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Abstract

We consider a sequence of age-replacement problems with a general lifetime distribution parametrized by an a-priori unknown
parameter. There is a trade-off: Preventive replacements are censored but cheap, whereas corrective replacements are uncensored
but costly observations of the lifetime distribution. We first analyze the optimal policy for a finite sequence and establish some
properties. We then propose a myopic Bayesian policy that almost surely learns the unknown parameter and converges to the

optimal policy with full knowledge of the parameter.
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1. Introduction

In the classical age-replacement problem, introduced in Bar-
low and Hunter (1960), a decision maker determines the opti-
mal age threshold to preventively replace a single-component
system subject to random failures to avoid high costs and/or
low reliability associated with corrective replacements. The key
assumption in this canonical age-replacement problem, and in
many of its variations (we refer the interested reader to Wang
(2002), and De Jonge and Scarf (2019), as they provide com-
prehensive overviews of the area), is that the lifetime distri-
bution is a-priori fully determined and known to the decision
maker. However, in many real-life applications, especially
when a component has not yet generated (sufficient) data to esti-
mate the lifetime distribution, this assumption is unfounded and
necessitates an age-replacement policy that integrates learning
and decision making.

The concept of integrating learning in optimal decision
making has recently gained momentum in the literature of
condition-based maintenance (CBM). Elwany et al. (2011),
Kim and Makis (2013), Chen et al. (2015), Van Oosterom et al.
(2017), and Drent et al. (2020) all study optimal CBM poli-
cies in which the parameters of the degradation process of a
component are only partially known to the decision maker. The
parameters are then inferred based on the component’s degrada-
tion observations (e.g., vibrations, temperature) using Bayesian
learning, which leads to policies that outperform conventional
approaches which do not integrate learning. Two crucial as-
sumptions in this literature, when incorporating Bayesian learn-
ing, are that (i) the prior and the posterior degradation distribu-
tion belong to the same family, i.e. they are conjugate distri-
butions; and (ii) the degradation observations are fully observ-
able. These two assumptions combined imply that the posterior
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distributions remain tractable throughout the information accu-
mulation process.

By contrast, in the study of age-replacement policies, the in-
formation accumulation process consists of both censored (i.e.
preventive replacements) and uncensored (i.e. corrective re-
placements) observations of the underlying lifetime distribu-
tion. Consequently, for most distribution families, Bayesian
updates lose their conjugate property and the problem becomes
intractable. Hence, only few age-replacement papers have stud-
ied the integration of Bayesian learning in optimal decision
making. The most relevant analyses (to the work of this pa-
per) are Fox (1967) and Dayanik and Giirler (2002), who both
consider a sequence of age-replacement problems, where the
lifetime is a Weibull random variable. Fox (1967) assumes that
only the scale parameter is unknown, and formulates a Bayesian
dynamic program to analyze the optimal policy of an infinite
sequence of age-replacement problems. The author shows that
this Bayesian dynamic program converges to the corresponding
dynamic program of the setting in which the scale parameter
is known. The Bayesian dynamic program is, however, com-
putationally intractable and therefore difficult to implement in
practice. Dayanik and Giirler (2002) therefore propose a my-
opic Bayesian policy that, at least numerically, performs close
to the setting in which there is full knowledge of the unknown
parameters. The authors do not, however, establish whether the
learning and/or decision making of this myopic policy converge
to the setting with full knowledge.

Fortunately, Braden and Freimer (1991) introduced a class
of distributions that preserve the conjugate property even under
censoring: newsboy distributions. This class of distributions
has received much attention from the inventory research com-
munity focused on inventory systems where demand in excess
of the inventory level is lost and thus unobserved. Lariviere and
Porteus (1999), Ding et al. (2002), Chen and Plambeck (2008),
Lu et al. (2008), Bensoussan et al. (2009), Chen (2010), Bisi
et al. (2011) and Mersereau (2015) all assume a newsboy distri-
bution with unknown parameter, which permits an exact anal-
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ysis of the optimal policy under different variations of this lost
sales inventory control problem with censored demand learn-
ing. Surprisingly, the parametric Bayesian framework for cen-
sored learning assumed in these papers has not found its way
to the age-replacement community, although such inventory
control problems share similarities with adaptive maintenance:
e.g., the inventory level and the age-replacement threshold in-
fluence the information accumulation process of the unknown
demand and lifetime distribution, respectively, in the same way.

The main contributions of this paper are as follows. This
paper is the first to investigate the effect of lifetime censor-
ing on the optimal policy in a sequence of age-replacement
problems where the lifetime distribution can be expressed as
a newsboy distribution. We first analyze the optimal policy
for a finite sequence of components, where there is an inher-
ent exploration-exploitation trade-off. As this optimal policy is
analytically intractable, we then propose a computationally ap-
pealing Bayesian policy. We show that this policy is asymptoti-
cally optimal; that is, (i) it almost surely learns the unknown pa-
rameter, and (ii) it converges to the optimal decision one would
have taken with full knowledge of the unknown parameter.

The remainder of this paper is organized as follows: We in-
troduce our notation and the problem formulation in §2. In
§3, we provide some background on censored learning in the
parametric Bayesian framework for newsboy distributions, and
establish a new stochastic order result for this class of distri-
butions. We analyze the optimal policy when the sequence
of components is finite in §4. In §5, we propose a myopic
Bayesian policy and establish its asymptotic properties. Finally,
§6 contains some concluding remarks.

2. Problem formulation

We consider a sequence of N components, where the compo-
nents are indexed by n = 1,2,..., N defined over a probability
space (€2, ¥, P). Each component is controlled by the classical
age-replacement policy. That is, component 7 is either replaced
preventively when it has been in operation for a fixed amount of
time 7, (at cost ¢, > 0), or it is replaced correctively if it fails
before this time (at cost ¢, > ¢)).

We assume that the lifetimes of the components are indepen-
dent and identically distributed, belonging to a family of dis-
tributions parametrized by an unknown parameter 8 > 0 with
true value 6y. Given parameter 6, the lifetime distribution has a
probability density function denoted by fx(x|6) and a cumula-
tive distribution function denoted by Fx(x|6). To preserve the
conjugate property under censored learning, we assume that the
underlying lifetime distribution is from the class of newsboy
distributions, so that Fx(x|6) can be expressed in the form

Fx(x]6) = 1 - e, M

where €(x) : [0,00) — [0, 00) is a differentiable, nondecreas-
ing and unbounded function with £(0) = O that is known to
the decision maker (Braden and Freimer 1991). Note e.g., that
the Weibull distribution with known shape parameter 8§ > 0

and unknown scale parameter 6 can be expressed as a news-
boy distribution by setting £(x) := x*. The Weibull distribution
has been extensively used in modeling lifetimes due to its abil-
ity to model various aging classes of lifetime distributions (cf.
Ahmad and Kamaruddin 2012). For a further detailed discus-
sion on this broad class of distributions, we refer the interested
reader to Braden and Freimer (1991).

The decision maker can only observe censored observations,
rather than lifetime realizations. For component 7, the censored
observation is given by X, A 7, := min{X,,, 7,,}, where X, is the
realized lifetime and 7, the imposed age-replacement thresh-
old. Let 7, be the filtration generated by this censored lifetime
process. Hence, for n > 1, we have the o-algebra

Fn =Xt AT, T1LX2 AT2, Tas e o, X A Ty T,

and let ¥ be the trivial o-algebra. It is thus evident that the
accumulated information about the lifetime up to the n—th com-
ponent is impacted by all past replacements decisions.

The decision maker wishes to minimize the total expected
discounted cost due to both corrective and preventive replace-
ments, where costs are discounted with rate a € (0, 1), over an
N component horizon. This optimality criterion is often em-
ployed in finite-horizon problems in the age-replacement litera-
ture (cf. De Jonge and Scarf 2019). We are interested in finding
the optimal non-anticipatory policy (i.e. the decision 7, is -1 -
measurable for all n > 1) that attains this minimum.

Observe that when deciding on the age-replacement thresh-
old for the n—th component, there is an inherent trade-off be-
tween the direct expected cost of the n—th component and the
impact the decision has on future costs through the information
accumulation process. Specifically, exploration (i.e. a higher
value of the age-replacement threshold) increases the probabil-
ity of a corrective replacement, but at the same time leads to
accumulating more, valuable, information. This phenomenon
is often referred to as the exploration-exploitation trade-off.

3. Censored lifetime learning

In this section, we describe how the lifetime distribution of
components can be inferred with increasing accuracy as infor-
mation is accumulated. The approach is based on Braden and
Freimer (1991), who show that the gamma distribution is the
conjugate prior for all newsboy distributions.

Following a Bayesian approach, we treat the unknown pa-
rameter as a random variable, denoted with ®, and assume that
the decision maker has a prior density for the unknown param-
eter 6, denoted by pg(6). This density captures the information
about the unknown parameter of the lifetime distribution.

Let m and k denote the shape and scale parameter, respec-
tively, of the gamma distribution. The prior density is then
given by

kmem—l e—k@
po(0|m, k) = Ty

where I'() denotes the gamma function. Using fx(x|6) =
%F x(x]60) = 0L (x)e %™ (cf. Equation (1)) and uncondition-
ing on 6 using Equation (2), we obtain the posterior predictive
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lifetime density and distribution function, respectively;

mk™ ' (x)

Sfx(xlm, k) = T+ 20

and Fy(xm, k) = 1 —

k+£(x)} '

We use the shorthand notation m, and k, to denote the updated
shape and scale parameter conditional on ¥,. Here, we omit
the dependence on ¥, as there is a mapping between ¥, and
(my, k,), which we explain henceforth. Let (my, ky) denote the
parameters before the installment of the first component. Then
for n > 1, conditional on ¥,, the prior hyper parameters are

computed as:
my = mop + Z Lix<ry = mu-1 + Lix,<r,), and,
i=1
ko =ko+ ) O AT) = kot + LKy AT, (3)
i=1

where 1, denotes the indicator function taking value 1 if
event a occurs and value O otherwise. Here, we assume that
mgy - kg > 1, and thus m,, - k, > 1 for all n > 1 through the
update rules, so that the posterior predictive lifetime distribu-
tion of each component has a finite expectation. Observe that
the scale parameter k, is an aggregate of all observations. The
shape parameter m, counts the number of uncensored obser-
vations (corresponding to corrective replacements), and, as the
coeflicient of variation for the gamma prior is equal to +/1/m,,,
it is also a measure for the precision of the accrued information
on the unknown parameter 6.

Equation (3) induces a simple, Markovian scheme for se-
quentially inferring the lifetime distribution conditional on 7,.

In what follows, for notational simplicity and in order to en-
hance the readability of the paper, we write, depending on our
objective, either F, or (m,, k).

In order to derive structural properties of the conditional pos-
terior predictive lifetime random variable given (m,, k,), de-
noted with X(m,,, k,,) := {X | m,, k,}, and in order to make com-
parisons between different conditional posterior predictive life-
time random variables, we use the hazard rate ordering:

Definition 1 (Shaked and Shanthikumar 2007). Let Y and Z be
two nonnegative random variables with absolutely continuous
distribution functions and with hazard rate functions r(x) and
q(x), respectively, such that r(x) > g(x) for all x > 0. Then Y is
said to be smaller than Z in the hazard rate order.

We now present an important proposition that indicates how
the accrued information, encoded in (m, k), affects the stochas-
tic ordering of the conditional posterior predictive lifetime dis-
tribution.

Proposition 1. The conditional posterior predictive lifetime
random variable X(m, k) is:
(i) stochastically increasing in the hazard rate order in the
scale parameter k, and
(ii) stochastically decreasing in the hazard rate order in the
shape parameter m.

Proof. Let h(x|m, k) denote the hazard rate function of the con-
ditional posterior predictive lifetime when the shape and scale
parameters are m and k, respectively. We then have

mk"l['()
hx k) = —DXEmB etcr _ ml(x)
T 1 = Fx(x|m, k) [k é()]m Kt )
+i(x

Observe that since £(x) is positive and increasing (by assump-
tion), we have the following. If M > m > 0 then h(x| M, k) >
h(x|m, k) for all x > 0, which establishes the hazard rate order
in m. Finally, if K > k > 0 then h(x|m, K) < h(x|m, k) for all
x > 0, which establishes the hazard rate order in k. O

Assertion (i) establishes the monotonic increase in the ex-
pected conditional posterior predictive lifetime when the aggre-
gate of observations increases for a fixed number of uncensored
observations. This implies that if the aggregate of all observa-
tions is high, then past components have had a relatively long
lifetime on average. Hence, the decision maker predicts that
the next component will have a longer lifetime than in the case
where the accrued information has a lower aggregate of obser-
vations.

Assertion (ii) establishes the stochastic-ordering property of
lifetime distributions that are updated using censored observa-
tions and uncensored observations, respectively. It states that
a censored lifetime observation results in a lifetime distribu-
tion that is stochastically greater than that from an uncensored
observation. An intuitive explanation is as follows. With a cen-
sored observation, the true lifetime is at least as large as the cen-
sored observation, as opposed to the uncensored observation,
where the true lifetime is equal to the uncensored observation.

As the usual stochastic order is implied by the hazard rate or-
der (see e.g., Shaked and Shanthikumar 2007, Theorem 1.B.1.),
Proposition 6.2 and 6.3 of Braden and Freimer (1991), which
state the usual stochastic order of the conditional posterior pre-
dictive lifetime, directly follow from Proposition 1.

4. Optimal policy for a finite sequence

In this section, we investigate the structure of the optimal
policy when N is finite. In a finite sequence of components,
the exploration-exploitation trade-off urges the decision maker
to explicitly recognize the impact that current decisions have
on both the direct expected costs and the future expected costs
through the information accumulation process. This inter-
dependence is made explicit by formulating the optimization
problem as a dynamic program.

To this end, let V,,(m, k) denote the minimum total expected
discounted cost over components n,n + 1,..., N, starting with
component n, when the updated hyper parameters are (m, k),
respectively. We assume the terminal cost to be zero, hence
Vis1(m, k) = 0 for all (m,k). The optimality equations, for
n=12,...,N, are:

Va(m, k) = “

Ty

min {C,(z, | m. k) + f G, X[m0 fe(x | m, k)dx),
0



where
Cn(Tn | m, k) = (5)

c. f " e my x4 epe (1 — Fy(r | m, k),
0

denotes the direct expected discounted cost function of compo-
nent n when the age-replacement threshold is 7, (the first part
is due to corrective replacement and the second part is due to
preventive replacement) and

_a/xvn + 1,k+€ ) if .
Gu(tp, x|m, k) = {e +1(m (x)), ifx<rt ©

eV, 1 (mk + (1)), if x > 1,

denotes the discounted cost function over the remaining com-
ponents n+ 1, ..., N when the age-replacement threshold of the
n—th component is 7, and the lifetime realization equals x.

The existence of an optimal policy in this setting is guaran-
teed, see e.g., Proposition 3.4 of Bertsekas and Shreve (1978).
Observe that over an N component horizon, the minimum total
expected discounted cost is given by V;(myg, ko) which can be
found by solving Equation (4) via backward induction. Unfor-
tunately, analytic solutions do not appear to be readily available
and solving Equation (4) numerically, even for small instances,
is a difficult task. Instead, we establish some structural results
of the optimal policy in the remainder of this section and then
focus on an asymptotically optimal policy that is simple to com-
pute making it easy to implement in practice.

We first state two properties regarding the direct expected
discounted cost function that are instrumental in characterizing
the behavior of V,(m, k) with respect to its parameters.

Lemma 1. C,(t,|m, k) is

(i) nonincreasing in k, and

(ii) nondecreasing in m,
forallt, >0andne{l1,2,...,N}.

Proof. Note that Equation (5) can be rewritten as

Cu(Ty | m, k) =

—e f " (1 = FyGelm, ) + ¢y (1 = Fy(ra | m, k)
=(cp 0— co)e (1 = Fx(t,|m, k) + c.

- cca/f ' e (1 = Fx(t, | m, k))dx. @)
0

Since ¢, < c., a € (0, 1), and because of Assertion (i) (Asser-
tion (if)) of Proposition 1, both terms involving Fx(7|m, k) in
the last two lines of (7) are nonincreasing (nondecreasing) in k
(m), which establishes the result. O

‘We now proceed with two properties regarding the minimum
total expected discounted cost over components n,n+1,...,N,
starting with the n—th component.

Theorem 1. V,(m, k) is
(i) nonincreasing in k, and
(ii) nondecreasing in m,

forallne{1,2,...,N+ 1}

Proof. We first prove Assertion (i) by backward induction. The
base case, i.e. Vyii1(m, k), holds trivially as terminal costs
Vn+1(m, k) = 0 for all (m, k). Let K > k and assume inductively
that V,,1(m, K) < V,.1(m, k), and let ‘r;’n,j denote the optimal
age-replacement threshold for the n—th component, when the
shape and scale parameters are m and j, respectively. We have

Vn(ma K) - Vn(m’ k)

= C,,(T:’n’,( |m, K) + I)m G,,(T,”n’,(, x|m, K) fx(x|m, K)dx
- Cn(‘r;’k |m, k) — Lm Gu(T) 1o X Im, k) fx (x| m, k)dx
< Cu(ty, xIm, K) + j:o Gu(t, x> x| m, K) fx (x| m, K)dx
- Cn(T"m’K |m, k) — jo‘w Gn(T’,L’K, x|m, k) fx(x|m, k)dx
< j:o Gtk xIm, K) fx (x| m, K)dx
- fow Gu(Ty, k> X | m, k) fx (x| m, k)dx
< fo " G o x| m, ) i m, K)dx

- f G o x ., K) i m, i
0
= E[Gn(T:ln!K7X | m, k) | m, K] - E[Gn(T:;,K’X | m, k) | m, k] < O

The first inequality holds because 7, , is a feasible policy for
m and k but not necessarily optimal. The second inequality
holds by Assertion (i) of Lemma 1. The third inequality follows
from the induction hypothesis. That s, V,,.1(m, K) < V,.1(m, k)
implies that

(T s x|, K) = Gt e X | m, K)

e (Vi m+ 1K + €)= Vira(m + 1,k + £(x))) < 0,
a e_arz"K(VnH(Wl, K+ K(TZ,K)) = Virr(m, k + K(TZ,K))) <0,

where the first branch corresponds to x < 7, , and the
second branch to x > Tfn’ x- Hence, Gn(‘ri’;, wXlmK) <
Gn(T"m’K, x|m, k) for all x > 0, which implies the third inequal-
ity. Then, following a similar reasoning, G(7}, ., x|m,k) is
nonincreasing in x by the induction hypothesis and since e™**
is decreasing in x for @ > 0. We then have the expectation of a
decreasing function Gn(‘rfm x»X|m, k), so that the last inequality
is implied by the stochastic order of Assertion (i) of Proposi-
tion 1 between fx(x|m, K) and fx(x|m, k) (see e.g., Ross 1996,
Proposition 9.1.2).

The proof of Assertion (ii) follows verbatim the proof of
Assertion (i), starting with M > m, looking at the difference
Vu(m, k) —V,(M, k), and assuming inductively that V, (m, k) <
Vi1 (M, k) with M > m. O

Theorem 1 establishes the monotonicity of the minimum to-
tal expected discounted cost in both the aggregate of all obser-
vations k and the number of exact observations m. The intuition



behind both parts (and their individual counterparts in Lemma
1) is as follows: If the aggregate of all observations increases
and everything else is held fixed, it means that on average, each
component has had a longer lifetime and is thus discounted at a
higher rate. This leads to a lower total expected discounted cost.
A similar reasoning holds if the number of exact observations
increases and the aggregate of all observations is held fixed.
Both preventive and corrective replacement costs are then, on
average, discounted at an equal rate, but there are more exact
observations so that ¢, is incurred more often. This leads to a
higher total expected discounted cost.

5. An asymptotically optimal policy

In the previous section we have established some structural
results pertaining to the optimal policy in the case of a finite
sequence of components (i.e. N < o0). However, comput-
ing this optimal policy via the proposed dynamic program is
analytically intractable and even numerically a difficult task.
Therefore, in this section, we investigate asymptotic properties
(as N — oo) of the information accumulation process and of a
computationally tractable myopic policy.

We proceed in two steps. First we show that under any rea-
sonable policy, the learning converges in the Bayesian sense.
We then propose a myopic policy and prove its asymptotical
optimality.

5.1. Convergence of learning

garding the unknown parameter 6 and that the hyper parame-
ters are updated according to Equation (3). In the next result,
we show that this posterior expectation, denoted with E[® | Fy]
converges (a.s.) to the true value 6y, as N — oo, and that the
variance, denoted with Var[®|¥y], converges (a.s.) to 0, as
N — oo. This convergence is guaranteed under any policy in
which the threshold can be lower bounded by some constant
€ > 0. We believe that this assumption is justified as it is not
natural to replace a component immediately after installment.

Theorem 2. Under any policy for which T, > € > 0 for all
nef{l,2,...,N}, we have

E[O| Fr] — 6y and Var[® | Fy] —2o 0 as N — co.

Proof. By the updating scheme of the posterior density, the ex-
pectation of ® given ¥y and fixed policy 7, > € > 0 for all
n € {1,2,...,N} can be written as (recall that the random vari-
able {®| ¥y} is gamma distributed, cf. Equation (2)):

N T Lixu<e
B[O F] = ™ = M0t 2 Liea A
=N = .
kv ko + XN 6X, A€ ko Tl (e
N N

Then, when N — oo, we have by the strong law of large num-
bers, almost surely,

N
nmy o=t Lixy<e)

. . ~ T FX(E|90)
lim E[® = lim & N )
Aim E[O]Fx] = lim k. T (o T E[6X A )]
N N

Using straightforward calculus yields
Fx(€l6) _  Fx(elf)
El{X A [FP(UX Ae) > y)dy
_ Fx(€l6b)
P> )y
__Fx(elty)
b ety
Fx(€6o)
L Fx(el6)
= 6.

The second equality follows from the nondecreasing property
of the function £(-). The third and fourth equality follow using
the cumulative distribution function of a newsboy distribution,
see Equation (1).

For the second part, note that

mo + ZnNzl ]I{Xn<€}
(kO + ZnNzl K(Xn A 6))2
1
ko+ XN 6X, A e)

Var[® | Fuyl =

=E[O[FN]-

Using
1 a.s.
ko + XN €X, A€

E[@®|Fn] —= 6, and

when N — oo leads to the desired result. O

Observe that the crucial part of the proof, i.e. the equality
EF[’;&':)S))] = 6y regardless of the value of e, relies explicitly on
the form of the cumulative distribution function of a newsboy
distribution. As such, this is a distinctive feature of this class of
distributions.

Theorem 2 establishes the Bayesian consistency of the pos-
terior distribution {® | ¥y} at the true value 6y (DeGroot 2005).
This implies that the true value will be learned with certainty as
information is accumulated.

5.2. Convergence of myopic policy

Given full knowledge of the true value 6y, the optimal age-
replacement threshold for each component can be computed by
minimizing the direct expected discounted cost function, that
is,

7"(6p) := arg min C(1| ) 8)

0

.
= arg min {cc f e fx(x|60)dx + cpe™ (1 = Fx(t| 90))},
>0 0

where we use the notation C(7 | 6y) to denote the direct expected
discounted cost function when 6, is known. We refer to 7(6y)
as the Oracle as this decision requires full knowledge about the
unknown parameter and is hence not attainable in practice. The
following remark relates the uniqueness and finiteness of 7*(6)
to properties of £(x).



Remark 1. It has been shown in Fox (1966) that 7*(6) is unique
and finite if and only if X has a strictly increasing hazard rate.
An increasing hazard rate implies that the component degrades
over time so that there is an incentive to perform preventive
maintenance. Given full knowledge about 8y, the hazard rate,
denoted with h(x|6y), is equal to

L Fx(x|60) _ bl (e
T=Fx(xlf) e ®®

h(x[6o) = = 6ol (x).

It is then obvious (recall that 6y > 0) that h(x|6p) is strictly in-
creasing if and only if £’(x) is strictly increasing. Hence, 7*(6p)
is unique and finite if and only if ¢”(x) > 0. This statement
can thus be verified a-priori without any knowledge about the
unknown parameter 6.

A policy that is attainable in the absence of knowledge on the
true value 6 is to, upon installment of the n—th component, im-
plement the age-replacement threshold that only minimizes the
direct expected discounted costs given the accumulated infor-
mation. Recall that we used this function also in the dynamic
program formulation, where (m, k) captured the accumulated
information, see Equation (5). In other words, this myopic pol-
icy does not integrate learning with decision making, and solely
focuses on exploitation. Forn = 1,2, ..., N, we denote the op-
timal age-replacement threshold of this myopic Bayesian policy
with T2(F,), so that

7"(F,) = arg min C,, (7| F).

>0

The following result establishes the asymptotic optimality of
this myopic Bayesian policy in the sense that the induced de-
cision converges to the Oracle. It relies on the condition that
the Oracle is unique and finite, which, as stated before, can be
easily verified before any information is accrued, see Remark
1.

Theorem 3. Suppose T°(6y) is unique and finite. Then the my-
opic Bayesian policy is asymptotically optimal; that is,

Jlim 7"(Fy) = 7*(6o)-

Proof. We first prove that Cy(7|%y) converges uniformly to
C(t]6p) when N — oco. We then show that this uniform conver-
gence together with properties of Cy (7| Fy) implies a stronger
notion of convergence, namely epi-convergence, which leads
directly to the desired result. We have

Sulg Cn(t|Fn) — C(7|6)
= sup ccf e fx(x|Fa)dx + cpe™ (1 = Fx(t|Fn))
>0 0

T
~ao [ e el - cpe (1 = Fatrion)
0

= sup
>0

Fepe™ [ Ul 7 el i

c. fo (el Fa) - fix] Bo))dx

Fex I Fx) = filx | 6o)|d ©)

T
< Sup (Ccf e_(lx
20 0

+epe T f‘x’ 'fx(x [Fn) — fx(x| 90)'dx)

T
< sup (cc f e
=0 0

+ sup (Cpe_m f‘x’ |fx(x | Fn) — fx(x] 670)|d)€)

FeCeIF) = f(x]60)|dx) (10)

70
=co [T - fucelafas
+ep fo [ ) = fcCr | 6)|d). (11

Inequality (9) follows from the triangle inequality and Holder’s
inequality, and finally, Inequality (10) is a triangle-like inequal-
ity for the supremum operator.

Note that

Fex| Fr) = fo Fe(x10)po(@] F)d6.

Since fx(x|6) is a bounded, continuous function, we have by
Theorem 2 and the weak convergence of measures that

Fx(x|Fn) = fx(x60),

Using this weak convergence of measures, we have by Scheffé’s
Theorem (see e.g., Billingsley 1995, Theorem 16.11) that

when N — oo. (12)

tim [ a7 - frlaofi =0, a3)

00
lim e
N—oo 0

e 1 F) = f(xl@p)ldx=0.  (14)

Using the established bound in (11) in combination with (13)
and (14), we have

lim sup |Cy(t|Fy) — C(T|90)| =0,

N—oo 150
which establishes the uniform convergence of the direct ex-
pected cost functions.

Since Cy(t|Fn) converges uniformly to C(7|6p), and
Cy(t|Fw) is finite (i.e. 0 < Cy(T|Fn) < c.) and continu-
ous for all r > 0 and N > 0, we have by Proposition 7.15 of
Rockafellar and Wets (2009) that Cy(7|%y) epi-converges to
C(t|6p) when N — co.

Note that the sequence Cy(7|Fn) is eventually level-
bounded since we assume that 7%(6) is unique and finite (hence
the argmin set will eventually be bounded and nonempty).
Then, as C(7 | 6)) is a proper and left semi-continuous function,
we have by Theorem 7.33 of Rockafellar and Wets (2009) that

lim arg min Cy(7|¥y) = argmin C(7|6p),
—% >0 720

which establishes the result. O
As noted before, computing the optimal policy via the pro-

posed dynamic program is analytically intractable and even nu-
merically a difficult task. As such, decision makers can resort



to the myopic Bayesian policy. This policy is not only compu-
tationally appealing, but also, as is established in Theorem 3,
asymptotically optimal.

5.3. Illustrative example

Figure 1 provides an illustrative example of the established
asymptotic properties for the case when the lifetimes are
Weibull distributed random variables with known shape 8 = 3
and unknown scale. Since S > 1, the lifetime distribution has
an increasing hazard rate so that the assumption of a unique and
finite 7%(6)) is justified. The value of 7%(6p) is computed using
Equation (8) with @ = 0.9.

Sub-figure (a) shows that the posterior mean converges to the
true value 6y, while the posterior variance converges to 0 at the
same time. Sub-figure (b) shows the corresponding sequence
of decisions induced by the myopic Bayesian policy, and its
convergence to 7°(6p). The posterior mean in Figure (a) and
the myopic Bayesian policy in Figure (b) appear to be closely
linked. The coupling between the evolution of the posterior
mean and the myopic Bayesian policy can be explained intu-
itively. For instance, the jump in the myopic Bayesian policy
starting at n ~ 80 can be explained as follows. If the posterior
mean of ® decreases based on the accumulated information,
the decision maker expects that the posterior predictive lifetime
is becoming larger in expectation (see Proposition 1), hence,
a higher age-replacement threshold is imposed. The reverse
holds true as well, as is nicely illustrated when the posterior
mean starts to increase again after n ~ 200.

6. Conclusions

We considered a sequence of age-replacement problems with
a general lifetime distribution parametrized by a parameter that
is unknown a-priori. By adopting a parametric Bayesian frame-
work often used in the inventory research community, we were
able to investigate the exploration-exploitation trade-off that
naturally arises when age-replacement decisions are integrated
with learning from both censored and uncensored observations.

A new stochastic order for this parametric Bayesian frame-
work was established that is particularly useful in maintenance
and reliability related problems. For the case of a finite se-
quence of components, we then analyzed the optimal policy
for a finite sequence of components and established structural
properties. For the infinite case, we proposed a computation-
ally appealing myopic policy and proved that it almost surely
learns the unknown parameter, and that it converges to the opti-
mal decision one would have taken with full knowledge of the
unknown parameter.

Two immediate directions for future research are (i) to inves-
tigate the rate of convergence of the asymptotic properties due
to its practical importance, and (ii) to study how the myopic
decision relates to the optimal decision in the finite sequence
when the information state in both is the same. With respect
to the latter, we expect that the myopic threshold will be lower
as it only focuses on exploitation and neglects the exploratory
benefits that a higher threshold has.
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(a) Sequence of posterior mean (left scale) versus the true value 6, and se-
quence of posterior variance (right scale).
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(b) Sequence of decisions induced by myopic Bayesian policy versus the deci-
sion induced by the Oracle 7*(6)).

Figure 1: Illustration of asymptotic properties for the consistency (a) and the
decision making (b) when ¢, = 1, cc = 4, {(x) = X3, 60 = 1.3 and 7(6) ~
0.34. The data points in both sub-figures are obtained from the same sample
path.
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