T) — cT)) = Eexp((aA(T) + (1 — a)S(T) — cT))
=E [E(A(™ — 1) + M(?T7) — 1) — ch)] .

Applying (18], we find that c,(6) is the value of ¢ for which log ¢, (c, #) = 0; differentiating
the equivalent relation ¢, (c,(#),0) = 1 with respect to 6 gives

)
%%(ca(e), 0) = dg [Z(A(” — 1) + M(?7) — 1) — ¢,(0)0)]

(A" — 1) + M7 — 1) — ¢, (0)0)
- [afe® + (1 — a)Me? =) — ¢, (0) — 0, (6)] = 0.

Inserting # = 0 gives the (obvious, but reassuring) identity

tim 280 0)  aEA 4+ (1 - a)EM. (19)

t—o0 t
Again differentiating the above equation gives
d2

gz Palca(0),0) =EE"(A(" — 1) + M("0) — 1) — ca (6)0)

- [ae® + (1 — a) M=) — ¢, (0) — 6c, (0)]2 +

«
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EZ (A — 1) + M”07 — 1) — ¢, (0)0)
- [@?Ae? + (1 — @) Me” ) — 2d () — 0 (0)] = 0.
Evaluating this equality in 6 = 0 gives
E&? - ElaA + (1 — a)M — co(0)]* + E¢ - (0®EA + (1 — a)*EM — 2¢,(0)) = 0,

or, equivalently, using ,
2

3

We are now in a position to compute v4, vg, and c4 s. To this end, first realize that inserting

Vi) = 72(0) = 2¢,(0

«

-Var(aA + (1 — a)M) + (o*EA + (1 — a)’EM). (20)

a=0,a=1and a = % yields, respectively,

1 1
v§) = vy, v&?) = vg, Ugﬂ) = gvat Us T geas,

where, by virtue of ,

E[¢? E[¢?
vgg):EAJrVarAﬂ, v = EM + Var M £]

E§ E¢
E[¢%] E[¢%]
S E¢
The claim of Corollary now follows immediately.
The technique presented here has a clear advantage over the direct approach that was used
at the end of Section [£.2} it can be used to find higher cumulant moments. As is readily

checked, for instance for the third asymptotic cumulant moment
E(X,(t) —EX,())?

t—o00 t «

o? = 1EA + LEM + —Var(JA + 1M)

The value of ¢/ (0) can be found by differentiating the relation ¢, (c(6),60) = 1 three times
with respect to 6; the corresponding calculations are straightforward yet tedious.
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