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Abstract

This paper presents an analysis of the stochastic recursion ,8+1 = [+8,8 + .8]+ that can be
interpreted as an autoregressive process of order 1, reflected at 0. We start our exposition by a
discussion of the model’s stability condition. Writing .8 = �8 − �8 , for independent sequences
of non-negative i.i.d. random variables {�8}8∈ℕ0 and {�8}8∈ℕ0 , and assuming {+8}8∈ℕ0 is an
i.i.d. sequence as well (independent of {�8}8∈ℕ0 and {�8}8∈ℕ0), we then consider three special
cases: (i) +8 attains negative values only and �8 has a rational LST, (ii) +8 equals a positive
value 0 with certain probability ? ∈ (0, 1) and is negative otherwise, and both �8 and �8 have
a rational LST, (iii) +8 is uniformly distributed on [0, 1], and �8 is exponentially distributed. In
all three cases we derive transient and stationary results, where the transient results are in terms
of the transform at a geometrically distributed epoch.
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1. Introduction

This paper focuses on the Lindley type stochastic recursion

,8+1 = [+8,8 + .8]+, 8 = 0, 1, . . . , (1)

where [G]+ = max{G, 0} for G ∈ ℝ and {+8}8∈ℕ0 and {.8}8∈ℕ0 are independent sequences of i.i.d.
(independent, identically distributed) random variables. The analysis of stochastic recursions has
received much attention in the applied probability literature. This holds in particular for stochastic
recursions of the autoregressive type, owing to their wide applicability across various scientific
domains including biology, finance, and engineering [6, 8, 13].

An important subclass of first order autoregressive models corresponds to the case in which the
{+8}8∈ℕ0 are constant, i.e., a stochastic process defined through the recursion

,8+1 = 0,8 + .8, 8 = 0, 1, . . . , (2)

for a sequence of i.i.d. random variables {.8}8∈ℕ0 and a scalar 0, with ,0 being given. When the
quantities,8 cannot attain negative values, then it becomes natural to study the truncated counterpart
of (2), i.e., the recursion

,8+1 = [0,8 + .8]+, 8 = 0, 1, . . . . (3)

When 0 = 1 we recover the classical Lindley recursion describing the waiting time in the G/G/1
queue, with .8 representing the difference between the 8-th service time and the (8 + 1)-st interarrival
time. The case of 0 ∈ (0, 1) was studied in detail in [6], whereas the case 0 = −1 is covered by [22].
It should be observed that, while from the analysis it is clear that 0 is assumed to be positive in [6],
the introduction of that paper incorrectly states that |0 | < 1.

By studying (1), we significantly extend the analysis of the Lindley recursion as well as the analysis
of the stochastic recursion (3). Our results focus on three different choices of {+8}. In Model I,
the +8 are negative random variables. A detailed analysis is shown to be possible as long as the
positive part of the .8 has a rational Laplace-Stieltjes transform (in the sequel abbreviated to LST).
In Model II, the +8 are either negative or equal to the positive constant 0. Here we demand that both
the positive and the negative part of the .8 have a rational LST. While Model II effectively contains
Model I, we prefer to give a separate analysis of both models, to make the reader familiar with the
specific mathematical intricacies due to +8 being negative (Model I) and +8 being a positive constant
(the model in [6]). Finally, in Model III, the +8 are uniformly distributed on [0, 1], and the negative
part of the .8 is exponentially distributed; this case requires an entirely different approach.

The rationality assumptions are natural in the light of the existing theory that has been developed
for the G/G/1 queue. While in principle the waiting-time distribution in the general G/G/1 queue
can be obtained via a Wiener-Hopf decomposition (cf. [10, Chapter II.5]), the solution is a rather
implicit one, unless one makes rationality assumptions on either the interarrival or the service-time
LST. In addition, it can be argued that the distribution of any non-negative random variable can be
approximated arbitrarily closely by the distribution of a random variable with a rational LST [1, Ch.
III], so that a restriction to random variables with rational LST leads to just a minor loss of generality.

Notable studies of stochastic recursions are Borovkov and Foss [4], Foss et al. [15], and Diaconis
and Freedman [12]; see in addition [3]. For the non-reflected case, stochastic recursions of the form
,8+1 = +8,8+.8 have been studied frequently, partly under the name ‘Vervaat perpetuity’; wemention
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[8, 11, 13, 16, 18, 21]. For the reflected case, [7] considers another generalization of the Lindley
recursion, by replacing +8,8 in (1) by ((,8), where {((C)}C>0 is a Lévy subordinator. A model
that is similar to the present model has been discussed in Whitt [23]. It is noted, though, that [23]
primarily focuses on stability questions, limit theorems and questions related to queuing applications,
whereas our primary focus lies on the derivation of results for the transient and stationary distribution
of the process under investigation. Also related is the model in [5]; there (1) is considered with
ℙ(+8 = 1) = ?, ℙ(+8 = −1) = 1 − ?.

The main contributions of the present paper are the following. For each of the three models that
we introduced above, we state and solve a Wiener-Hopf boundary value problem, which allows us to
study the transient behavior of the {,8}8∈ℕ0 process. In particular, we obtain an expression for the
object

∞∑
8=0

A8 �(e−B,8 ),

which can be interpreted as the generating function of the LST of the ,8, but also (up to the
multiplicative constant 1 − A) as the LST after a geometrically distributed time. The stability
condition of each of the three models is discussed, and the steady-state distribution of the {,8}8∈ℕ0

process is also determined.
The remainder of the paper is organized as follows. Section 2 presents the description of the three

models and some preliminaries. Sections 3, 4 and 5 are devoted to the transient and steady-state
analysis of, respectively, Models I, II and III. Section 6 contains a discussion and provides suggestions
for further research.

2. Model description and preliminaries

The main object of study is the stochastic recursion

,8+1 = [+8,8 + .8]+ , 8 = 0, 1, . . . , (4)

where {+8}8∈ℕ0 and {.8}8∈ℕ0 are sequences of i.i.d. random variables, which are in addition indepen-
dent of each other. The initial state of the process is assumed to be,0 = F ∈ ℝ+. We write + and .
for generic random variables distributed as +0 and .0 respectively.

In this paper, we discuss the following three variants of the model:

Model I: ℙ(+ < 0) = 1;
Model II: ℙ(+ = 0) = ?, ℙ(+ < 0) = 1 − ?, 0 > 0, ? ∈ (0, 1);
Model III: ℙ(+ < G) = G, 0 6 G 6 1.

In each of the cases we will assume that the .8 are decomposed as �8 − �8, with sequences {�8}8∈ℕ0

and {�8}8∈ℕ0 of i.i.d. non-negative random variables. In addition, depending on the chosen model,
the random variables �8 and/or �8 are assumed to have a rational LST.

We start with investigating the stationary behavior of {,8}8∈ℕ0 . We always assume that both �|+ |
and �|. | are finite. The first result was given in Whitt [23] and covers most cases of interest.

Theorem 1 (Whitt [23]). If one of the following conditions holds, then,8 tends weakly to a proper
limit, as 8 →∞:
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(C1) ℙ(+ < 0) > 0 and ℙ(. 6 0) > 0,
(C2) + > 0 a.s. and ℙ(+ = 0) > 0,
(C3) + > 0 a.s. and �(log |+ |) < 0.
Moreover,,8 converges weakly to a possibly improper limit, as 8 →∞ if+ > 0 a.s.,�(log |+ |) = 0,
and,0 = 0. If additionally + = 1 a.s. then, is proper for �(. ) < 0 and improper for �(. ) > 0.

It follows straightforwardly from the regenerative structure of ,8, and the proof of the above
theorem in Whitt [23], that in cases (C1) and (C2) the limit , is unique. Obviously under the
conditions of the theorem the limiting random variable, fulfils the associated distributional identity
,=d [+, + . ]+. Regarding the above Condition (C3), we add the following observation.

Theorem 2. In order to have convergence of,8 to a proper unique limit, as 8 →∞, it is sufficient
to have �(log |+ |) < 0, which in turn is implied by �|+ | < 1.

Proof. Recursion (4) can be written as a random iteration,8+1 = 5\8 (,8) with 5\8 (G) = [G+8 + .8]+,
\8 = (+8, .8). This means that 5\ (·) enjoys the Lipschitz property

| 5\ (G) − 5\ (H) | 6  \ |G − H |,

with random Lipschitz constant  \ = |+ |. As a result, Diaconis and Freedman [12, Thm. 1.1]
is applicable. By Jensen’s inequality � log |+ | 6 log�|+ | and so �|+ | < 1 implies condition
�(log |+ |) < 0. �

The case where ℙ(+ < 0) > 0 and . > 0 a.s., which was omitted in Whitt [23], is more involved
due to the fact that the process might not be aperiodic, even if . is not deterministic. As an example
suppose that the distribution of . is supported on [1, 2] and that + 6 −2 a.s. If ,0 = 0, then
,1 ∈ [1, 2], ,2 = 0, ,3 ∈ [1, 2], entailing that the process alternates between the set {0} and a
value in [1, 2]. On the other hand, if,0 > 2, then,1 = 0,,2 ∈ [1, 2] and so on. As a consequence,
there is no convergence ,8 ⇒ , as 8 → ∞. However, regarding the existence of a stationary
distribution we can show the following.

Theorem 3. If ℙ(+ 6 0) > 0 and . > 0 a.s., then there is convergence of,8 to a stationary random
variable, as 8 →∞.

Proof. We define a majorizing process by "0 := ,0 and "8+1 := [+8]+ "8 + .8. Then ,8 6 "8,
8 = 0, 1, 2, . . . and for {"8}8∈ℕ0 we have �(log | [+]+ |) = −∞ < 0 since ℙ( [+]+ = 0) > 0. So by
Thm. 2 it follows that "8 ⇒ " as 8 → ∞ for some limiting random variable " . This implies the
existence of a stationary distribution for {,8}8∈ℕ0 . Indeed, let Y > 0 and let : > 0 be such that
ℙ(" > :) 6 Y/2. Letting 18 = ℙ(,8 6 :), we obtain 18 > ℙ("8 6 :). The right-hand side
converges to ℙ(" 6 :) as 8 →∞ which is at least 1 − Y/2, implying that there is an 80 such that for
8 > 80, 18 > 1 − Y for all 8 > 80. Consequently the family ℙ(,8 6 ·) is tight, guaranteeing [14, Thm.
4] the existence of a stationary distribution for {,8}8∈ℕ0 . �

We end this section with a lemma that forms the starting-point of the analysis of all three models.
For this, we need to introduce some additional notation. For a given non-negative random variable -
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wewriteΦ- (B) = �4−B- for its LST, defined at least for Re B > 0. We say thatΦ- ∈ ℚ[B1, B2, . . . , B=]
if - has a rational LST with poles at B1, B2, . . . , B=, i.e., if Φ- (B) is of the form

Φ- (B) =
#- (B)
�- (B)

, (5)

where �- (B) =
∏=
8=1(B− B8) and #- (B) is a polynomial of degree at most =−1 not sharing zeros with

�- (B). Note that this implies that ℙ(- = 0) = limB→∞Φ- (B) = 0. With this notation we then have
e.g. Φ. (B) = Φ� (B)Φ� (−B). We also write �. (B) = �� (B) �� (−B) and #. (B) = #� (B) #� (−B) if
� and � have rational LSTs of the form (5).

For a sequence {-8}8∈ℕ0 of random variables we introduce the generating function, for A ∈ (0, 1):

*- (A, B) =
∞∑
8=0

A8Φ-8 (B).

Note that since Φ+- (B) =
∫
Φ- (HB) ℙ(+ ∈ dH), we have

*+- (A, B) =
∫
*- (A, HB) ℙ(+ ∈ dH). (6)

The following lemma plays a key role in our analysis. Define ,∗
8

:= [+8,8 + .8]−, where [G]− :=
min{G, 0}.

Lemma 4. *, (A, B) and*,∗ (A, B) are, for A ∈ (0, 1) and Re B = 0, related via

*, (A, B) = e−BF + A
(
Φ. (B)*+, (A, B) +

1
1 − A −*,

∗ (A, B)
)
. (7)

Proof. First observe that the basic identity exp
(
[G]+

)
= exp (G) + 1 − exp ( [G]−) applies. It thus

follows from (4) that

Φ,8+1 (B) = Φ+8,8+.8 (B) + 1 −Φ,∗
8
(B), 8 = 0, 1, . . . . (8)

Multiplying both sides of (8) by A8+1 and summing yields the identity (7). �

3. Model I: The negative case

The model we analyze in this section assumes that each +8 attains only negative values and that .8
is the difference �8 − �8 of two independent non-negative random variables, where �8 has a rational
LST. In other words, we impose the conditions
(A) + < 0 a.s.,
(B) Φ� ∈ ℚ[B1, . . . , Bℓ] with Re B 9 < 0 for 9 = 1, . . . , ℓ.

Theorem 5. Suppose that the Conditions (A) and (B) hold. Then, for A ∈ (0, 1),

*, (A, B) = e−BF +
∑ℓ
:=0 0: (A)B:

�� (B)
, Re B > 0, (9)

*,∗ (A, B) =
1

1 − A −
∑ℓ
:=0 0: (A)B:

A�� (B)
+Φ. (B)

∫ 0

−∞
*, (A, BH) ℙ(+ ∈ dH), Re B 6 0, (10)
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where

00(A) =
A

1 − A (−1)ℓ
ℓ∏
9=1

B 9 , (11)

and the remaining constants 01(A), . . . , 0ℓ (A) can be determined from the linear system (18) that will
be given below.

Proof. Multiplying both sides of (7) by the denominator �� (B) gives

�� (B)
(
*, (A, B) − e−BF

)
= A#� (B)Φ� (−B)*+, (A, B) + A�� (B)

( 1
1 − A −*,

∗ (A, B)
)
. (12)

Now observe the following:
(i) the left-hand side of (12) is analytic in Re B > 0 and continuous in Re B > 0,
(ii) the right-hand side of (12) is analytic in Re B < 0 and continuous in Re B 6 0,
(iii) for large B, both sides are $ (B;) in their respective half-planes

At the boundary Re B = 0, both sides are well-defined. Determination of the unknown functions
*, (A, B) and *,∗ (A, B) from (12) and conditions (i), (ii) and (iii) is a Wiener-Hopf boundary value
problem of a type that has been extensively studied in the queuing theory before, cf. the expository
paper [9]. By introducing a function� (A, B) that is equal to the left-hand side of (12) for Re B > 0 and
to the right-hand side of (12) for Re B 6 0, we have a function that is analytic in the whole B-plane,
and that for large B is $ (Bℓ). Liouville’s theorem [20, p. 85] now states that both sides of (12), in
their respective half-planes, are equal to the same ℓ-th degree polynomial in B. In other words,

�� (B)
(
*, (A, B) − e−BF

)
=

ℓ∑
:=0

0: (A)B: (13)

for Re B > 0 and

A#� (B)Φ� (−B)*+, (A, B) + A�� (B)
( 1
1 − A −*,

∗ (A, B)
)
=

ℓ∑
:=0

0: (A)B: (14)

for Re B 6 0. We still need to determine the ℓ + 1 unknown functions 00(A), . . . , 0ℓ (A). Taking B = 0
in either (13) or (14) gives the expression in (11) for 00(A). Next we take B = B 9 , 9 = 1, . . . , ℓ. We
do this in (14), observing that Re B 9 < 0. Using that �� (B 9 ) = 0 we thus obtain

A#� (B 9 )Φ� (−B 9 )*+, (A, B 9 ) =
ℓ∑
:=0

0: (A)B:9 , 9 = 1, . . . , ℓ. (15)

Applying (6), this identity can be rewritten into

A#� (B 9 )Φ� (−B 9 )
∫ 0

−∞
*, (A, B 9 H) ℙ(+ ∈ dH) =

ℓ∑
:=0

0: (A)B:9 , 9 = 1, . . . , ℓ. (16)

Using (13), Equation (16) becomes, for 9 = 1, . . . , ℓ,

A#� (B 9 )Φ� (−B 9 )
∫ 0

−∞

(
eB 9 HF +

∑ℓ
:=0 0: (A) (B 9 H):

�� (B 9 H)

)
ℙ(+ ∈ dH) =

ℓ∑
:=0

0: (A)B:9 . (17)
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We can rewrite this equation as follows: for 9 = 1, . . . , ℓ,

ℓ∑
:=0

0: (A)B:9

(
1 − A#� (B 9 )Φ� (−B 9 )

∫ 0

−∞

H:∏ℓ
<=1(B 9 H − B<)

ℙ(+ ∈ dH)
)

= A #� (B 9 )Φ� (−B 9 )Φ+ (−B 9F). (18)

One can determine the remaining unknowns 01(A), . . . , 0ℓ (A) from this set of ℓ linear equations.
Subsequently, from (13), (9) follows. Expression (10) then follows from (14). �

We proceed by discussing the stationary behavior of {,8}8∈ℕ0 .

Theorem 6. Suppose that the Conditions (A) and (B) hold. If ℙ(� 6 �) > 0 then ,8 converges
weakly to a proper limit, as 8 →∞, and

Φ, (B) =
∑ℓ
:=0 0: B

:

�� (B)
, (19)

where

00 = (−1)ℓ
ℓ∏
8=1

B8, (20)

and the remaining constants 01, . . . , 0ℓ can be determined from the linear system (22) that will be
given below.

Proof. If ℙ(� 6 �) > 0 holds then Condition (C1) is fulfilled, so,= weakly converges to a proper
limit. We obtain the steady-state behavior (19) from its transient counterpart (9) in a standardmanner,
viz. by using an Abelian theorem for power series:

Φ, (B) = lim
A↑1
(1 − A)*, (A, B) =

∑ℓ
:=0 0: B

:

�� (B)
, Re B > 0, (21)

where 0: := limA↑1(1 − A)0: (A), for : = 0, . . . , ℓ. Using (11) and (18), we readily obtain the linear
system

ℓ∑
:=0

0: B
:
9

(
1 − #� (B 9 )Φ� (−B 9 )

∫ 0

−∞

H:∏ℓ
<=1(B 9 H − B<)

ℙ(+ ∈ dH)
)
= 0 (22)

for 0 9 , 9 = 1, . . . , ℓ. �

The mean of, directly follows by differentiation of (19): Φ′
,
(0) = (01�� (0) − 00�

′
�
(0))/�� (0)2,

with �′
�
(0) = 1 if ℓ = 1 and �′

�
(0) = −∑ℓ

8=1 B8 if ℓ = 2, 3, . . .; hence

�(,) =


1 − 01
00

, ℓ = 1;

−
01 +

∑ℓ
8=1 B8

00
, ℓ = 2, 3, . . . .

(23)
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Remark 1. It follows from (19) that , is a mixture of an atom at zero (with probability 0ℓ) and ℓ
exponential terms. This is not surprising: as +8 < 0, the only way for,8+1 to be positive is to have
�8 > �8 −+8,8. Now use the fact that �8 has a phase-type distribution with ℓ exponential phases, in
combination with the memoryless property of the exponential distribution.

Remark 2. When ℓ = 1, one obtains (using that 00 = −B1, cf. (20))

01 =
1 − #� (B1)Φ� (−B1)

∫ 0
−∞

1
H−1ℙ(+ ∈ dH)

1 − #� (B1)Φ� (−B1)
(∫ 0
−∞

1
H−1ℙ(+ ∈ dH) + 1

) .
For general ℓ, we have not been able to verify formally that the set of ℓ linear equations (22) in the
ℓ unknowns 01, . . . , 0ℓ has a unique solution (as they involve the zeroes B 9 and the distribution of
+ in an intricate way); similarly for the set of equations (18) for 01(A), . . . , 0ℓ (A). However, since
,8 has a unique limiting distribution with LST Φ, (B) as 8 → ∞, there is no reason to suspect that
anomalies in this set of equations will occur.

Example 1. Suppose that � has an exponential distribution with mean 1/`. ThenΦ� (B) = `/(B+`),
ℓ = 1 and B1 = −`. Suppose also that + = −0 a.s. with 0 > 0. We then obtain

00(A) =
A`

1 − A , 01(A) =
A

1 − A

(
1 − (1 + 0)AΦ� (`)

1 + 0 + 0AΦ� (`)

)
− (1 + 0)AΦ� (`)

1 + 0 + 0AΦ� (`)
4−0`F .

Multiplying with (1 − A) and letting A ↑ 1 yields the coefficients

00 = `, 01 = 1 − (1 + 0)Φ� (`)
1 + 0 + 0Φ� (`)

,

so that the LST of, is given by

Φ, (B) =
00 + 01B

` + B = ℙ(, > 0) `

` + B + ℙ(, = 0), (24)

where the last equality follows from ℙ(, = 0) = limB→∞Φ, (B) = 01. We then obtain �(,) =
(1 − 01)/` in accordance with (23).

The case where 0 = 1, yielding the Lindley-type recursion ,8+1 = [�8 − �8 −,8]+, has been
extensively studied in [22]. We obtain for the stationary process

00 = `, 01 =
2 −Φ� (`)
2 +Φ� (`)

,

which is in agreement with [22, Formula (4.12), p. 74]. It is easy to see that ℙ(, = 0) = 01 is
increasing in 0.

For 0 = 0 we have ℙ(, = 0) = 1 − Φ� (`). This relation is explained by observing that now
ℙ(, = 0) = ℙ(� < �), with � ∼ exp(`). For 0 ↑ ∞ we have ℙ(, = 0) = 1/(1 + Φ� (`)), which
is explained by observing that a positive , is followed by a geometric(@) number of zeroes, with
@ = ℙ(� < �) = 1 −Φ� (`).
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4. Model II: The mixed case

In this section we consider the following variant of the model of Section 3. We again start from
the recursion (4), but now assume that + = 0, 0 > 0 with probability ? and + < 0 with probability
1 − ?. Let

+− = (+ |+ < 0).

We keep the assumption that � has a rational LST, but add the requirement that � has a rational LST.
Summarizing, we impose the conditions
(A*) either + < 0 or + = 0 > 0 a.s.,
(B) Φ� ∈ ℚ[B1, . . . , Bℓ] with Re B 9 < 0 for 9 = 1, . . . , ℓ,
(C) Φ� ∈ ℚ[C1, . . . , C<] with Re C8 < 0 for 8 = 1, . . . , <.

Theorem 7. Suppose that the Conditions (A*), (B), and (C) hold. Then, for A ∈ (0, 1),
1. if 0 = 1 then

*, (A, B) =
�. (B) e−BF +

∑<+ℓ
:=0 0: (A)B:

�. (B) − A ? #. (B)
; (25)

where

00(A) =
A

1 − A (1 − ?) (−1)ℓ+<
ℓ∏
9=1

B 9

<∏
8=1

C8, (26)

while the remaining constants 01(A), . . . , 0<+ℓ (A) can be determined from the linear systems
(32) and (34) that will be given below.

2. if 0 ≠ 1 then

*, (A, B) =
∞∑
ℎ=0

(
e−0

ℎBF +
∑<+ℓ
:=0 0: (A) (0ℎB):

�. (0ℎB)

)
(A ?)ℎ

ℎ−1∏
9=0
Φ. (0 9 B), (27)

where 00(A) is as in (26) and the remaining constants 01(A), . . . , 0<+ℓ (A) can be determined
from the linear systems (42) and (43) that will be given below.

Proof. In this situation

*+, (A, B) = ?*, (A, 0B) + (1 − ?)
∫ 0

−∞
*, (A, BH) ℙ(+− ∈ dH). (28)

Then (7) becomes, after multiplication by �. (B),

�. (B)
(
*, (A, B) − e−BF

)
− A ?#. (B)*, (A, 0B)

= A (1 − ?) #. (B)
∫ 0

−∞
*, (A, BH) ℙ(+− ∈ dH) + A�. (B)

( 1
1 − A −*,

∗ (A, B)
)
. (29)

Now the following is true:
(i) the left-hand side of (29) is analytic in Re B > 0 and continuous in Re B > 0,
(ii) the right-hand side of (29) is analytic in Re B < 0 and continuous in Re B 6 0,
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(iii) for large B, both sides are $ (B<+ℓ) in their respective half-planes.
Again, both sides are well-defined at the boundary Re B = 0, so that we have aWiener-Hopf boundary
value problem. As before, the � (A, B) that is equal to the left-hand side of (29) for Re B > 0 and to
the right-hand side of (29) for Re B 6 0 is analytic in the whole B-plane, and � (A, B) = $ (B<+ℓ) for
large B. According to Liouville’s theorem both sides of (29), in their respective half-plane, are equal
to the same (< + ℓ)-th degree polynomial in B, i.e., for Re B > 0

�. (B)
(
*, (A, B) − e−BF

)
− A ?#. (B)*, (A, 0B) =

<+ℓ∑
:=0

0: (A)B: , (30)

and for Re B 6 0

A (1 − ?) #. (B)
∫ 0

−∞
*, (A, BH) ℙ(+− ∈ dH) + A�. (B)

( 1
1 − A −*,

∗ (A, B)
)
=

<+ℓ∑
:=0

0: (A)B: . (31)

Taking B = 0 in either (30) or (31) yields, after a straightforward calculation, the expression for 00(A)
in (26). Next we set B = B 9 , 9 = 1, . . . , ℓ in (31). Since �� (B 9 ) = 0 it follows that

A (1 − ?)#. (B 9 )
∫ 0

−∞
*, (A, B 9 H) ℙ(+− ∈ dH) =

<+ℓ∑
:=0

0: (A)B:9 , 9 = 1, . . . , ℓ. (32)

We thus have obtained ℓ linear equations in the remaining < + ℓ unknown 0: (A); however, they are
expressed in the yet unknown function*, (A, ·).

We turn to (30), which provides a relation between *, (A, B) and *, (A, 0B). As it turns out, we
have to distinguish between the two cases 0 = 1 and 0 ≠ 1.
◦ Case i: For 0 = 1, after division by the denominators, Relation (30) can be rewritten as

*, (A, B)
(
1 − A ?Φ. (B)

)
= e−BF +

∑<+ℓ
:=0 0: (A)B:

�. (B)
. (33)

Cohen [10], in his study of the K</G/1 queue, proves that the term between brackets in the
left-hand side of (33) has < zeroes X1(A), . . . , X< (A) in the right half plane Re B > 0. The
analyticity of*, (A, B) for Re B > 0 now implies that the right-hand side of (33) must be zero
for all these < zeroes. This results in the < linear equations

<+ℓ∑
:=0

X:8 (A)0: (A) = −e−X8 (A)F�. (X8 (A)), 8 = 1, . . . , <. (34)

Formula (32) contains ℓ more equations in the 0: (A). Relying on (33), we can rewrite it into

A (1 − ?)#. (B 9 )
∫ 0

−∞

e−B 9 HF +∑<+ℓ
:=0 0: (A)

(B 9 H):
�. (B 9 H)

1 − A ?Φ. (B 9 H)
ℙ(+− ∈ dH) =

<+ℓ∑
:=0

0: (A)B:9 , (35)

for 9 = 1, . . . , ℓ. From this we obtain

<+ℓ∑
:=0

2: (A, B 9 ) 0: (A) =
∫ 0

−∞

e−B 9 HF

1 − A ?Φ. (B 9 H)
ℙ(+− ∈ dH), 9 = 1, 2, . . . , ℓ, (36)
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where, for 9 = 1, . . . , ℓ,

2: (A, B 9 ) =
B:
9

A (1 − ?) #. (B 9 )
−

∫ 0

−∞

(B 9 H):

�. (B 9 H) − A ? #. (B 9 H)
ℙ(+− ∈ dH).

◦ Case ii: For 0 < 1, Relation (30) has the same structure as [6, Formula (2.3)]. Proceeding in
a similar way as in [6], we write

*, (A, B) =  (A, B)*, (A, 0B) + ! (A, B), (37)

with

 (A, B) := A ?Φ. (B), !(A, B) := e−BF +
∑<+ℓ
:=0 0: (A) B:

�. (B)
, (38)

and iteration of (37) now yields

*, (A, B) =
∞∑
ℎ=0

! (A, 0ℎB)
ℎ−1∏
9=0

 (A, 0 9 B), (39)

where convergence of the infinite sum can be proven using the d’Alembert test. Indeed, for
0 < 1 the limit as ℎ→∞ of the ratio of two successive terms is

lim
ℎ→∞

��� ! (A, 0ℎB)
! (A, 0ℎ+1B) (A, 0ℎB)

��� = 1
A ?

> 1, (40)

while for 0 > 1,  (A, 0ℎB) → 0 and |! (A, 0ℎB) | → 0<+ℓ (A), causing divergence of the left-
hand side in (40) to infinity. Insertion of (38) in (39) gives (27). The only unknowns are
01(A), . . . , 0<+ℓ (A). We obtain < linear equations in the unknown 0: (A) by observing that
substitution of B = −C8, 8 = 1, . . . , <, in (30) results in the following identity:

−A ?#. (−C8)*, (A,−0C8) =
<+ℓ∑
:=0

0: (A) (−C8): , 8 = 1, . . . , <. (41)

Substituting the right-hand side of (27), with B = −0C8, into (41) now gives the < linear
equations

<+ℓ∑
:=0
(−C8):0: (A)

(
1 + A ? #. (−C8)

∞∑
ℎ=0

0: (ℎ+1) (A ?)ℎ ∏ℎ−1
9=0 Φ. (−0 9+1C8)

�. (−0ℎ+1C8)

)
= −A ?#. (−C8)

∞∑
ℎ=0

e0
ℎ+1C8F (A ?)ℎ

ℎ−1∏
9=0
Φ. (−0 9+1C8) (42)

for 8 = 1, . . . , <. The remaining ℓ equations are provided by substituting (27) into (32),
yielding

<+;∑
:=0

3: (A, B 9 )0: (A)

= A (1 − ?)#. (B 9 )
∞∑
ℎ=0
(A ?)ℎ

∫ 0

−∞
e−0

ℎB 9 HF

ℎ−1∏
8=0
Φ. (08B 9 H) ℙ(+− ∈ dH) (43)
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for 9 = 1, . . . , ℓ, where

3: (A, B 9 ) = B:9

(
1 − A (1 − ?)#. (B 9 )

∞∑
ℎ=0
(A ?)ℎ

∫ 0

−∞

(0ℎH): ∏ℎ−1
8=0 Φ. (08B 9 H)

�. (0ℎB 9 H)
ℙ(+− ∈ dH)

)
.

This finishes the proof. �

The steady-state LST of , exists if ℙ(� 6 �) > 0, cf. Theorem 1. It can again be obtained by
applying an Abelian theorem. For example in case (ii), in which 0 < 1, one gets

*, (B) =
∞∑
ℎ=0

! (0ℎB)
ℎ−1∏
9=0

 (0 9 B), (44)

with

 (B) := ?Φ. (B), !(B) :=
∑<+;
:=0 0: B

:

�. (B)
, (45)

where 0: := limA↑1(1 − A)0: (A). As this argumentation mimics the line of reasoning presented in
the previous section, we omit details here.

5. Model III: the uniform proportional case

In this section we once more consider the stochastic recursion ,8+1 = [+8,8 + .8]+, where .8 =
�8 − �8. Again we impose the usual independence assumptions on the sequences {+8}8∈ℕ0 , {�8}8∈ℕ0 ,
and {�8}8∈ℕ0 . In addition, we assume that the �8 are exp(_) distributed. The ‘multiplicative
adjustments’ {+8}8∈ℕ0 are assumed to form a sequence of unit uniformly distributed random variables
on [0, 1]. By Thm. 2, since �(log |+ |) < 0, a steady-state distribution of {,8}8∈ℕ0 always exists. We
shall first study its transient distribution, and then obtain the steady-state distribution.

We start with (8), i.e.,

Φ,8+1 (B) = Φ+8,8+�8−�8 (B) + 1 −Φ,∗
8
(B), 8 = 0, 1, . . . ,

where as before ,∗
8
= [+8,8 + �8 − �8]−. This time the distribution of ,∗

8
is almost trivial: either

+8,8 + �8 − �8 > 0, in which case,∗
8
= 0, or,∗

8
has the same exponential distribution as �8, due to

the lack of memory property of the exponential distribution.
Using the independence between {�8}8∈ℕ0 , {�8}8∈ℕ0 , and {+8}8∈ℕ0 and the exponentiality of the

�8, we obtain

Φ,8+1 (B) = Φ+8,8 (B)Φ� (B)
_

_ − B + 1 − ℙ(+8,8 + �8 − �8 < 0) _

_ − B − ℙ(+8,8 + �8 − �8 > 0)

= Φ+8,8 (B)Φ� (B)
_

_ − B − ?8+1
B

_ − B , (46)

where we set ?8 := ℙ(,8 = 0). Our goal is to write (46) fully in terms of the functions Φ,8 (B). To
this end, performing the change of variable E := BD, we obtain

Φ+8,8 (B) =
∫ 1

0
�(e−BD,8 ) dD = 1

B

∫ B

0
Φ,8 (E) dE. (47)

By multiplying with _ − B, we thus obtain the following recursive integral equation.
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Lemma 8. For 8 ∈ N,

Φ,8+1 (B) =
_Φ� (B)
B(_ − B)

∫ B

0
Φ,8 (E) dE −

B

_ − B ?8+1. (48)

Since the LST Φ,0 (B) = e−BF of,0 is known, Relation (48) in principle allows us to recursively
determine all the transforms Φ,8 (·), 8 ∈ N. Observe that, when B = _, the right-hand side should
become zero; using (47) we obtain

?8+1 =
Φ� (_)
_

∫ _

0
Φ,8 (E) dE. (49)

This formula can easily be interpreted probabilistically, using the memoryless property of the expo-
nential distribution for �8:

ℙ(,8+1 = 0) = %(�8 > �8 ++8,8) = ℙ(�8 > �8)%(�8 > +8,8) = Φ� (_)Φ+8,8 (_).

It is not possible to obtain explicit expressions for Φ,8 . However, as so often, one can utilize the
method of generating functions to turn the recursion (48) into some sort of differential or integral
equation. Therefore we multiply Equation (48) by A8+1 and sum over 8 to obtain

*, (A, B) =
_A Φ� (B)
B(_ − B)

∫ B

0
*, (A, E) dE +  (B), (50)

where, to simplify the notation,

 (B) = Φ,0 (B) −
B

_ − B (*, (A,∞) − ?0) . (51)

With � (B) =
∫ B

0 *, (A, E) dE we obtain the linear first order differential equation

�′(B) = _AΦ� (B)
B(_ − B) � (B) +  (B). (52)

As follows by standard techniques, this inhomogeneous differential equation is solved by

� (B) = exp
(
_A

∫ B

2

Φ� (C)
C (_ − C) dC

) (
\ (2) +

∫ B

2

 (D) exp
(
−_A

∫ D

2

Φ� (C)
C (_ − C) 3C

)
dD

)
, (53)

where necessarily \ (2) = � (2) and we assume for the time being that 2 ∈ (B, _) if B < _ and 2 ∈ (_, B)
if _ < B. Since Φ� is bounded and bounded away from zero, we have as B ↓ _ (and likewise if B ↑ _
in the case where B < _)

exp
(
_A

∫ B

2

Φ� (C)
C (_ − C) dC

)
→∞.

As a consequence, to make sure*, (A, _) remains bounded,

\ (2) = −
∫ _

2

 (D) exp
(
−_A

∫ D

2

Φ� (C)
C (_ − C) dC

)
dD,
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and therefore

� (B) = exp
(
_A

∫ B

2

Φ� (C)
C (_ − C) dC

) ∫ B

_

 (D) exp
(
−_A

∫ D

2

Φ� (C)
C (_ − C) dC

)
dD

=

∫ B

_

 (D) exp
(
_A

∫ B

D

Φ� (C)
C (_ − C) dC

)
dD. (54)

It is to be noted that the integrand in (54) tends to∞ as B → _, which follows from the finiteness of
� (_). Inserting (54) into (52), recalling hat *, (A, B) = �′(B), yields the following expression for the
generating function*, :

*, (A, B) =  (B) +
_AΦ� (B)
B(_ − B)

∫ B

_

 (D) exp
(
_A

∫ B

D

Φ� (C)
C (_ − C) dC

)
dD. (55)

Plugging (51) into (55) we obtain

*, (A, B) =  (B) +
_AΦ� (B)
B(_ − B)

∫ B

_

(
Φ,0 (D) −

D (*, (A,∞) − ?0)
_ − D

)
exp

(
_A

∫ B

D

Φ� (C)
C (_ − C) dC

)
dD,

It remains to determine *, (A,∞). Keeping in mind that *, (A, B) −  (B) → 0 by (51) we obtain
after some rearrangements,

*, (A,∞) = ?0 −

∫ ∞
_
Φ,0 (D)exp

(
−_A

∫ ∞
D

Φ� (C)
C (C−_) dC

)
dD∫ ∞

_

D
D−_ exp

(
−_A

∫ ∞
D

Φ� (C)
C (C−_) dC

)
dD

.

We summarize our findings in the following theorem.

Theorem 9. For A ∈ (0, 1),

*, (A, B) =  (B) +
_AΦ� (B)
B(_ − B)

∫ B

_

 (D) exp
(
_A

∫ B

D

Φ� (C)
C (_ − C) dC

)
dD. (56)

where

 (B) = Φ,0 (B) +
B
_−B

∫ ∞
_
Φ,0 (D)exp

(
−_A

∫ ∞
D

Φ� (C)
C (C−_) dC

)
dD∫ ∞

_

D
D−_ exp

(
−_A

∫ ∞
D

Φ� (C)
C (C−_) dC

)
dD

.

We already noted that since the +8 are uniformly distributed on [0, 1] we have �(log |+ |) < 0.
Hence we always have,8 ⇒ , as 8 → ∞ for some proper random variable, . Its LST is given in
the following theorem.

Theorem 10. ,8 converges weakly to a proper limit, as 8 →∞, and

Φ, (B) =
?∞
B − _

(
B − _Φ� (B)

B

∫ B

_

D

D − _ exp
(
_

∫ B

D

Φ� (C)
C (_ − C) dC

)
dD

)
. (57)

where

?∞ =

[∫ _

0

1
_ − D exp

(
−

∫ D

0

(
_Φ� (C)
C (_ − C) −

1
C

)
dC

)
dD

]−1

. (58)
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Proof. We apply an Abelian theorem and obtain (57) after multiplying both sides of (56) by 1 − A
and letting A tend to one. We thereby use the fact that

lim
A↑1
(1 − A) (B) = B?∞

B − _ .

The relation for ?∞ follows by noting that Φ, (0) = 1, so that

1
?∞

= lim
B↓0

1
B − _

(
B − _Φ� (B)

B

∫ B

_

D

D − _ exp
(
_

∫ B

D

Φ� (C)
C (_ − C) dC

)
dD

)
= lim

B↓0

1
B

∫ _

B

D

_ − D exp
(
−_

∫ D

B

Φ� (C)
C (_ − C) dC

)
dD

= lim
B↓0

∫ _

B

1
_ − D exp

(
−

∫ D

B

(
_Φ� (C)
C (_ − C) −

1
C

)
dC

)
dD.

Now
_Φ� (C)
C (_ − C) −

1
C
→ 1

_
− �(�),

as C ↓ 0, so that we can safely let B ↓ 0 and obtain the finite and non-zero limit (58). �

Remark 3. The expected value �(,) can be expressed in terms of the parameters _, �(�) and ?∞
as follows. Letting 8 →∞ in (46) yields

Φ, (B) = Φ+, (B)Φ� (B)
_

_ − B −
B

_ − B ?∞. (59)

After a rearrangement of terms this becomes

?∞ = Φ, (B) + _
1 −Φ, (B) +Φ+,+� (B) − 1

B
.

As B ↓ 0 the right-hand side tends to 1+_ (�(,) − �(+, + �)) and since�(+,+�) = �(+)�(,)+
�(�) = 1

2�(,) + �(�), we obtain

�(,) = 2
(
�(�) − 1 − ?∞

_

)
. (60)

This yields the inequality ℙ(, = 0) > 1 − _�(�), the value that one would get if +8 ≡ 1.

Example 2. Even if the �8 are exp(`) distributed the computation of*, (A, B) becomes quite involved.
By means of a partial fraction expansion, after considerable calculus we obtain

D

_ − D exp
(
_

∫ B

D

Φ� (C)
C (_ − C) dC

)
=

B

_ − D

(
_ − D
_ − B

) `

_+`
(
` + D
` + B

) _
_+`

.

For B < _ the integral can be expressed in terms of the incomplete beta function �(G, 0, 1) =∫ G

0 D0−1(1 − D)1−1 3D:∫ B

_

B

D − _

(
_ − D
_ − B

) `

_+`
(
` + D
` + B

) _
_+`

dD =
B(_ + `)

(` + B)
_
_+` (_ − B)

`

_+`
�

(
_−B
_+` ,

`

_+` , 1 +
_
_+`

)
.
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We then obtain

Φ, (B) = ?∞ ·
©­­«
_`(_ + `)�

(
_−B
_+` ,

`

_+` , 1 +
_
_+`

)
(` + B)1+

_
_+` (_ − B)1+

`

_+`
− B

_ − B
ª®®¬ .

This leads to

?∞ =
`

_
_+`_

`

_+`

(_ + `)�
(
_
_+` ,

`

_+` , 1 +
_
_+`

) ,
so that, at least for B < _,

Φ, (B) =
`

_
_+`_

`

_+`

(_ + `)�
(
_
_+` ,

`

_+` , 1 +
_
_+`

) · ©­­«
_`(_ + `)�

(
_−B
_+` ,

`

_+` , 1 +
_
_+`

)
(` + B)1+

_
_+` (_ − B)1+

`

_+`
− B

_ − B
ª®®¬ . (61)

Unfortunately a similar expression for the B > _ case is not available. Instead one obtains
expressions that involve hypergeometric functions. Also it seems very hard to obtain higher moments
from (61) by means of differentiation. It is possible, however, to derive a recursion formula for the
moments l: := �(, : ) (where we assume their existence for : = 1, 2, . . . , 9 , say) if we start with
(59), which in our example becomes

(_ − B)Φ, (B) =
_`

B(` + B)

∫ B

0
Φ, (E) dE − B?∞. (62)

For B < 0 the expansion Φ, (−B) =
∑ 9

:=0
l:
:! B

: + >(B 9 ) holds. Inserting this into (62) yields

(` − B) (_ + B)
9∑
:=0

l:

:!
B: + >(B 9 ) = _`

9∑
:=0

l:

(: + 1)! B
: − B(` + B)?∞ + >(B 9 ), B ↓ 0.

Equating the coefficients on both sides leads to

_`
l:

:!
+ (` − _) l:−1

(: − 1)! −
l:−2
(: − 2)!1{:>2}

=

(
_`
l1
2
− `?∞

)
1{:=1} +

(
_`
l2
6
− ?∞

)
1{:=2} +

_`l:

(: + 1)!1{:>3}, : ∈ {1, . . . , 9}.

Then, in accordance with the general result (60),

l1 = 2
(
1
`
− 1 − ?∞

_

)
.

Moreover,

l2 = 3
1 − ?∞ − (` − _)l1

`_
,

and

l: =
(:2 − 1)l:−2 − (: + 1) (` − _)l:−1

_`
, : ∈ {3, . . . , 9}.
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6. Discussion and concluding remarks

This paper has analyzed three reflected autoregressive processes specified by the stochastic recur-
sion ,8+1 = [+8,8 + �8 − �8]+. While the classical case of + ≡ 1 has been widely studied in the
queueing literature, our more general setting allows explicit analysis only in special cases. The three
special cases we have considered are: (i) + attains negative values only and � has a rational LST,
(ii) + equals a positive value 0 with certain probability ? ∈ (0, 1) and is negative otherwise, and
both � and � have a rational LST, (iii) + is uniformly distributed on [0, 1], and � is exponentially
distributed. In all three cases we present transient and stationary results, where the transient results
are in terms of the transform at a geometrically distributed epoch.

Cases which might allow explicit analysis are, for example:
1. A generalization ofModel III to the case inwhich+ = *1/U, where* has a uniform distribution

on [0, 1] and U > 0. In this case (48) becomes

BU−1Φ, (B) =
U_Φ� (B)
B(_ − B)

∫ B

0
EU−1Φ, (E) dE −

BU

(_ − B) ?8+1.

Letting* (U)
,
(A, B) = BU−1*, (A, B) this yields

*
(U)
,
(A, B) = _AUΦ� (B)

B(_ − B)

∫ B

0
*
(U)
,
(A, E) dE +  (U) (B), (63)

where
 (U) (B) = BU−1Φ,0 (B) −

BU

_ − B (*
(U)
,
(A,∞) − ?0).

Equation (63) is of the exact same type as (50), only with A replaced by AU. This allows one
to derive* (U)

,
(A, B) in the same way as before.

2. A combination of Models I and III, allowing + to be either negative or having a distribution
as in 1.

3. Onemight considermore general recursions, such as the high-order Lindley equations analyzed
in, e.g., [2, 17, 19].

Another possible line of research concerns scaling limits and asymptotics. In particular, tail
asymptotics seem to be within reach; in heavy-tailed cases these may be identified relying on a
Tauberian approach. One also anticipates that, under particular scalings, an explicit analysis is
possible. Specifically, one would expect that a diffusion analysis similar to the one presented in [6]
can be performed.
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