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Abstract

We consider a system with several job types and two parallel server pools. Within the pools the
servers are homogeneous, but across pools possibly not in the sense that the service speed of a
job may depend on its type as well as the server pool. Immediately upon arrival, jobs are assigned
to a server pool, possibly based on (partial) knowledge of their type. In case such knowledge is
not available, information about the job type can however be obtained while the job is in service;
as the service progresses, the likelihood that the service speed of this job type is low increases,
creating an incentive to execute the job on different, possibly faster, server(s). Two policies are
considered: reroute the job to the other server pool, or replicate it there.

We determine the effective load per server under both the rerouting and replication policy
for completely unknown as well as partly known job types. We also examine the impact of
these policies on the stability bound, and find that the uncertainty in job types may significantly
degrade the performance. For (highly) unbalanced service speeds full replication achieves the
largest stability bound while for (nearly) balanced service speeds no replication maximizes the
stability bound. Finally, we discuss how the use of threshold-based policies can help improve the
expected latency for completely or partly unknown job types.

Keywords: Parallel-processing systems, stability, rerouting, replication, compatibility
constraints, server heterogeneity, straggler mitigation

1. Introduction

This paper considers parallel-processing systems with two heterogeneous server pools, in
which a dispatcher assigns jobs to one of the server pools immediately upon arrival. However, a
job is allowed to be rerouted to the other pool when its service has not yet been completed after
a certain amount of processing time. We also consider an alternative option in which such a job
is replicated at the other pool. The jobs are assumed to be of different types; one job type might,
e.g., be fast on a server from pool 1 and slow on a server from pool 2, whereas this might be
reversed for another job type. We examine the ability of threshold-based policies to deal with
such heterogeneity in service speeds: if the job types are unknown, or only partly known, can
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we use a threshold for the amount of processing time after which the job should be rerouted (or
replicated) in order to improve stability of the system and reduce latency?

Replication schemes as described above were introduced to mitigate the adverse effect of
so-called stragglers on the system performance, see for example [3, 7, 17]. Closely related
to the present paper is [1] which studies the replication policy under the assumption of i.i.d.
replicas and homogeneous servers. An approximation for the expected latency is derived for
both exponential and shifted-exponential job size distributions. Moreover, the trade-off between
the expected latency and the cost, defined as the sum of the processing times of each replica
involved in the job execution, is analyzed via simulation. Replication schemes are shown to
reduce both cost and expected latency in case of heavy-tailed job size distributions. Also closely
related is [11] which focuses on the throughput-optimal replication policy under the assumption
of identical replicas and a continuous speed distribution at each server. The Markov Decision
Process formulation for the optimal replication policy is in general intractable, and therefore an
upper bound is derived. In addition, a myopic MaxRate policy is introduced, which depends on
the number of unfinished jobs after a certain action and the expected remaining processing time.

In all the above papers the speed variations experienced by the various replicas are essentially
assumed to be purely random in nature. The multi-type set-up that we consider in the present
paper allows for intrinsic differences in speed across servers depending on the specific character-
istics of each individual job. Such heterogeneity in service speeds captures systematic job-server
affinity relations which may arise from data locality issues but may also reflect soft compat-
ibility constraints that are increasingly prevalent in data center environments. We investigate
the effectiveness of threshold-based replication and rerouting in the presence of such underlying
job-server affinity relations.

The performance of the threshold-based replication policy is strongly linked to the stability of
redundancy scheduling, where several replicas are created for each job immediately upon arrival,
see for example [10, 13, 14, 15]. Specifically, it is demonstrated in [15] that in case of known
job types and a probabilistic type-dependent job assignment strategy, no replication maximizes
the stability bound for New-Better-than-Used (NBU) job size distributions. In contrast, in case
of unknown job types, full replication achieves a larger stability bound than no replication for
New-Worse-than-Used (NWU) job size distributions.

Likewise, the threshold-based rerouting policy is closely connected to the problem of learning
the type of a job in an online manner as considered in [4]. In their model there is a server pool that
is compatible with jobs of all types and a server pool that is either compatible or incompatible
with a job depending on its type. Here (in)compatible means that the service of a job can(not) be
fulfilled by a server in this pool. As proposed in [4], the job types can be learned via observing the
processing time. Indeed, as time elapses and the service has not been completed, the likelihood
that the job is incompatible with the specific server it is on increases, and the job is therefore
rerouted to the other server pool when the likelihood that the server is incompatible exceeds
some value, also called threshold. For related literature on this learning problem we refer to [4]
and the references therein.

In this paper we consider similar threshold-based policies, but defined in terms of the received
processing time, and extend the model of [4] to allow for completely general type-dependent
service speed variations. Furthermore, we include replication as an additional option besides
rerouting, resulting in concurrent execution of replicas at possibly different speeds as in [15].
Throughout, we use the term stability bound to refer to the maximum arrival rate of jobs for
which the effective load per server is smaller than one. The effective load per server is defined as
a measure for the amount of time required to serve all offered jobs.
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The key contributions and insights can be summarized as follows.

1. We determine the effective load per server under both the rerouting and replication policy.
We show that for unknown job types and (highly) unbalanced service speeds the largest
stability bound is achieved by full replication. In contrast, for (nearly) balanced service
speeds the stability bound is maximized by not replicating at all. Surprisingly, rerouting
or replication does not significantly increase the stability bound in case of unknown job
types, in part because of the variability in the job sizes.

2. We also determine the effective load per server in a scenario with known job sizes. We find
that typically there still is a significant performance loss in terms of the stability bound
compared to the case of known job types. This implies that the uncertainty in the job types
plays a more pertinent role than the variability in the job sizes.

3. We extend our modeling framework to allow for partly known job types. We observe
that decreasing the uncertainty in the job types increases the stability bound in a convex
manner.

4. We discuss how the use of threshold-based policies can also help improve the expected
latency for completely unknown or partly known job types. While an exact latency analysis
is beyond the scope of this paper, we provide approximations that show a reduction of the
expected latency.

The remainder of the paper is organized as follows. In Section 2 we provide a detailed
model description. Analytical expressions for the effective load per server under threshold-based
rerouting or replication in the case of completely unknown and partly known job types are derived
in Section 3. In Section 4 we characterize the effective load per server in a scenario where the
thresholds depend on the job sizes when these are known in advance. Section 5 presents extensive
numerical results which quantify the performance implications due to the uncertainty in job
types. In Section 6 we examine how the use of threshold-based policies can also help reduce
expected latency. Section 7 contains conclusions and some suggestions for further research.

2. Model description

Consider a system with N servers and a dispatcher where jobs arrive at rate λ. The servers are
divided into two server pools, where ni denotes the number of servers in pool i, with n1 +n2 = N.
The dispatcher assigns jobs immediately upon arrival to one of the two server pools according
to a static policy as will be further specified later. Each pool has a central queue that follows a
non-idling service discipline, in the sense that the servers always serve jobs when the queue is
non-empty. We allow the sizes X1, X2 of a generic job on the server pools to be governed by some
joint distribution FX(x1, x2), where Xi, i = 1, 2, are each distributed as a generic random variable
X, but not necessarily independent. This covers the extreme scenarios of perfect dependence
(identical replicas) and no dependence at all (i.i.d. replicas), as previously considered in the
literature, as special cases. The service speeds R1,R2 for a given job in the two pools may differ,
but within the pools servers have the same speed. For a particular job on a server in pool i,
i = 1, 2, with size xi, xi/Ri represents the execution time. We allow the service speeds R1,R2
of a generic job to be governed by some joint distribution FR(r1, r2), reflecting possible server
heterogeneity and job-server affinity relations, thus covering a broad range of common workload
models as special cases. Examples are the S&X model [8], a scenario with heterogeneous server
speeds and the ’output-queued’ flexible server model [16].
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For convenience, we consider the case where the joint distribution FR(r1, r2) is discrete, and
has mass in a finite number of, say, J points (r1 j, r2 j) with corresponding probabilities p j, j =

1, . . . , J. This system may equivalently be thought of as having J job types, where ri j is the
service speed of type- j jobs at servers in pool i.

n1

1

n2

2

Dispatcher

Rerouting

Replication

Figure 1: Representation of the model that illustrates the difference between the rerouting and the replication policy.

As an important feature of our model we consider the following two resource allocation
policies: rerouting and replication, see also Figure 1. In both policies, a job exits the system
once its service requirement has been fully fulfilled. However, when the job has received a given
amount of processing time (we focus on the case of a fixed service time threshold τ = (τ1, τ2)),
under the rerouting policy, the job is rerouted to the other server pool. Under the replication
policy, the job is replicated in the other server pool while also staying in service at its original
pool. In both policies the service does not carry over, i.e., the entire service requirement should
be fulfilled by a server in the ‘new’ pool. Thus, the main difference between the policies is that
in the case of replication, when the job is in service for an amount of processing time larger than
the threshold, there is still a replica in service at the original pool.

We make the following assumption: replicas of a job after replication have preemptive-
resume priority over jobs that are not yet replicated, if they can get simultaneous service at
both server pools. If both replicas cannot immediately get simultaneous service, then they wait
until one server in each pool is available. This ensures that after replication the replicas will
always receive simultaneous service. This assumption additionally helps eschew stability issues
that can arise due to local priorities in scenarios with simultaneous resource possession, see for
example [12, Section 8.4].

For equally large server pools, i.e., n1 = n2, the preemptive-resume priority implies that jobs
never have to wait after replication. Indeed, the numbers of servers handling replicated jobs are
equal at all times and therefore it can never occur that a job is replicated, while all the servers in
the other server pool are serving jobs that have already been replicated. For unequal sizes of the
server pools, i.e., n1 , n2, it might occur that after replication both replicas have to wait before
getting service.

Replicas are abandoned as soon as one finishes service. The replication policy with threshold
τ = 0 is referred to as the full redundancy policy. For threshold τ = ∞ the rerouting and
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replication policy are equivalent, and will be called the zero redundancy policy.
In this paper we restrict ourselves to the scenario with two server pools. Extension to an

arbitrary number of server pools is left as a topic for further research. We focus on increasing
the achievable stability bound by optimizing threshold values in terms of the received processing
times.

3. Stability for unknown job sizes

In Section 3.1 we derive analytical expressions for the effective load per server for both the
rerouting and replication policy under a given assignment and threshold values. In Section 3.2
we specify these allocation fractions for three cases: Completely unknown job types, partly
unknown job types and completely known job types. Throughout we assume that the job sizes
are unknown.

We attach superscripts Rer and Rep to metrics that correspond to the rerouting and replication
policy, respectively.

3.1. Load of the system under a given assignment
Let A denote the 2 × J stochastic assignment matrix with elements αi j. Under the S (A, τ)

policy we assign a fraction αi j of type- j jobs to server pool i and reroute (or replicate) at this pool
as soon as the processing time equals τi for i = 1, 2. We define l := 3 − i as the other server pool
than i, so that αi j + αl j = 1 for all j = 1, . . . , J.

Proposition 1. The effective load of server pool i, for i = 1, 2, in the system with rerouting under
the S (A, τ) policy is

ρRer
i,S (A,τ) =

λE
[
BRer

i (A, τ)
]

ni
, (1)

where the expected service time requirement of an arbitrary job, assigned either to pool i or
pool l, at pool i is

E
[
BRer

i (A, τ)
]

=

J∑
j=1

p jαi jE
[
min

{
Xi

ri j
, τi

}]
+

J∑
j=1

p jαl jE
[

Xi

ri j
1

{
Xl

rl j
> τl

}]
. (2)

Proof: When allocating a job to server pool i, there are two possibilities: i) the job finishes
before rerouting; ii) the job is rerouted, in which case the job receives τi units of service at this
server pool. However, jobs that started in server pool l can be rerouted to pool i as well. The

proof then follows from noting that E
[
min

{
Xi
ri j
, τi

}]
represents the expected received amount of

processing time of a job in server pool i before completing or being rerouted to server pool l, and

E
[

Xi
ri j
1

{
Xl
rl j
> τl

}]
represents the expected received amount of processing time of a job in server

pool i, if any, after having received τl units in pool l first. �

To simplify the expressions for the replication policy, we introduce some notation:

km
il, j(y) = E

[(
min

{
Xi

ri j
− y,

Xl

rl j

})m

1

{
Xi

ri j
> y

}]
.
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This represents the m-th moment of the amount of time that a job will be processed in both server
pools, if any, after having been processed up to y time units in server pool i first. In case of m = 1
the superscript is omitted.

Proposition 2. The effective load per server in pool i, for i = 1, 2, in the system with replication
under the S (A, τ) policy is

ρ
Rep
i,S (A,τ) =

λE
[
BRep

i (A, τ)
]

ni
, (3)

where the expected service time requirement of an arbitrary job, assigned either to pool i or
pool l, at pool i is

E
[
BRep

i (A, τ)
]

=

J∑
j=1

p jαi j

(
E

[
min

{
Xi

ri j
, τi

}]
+ kil, j(τi)

)
+

J∑
j=1

p jαl jkli, j(τl). (4)

Proof: When allocating a job to server pool i, there are two possibilities: i) the job finishes
before replication; ii) the job is replicated, in which case the job spends at least τi time units in
service at this server pool. The (remaining) expected service time requirement of jobs starting at
server pool i after replication, if any, is kil, j(τi). However, jobs that started in server pool l can be
replicated to pool i as well. The (remaining) expected service time requirement of these jobs, if
any, is kli, j(τl). �

Evidently, ρRer
i,S (A,τ) < 1 (or ρRep

i,S (A,τ) < 1), for i = 1, 2, is a necessary condition for stability. It is
quite plausible that this condition is in fact also sufficient for the system to be stable (under the
preemptive-resume priority policy for replicated jobs).

Indeed, for multiserver queues it is well known that the system is stable if and only if the load
per server is smaller than one, where the arrival process can be quite general (see for example [6,
Chapter 1] or [18, Chapter 7]). Moreover, in [18, Proposition 7.4.12] it is proved that, under
the assumption that the sequence of inter-arrival and service times of the jobs at the queues
is ergodic and stationary, the stability of two G/G/1 queues in tandem is independent of the
departure process of the first queue. However, in our system both initially assigned and rerouted
(or replicated) jobs arrive at a server pool. In addition, replicated jobs must receive service
simultaneously at both server pools, implying that servers may be idling even when there are
jobs waiting. As a result, it is hard to rigorously establish that a load per server smaller than one
is sufficient for the system to be stable.

Remark 1. The expected service time requirement at server pool i for the zero redundancy policy
is equal to

E
[
BRer

i (A,∞)
]

= E
[
BRep

i (A,∞)
]

=

J∑
j=1

p jαi jE
[

Xi

ri j

]
, (5)

and the expected service time requirement at server pool i for the full redundancy policy is equal
to

E
[
BRep

i (A, 0)
]

=

J∑
j=1

p jE
[
min

{
Xi

ri j
,

Xl

rl j

}]
. (6)
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Observe that the expected service time requirement for the full redundancy policy is indepen-
dent of the assigned fractions. The achievable stability bound for this policy coincides with that
derived in [15]. Furthermore, note that in case of identical replicas the effective load per server
for both the zero redundancy and full redundancy policy is insensitive to the job size distribution,
given its mean.

3.2. Specific assignment fractions

In this subsection, we specify the assignment fractions in Equations (2) and (4) for the three
cases of completely unknown, partly unknown and completely known job types. Let qi

j denote
the fraction of type- j jobs that are assigned to server pool i in these three cases. The proofs are
straightforward, and hence omitted.

Corollary 1. For the case of unknown job types, Propositions 1 and 2 hold with

αi j = qi, for i = 1, 2 and j = 1, . . . , J. (7)

We proceed with the case of partly known job types by which we mean that every arriving
job is believed to be of a specific type. This can be thought of as a label indicating the likely type
of a job. Let p j→ j∗ denote the probability that a job of type j is believed to be of type j∗, with∑J

j∗=1 p j→ j∗ = 1. The scenario p j→ j = 1 corresponds to the case of known job types, whereas
p j→ j∗ = p j∗ , for all j = 1, . . . , J, corresponds to the case of unknown job types.

Corollary 2. For the case of partly known job types, Propositions 1 and 2 hold with

αi j =

J∑
j∗=1

p j→ j∗qi
j∗ , for i = 1, 2 and j = 1, . . . , J. (8)

Observe that in the case of completely unknown job types Equation (8) becomes αi j =∑J
j∗=1 p j∗qi

j∗ for i = 1, 2, which is equivalent to Equation (7) since it is independent of the job
types.

Corollary 3. For the case of known job types, Propositions 1 and 2 hold with

αi j = qi
j, for i = 1, 2 and j = 1, . . . , J. (9)

Substituting these assignment fractions in Equation (5) gives

E
[
BRer

i (A,∞)
]

= E
[
BRep

i (A,∞)
]

=

J∑
j=1

p jqi
jE

[
Xi

ri j

]
.

This coincides with the stability condition derived in [15] for no replication and known job types.
Moreover, in [15] it is proved that no replication gives a strictly larger stability bound than repli-
cation in the case of NBU job size distributions, independent of the server speeds. For NWU job
size distributions examples show that both no replication and full replication can give a larger
stability bound depending on the server speeds. Examples in which neither no replication nor
full replication gives a larger stability bound have not been found, see [15].
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Definition 1. A rerouting policy corresponds to a stochastic assignment matrix A with elements
αi j, where we assign a fraction αi j of type- j jobs to server pool i and vectors (τi1, τi2, . . . , τiKi ) ∈
RKi

+ with possibly Ki = 0 or Ki = ∞, i = 1, 2. Here a job of size x that is assigned to server
pool i, is processed for up to τi1 time units, and then successively restarted and processed in
server pool l for up to τi2 time units, restarted and processed in server pool i for up to τi3 time
units, etc. Eventually this job is restarted and processed for up to τiKi time units in server pool i
or l if Ki is odd or even, respectively, and ultimately processed for any amount of time in server
pool i or l if Ki is even or odd, respectively, until the job is completed, whichever occurs first (or,
as long as the job has not been completed).

In this section we focused on single-threshold policies. The effective load per server for the
rerouting policy can also be derived for the case of an arbitrary n-threshold policy as defined in
Definition 1, see Appendix B. However, this would make the optimization over all the parame-
ters, as done numerically in Section 5, much more complex.

4. Stability for known job sizes

In the previous section we derived the effective load per server for unknown job sizes. In this
section, we consider the case of known job sizes, which is indicated by an additional superscript
KS in the notation. We allow the assignment fractions and the threshold values to depend on the
size of the job at the server pool, which is indicated by a superscript x. Thus, the threshold at
a server pool may differ for every arriving job, whereas in the previous section the threshold at
the pool was equal for all jobs. The joint density of the job sizes at the server pools is denoted
by fX(·, ·). The effective load per server for the rerouting and replication policy are derived in
Propositions 3 and 4, respectively.

Proposition 3. The effective load per server in pool i, for i = 1, 2, in the system with rerouting
under the S (Ax, τx) policy, in case of known job sizes, is

ρRer,KS
i,S (Ax,τx) =

λE
[
BRer,KS

i (Ax, τx)
]

ni
, (10)

where

E
[
BRer,KS

i (Ax, τx)
]

=

∫∫
R2

 J∑
j=1

p jα
x
i j min

{
xi

ri j
, τx

i

}
+

J∑
j=1

p jα
x
l j

xi

ri j
1

{
xl

rl j
> τx

l

} fX(x1, x2)dx1dx2.

(11)

Proof: The proof follows along the same lines as the proof of Proposition 1. �

Proposition 4. The effective load per server in pool i, for i = 1, 2, in the system with replication
under the S (Ax, τx) policy, in case of known job sizes, is

ρ
Rep,KS
i,S (Ax,τx) =

λE
[
BRep,KS

i (Ax, τx)
]

ni
, (12)
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where

E
[
BRep,KS

i (Ax, τx)
]

=

∫∫
R2

 J∑
j=1

p jα
x
i j

(
min

{
xi

ri j
, τx

i

}
+ kKS

il, j(x, τx
i )
)

+

J∑
j=1

p jα
x
l jk

KS
li, j(x, τx

l )

 fX(x1, x2)dx1dx2, (13)

where kKS
il, j(x, y) = min

{
xi
ri j
− y, xl

rl j

}
1

{
xi
ri j
> y

}
.

Proof: The proof follows along the same lines as the proof of Proposition 2. �
Again, the effective load per server can also be derived for the case of an arbitrary n-threshold

policy, see Appendix B.

Definition 2. Let (nx
i1, n

x
i2, . . . , n

x
iKi

) ∈ NKi be vectors, with
∑Ki

k=1 nx
ik ≤ J − 1, nx

ik ≥ 1 for all
k = 1, . . . ,Ki and i = 1, 2. Given the set Jik−1, with Ji0 = {1, 2, . . . , J}, let rik be the nx

ik-th highest
service speed on server pool i(k) among the job types in Jik−1 and let Jik be the job types in Jik−1
that do not have the nx

ik highest service speeds on server pool i(k), where i(k) = i if k is odd and
i(k) = l if k is even and i = 1, 2 The set Jik corresponds to the remaining possible job types of a
job that is initially assigned to server pool i and rerouted k times (according to a specific policy).
Then the rerouting policy that corresponds to some stochastic assignment matrix Ax and vectors
(τx

i1, τ
x
i2, . . . , τ

x
iKi

) ∈ RKi
+ , with τx

ik = min(nik)
j∈Jik−1

xi(k)/ri(k) j for k = 1, . . . ,Ki and i = 1, 2, where min(n)

denotes the n-th order statistic, is said to be associated with the vectors (nx
i1, n

x
i2, . . . , n

x
iKi

) ∈ NKi .

Any rerouting policy that is associated with two particular vectors as described in Definition 2
is said to be a rational policy. Note that a rational policy involves at most J − 1 threshold values,
and the next observation provides an intuitive explanation for that.

Observation 1. In the case of known job sizes and J job types, for each job there are at most
J time points, referred to as rational decision points, at which the job could possibly fulfill
its service requirement, which depend on the job size, server speeds and the threshold values.
Moreover, we (only) gain information about the job type at these (rational) decision points.

The next lemma establishes that in order to achieve maximum stability for known job sizes,
we may restrict within the class of all rerouting policies as specified in Definition 1, to the
subclass of rational policies as defined in Definition 2.

Lemma 1. For any arbitrary rerouting policy there exists a rational rerouting policy that is
better in the sense that for a job of any size, given the initial assignment to one of the server
pools, it uses at most the same cumulative amount of processing time in each of the server pools.

Proof by induction in the number of remaining possible job types:
Base case: Suppose that for a job initially assigned to server pool i, the rerouting policy is rational
up to (measured in processing time) tJ−1 = min(1)

j∈JiKi−1
xi(Ki−1)/ri(Ki−1) j time units, at which we

know that the job is of the one remaining job type and without rerouting the job would finish at
9



tJ . Then rerouting exactly at tJ−1 uses at most the same cumulative amount of processing time in
each of the server pools as rerouting between tJ−1 and tJ .
Inductive step: Show that for any m ≥ 1, if the lemma holds for m remaining possible job types,
then it also holds for m + 1 remaining possible job types.

Suppose that for a job initially assigned to server pool i, the rerouting policy is rational
up to (measured in processing time) tJ−m−1 = min(nik)

j∈Jik
xi(k)/ri(k) j time units, with k (the number

of reroutings after which the job can possibly be of the m + 1 remaining job types) such that
|Jik | = m + 1− nik, and without rerouting the first time the job could possibly finish is tJ−m (if it is
of a specific type). Note that at tJ−m−1 we know that the job is of one of the m + 1 remaining job
types. Then rerouting exactly at tJ−m−1 uses at most the same cumulative amount of processing
time in each of the server pools as rerouting between tJ−m−1 and tJ−m. In case of no rerouting, if
the job does not finish at tJ−m we know that the job is of one of the m remaining job types, and
we can apply the induction hypothesis. In case of rerouting at tJ−m−1 the first time the job could
possibly finish, say t∗J−m, may differ from tJ−m, however we will never reroute again before t∗J−m.
At this time we can apply the induction hypothesis. �

Observe that Lemma 1 proves that there exists a rational rerouting policy that is better than
any arbitrary policy given the initial assignment to one of the server pools. To achieve the max-
imum achievable stability bound we also need to find the appropriate initial assignment matrix
Ax.

Remark 2. Lemma 1 holds as well for the single-threshold rerouting policy, analyzed in Propo-
sition 3. For the optimization we hence have J − 1 candidate values for the threshold.

5. Numerical results

In Sections 3 and 4 we derived the effective load per server for various cases. We now present
numerical results to get further insight in the performance implications due to the uncertainty in
job types. Throughout this section we denote the policies as follows: Rerouting (Rer), Repli-
cation (Rep), Zero redundancy (ZRed) and Full redundancy (FRed). The expected service time
requirement for these four policies is given by (2), (4), (5) and (6), respectively. For known job
sizes (KS) we only show the maximum of the rerouting and replication policy, where the ex-
pected service requirement is given by (11) and (13), respectively. Surprisingly, in all scenarios
that we considered the maximum was achieved by the rerouting policy with known job sizes.

In Section 5.1 we examine the scenario of completely unknown job types and in Section 5.2
that of partly known job types. In both subsections we distinguish between identical and i.i.d.
replicas with exponentially distributed job sizes with mean N, to ensure that the stability con-
dition for known job types is λ < 1. We refer to Appendix Appendix A for results where the
job sizes are Pareto Type I distributed with minimum possible value 1 and index N

N−1 , thus again
having mean N.

The scenario I = 2, J = 2, N = 10, n1 = n2 = 5, (r11, r21) = (1, rslow) and (r12, r22) = (rslow, 1)
is considered throughout. All figures show the maximum achievable stability bound denoted by
λmax as function of some relevant system parameter. For the maximization of the achievable
stability bound, we used a brute-force search with a certain fine multidimensional grid of starting
points.
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5.1. Completely unknown job types

5.1.1. Identical replicas
In Figure 2 the maximum achievable stability bound for the various policies is depicted when

varying the parameters p1 and rslow. Observe that the latter scenario is completely symmetric and
therefore q1 = q2 = 0.5 is the optimal allocation.
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Figure 2: Achievable stability bound for identical replicas with exponentially distributed job sizes in the scenario I = 2,
J = 2, N = 10, n1 = n2 = 5, (r11, r21) = (1, rslow) and (r12, r22) = (rslow, 1) with corresponding probabilities p1 and
p2 = 1 − p1, with rslow = 0.1 (left) and p1 = p2 = 0.5 (right). In the left sub-figure, the replication and full redundancy
policy are overlapping.

The left sub-figure in Figure 2 shows that the replication policy outperforms the rerouting
policy. This generally holds for scenarios where rslow is relatively small (unbalanced server
speeds). The reason is that the rerouting policy becomes unstable, i.e., λmax ↓ 0, as rslow ↓ 0. In
particular, in this scenario, the probability of rerouting the job to an (almost) incompatible server
pool, after which we cannot reroute the job again, is strictly positive.

The right sub-figure in Figure 2 reveals that both the rerouting and replication policy achieve
the same achievable stability bound for rslow > 0.4, which is the same as for the zero redundancy.
Therefore, the achievable stability bound can be achieved by the threshold τ = ∞, see (5). So
here the threshold does not increase the achievable stability bound. This generally holds in sce-
narios where rslow is relatively large (balanced server speeds). For unbalanced server speeds, the
replication policy is equivalent to the full redundancy policy and both outperform the rerouting
policy.

The achievable stability bound in Figure 2 fails to give information about the processing time
per job that is needed to distinguish the job types. In particular, consider the example where one
job type has sizes ε << 1 and K >> 1 on a server from pool 1 or 2, respectively, and another job
type has sizes K and ε on these server pools. In the rerouting policy, after only ε time units we
know the job type and we reroute when the service requirement has not been completely fulfilled.
Thus, we can distinguish the job types really fast. However, the service time requirement of a
rerouted job is in total 2ε, while in the case of known types the service requirement of all jobs is
ε. Therefore, for unbalanced server speeds, the rerouting policy always has a performance loss
of at least 33%, despite the fact that it can distinguish the job types fast.

5.1.2. Independent and identically distributed replicas
In Figure 3 we consider the same scenario as in Figure 2, but now for i.i.d. replicas.
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Figure 3: Achievable stability bound for i.i.d. replicas with exponentially distributed job sizes in the scenario I = 2, J = 2,
N = 10, n1 = n2 = 5, (r11, r21) = (1, rslow) and (r12, r22) = (rslow, 1) with corresponding probabilities p1 = p2 = 0.5. The
replication and full redundancy policy are overlapping.

Figure 3 shows that the replication policy outperforms the rerouting policy, especially in
scenarios with unbalanced server speeds. In this figure, the replication policy is equivalent with
the full redundancy policy. This means that learning the job types for the replication policy does
not improve the achievable stability bound. Moreover, it can be seen that observing the job sizes
can significantly increase the achievable stability bound. For balanced server speeds, rerouting
in the case of known sizes even outperforms the policy with known job types.

5.2. Partly known job types

In this section we present numerical results for the achievable stability bound in the case
where job types are partly known, i.e., for an arriving job there is a belief that it is of a specific
type.

5.2.1. Identical replicas
We consider a scenario with unbalanced server speeds and balanced server speeds (Figure 4),

when varying the probability p1→1 = p2→2.
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Figure 4: Achievable stability bound for identical replicas with exponentially distributed job sizes in the scenario I = 2,
J = 2, N = 10, n1 = n2 = 5, (r11, r21) = (1, rslow) and (r12, r22) = (rslow, 1) with corresponding probabilities p1 = p2 =

0.5, with rslow = 0.1 (left) and rslow = 0.6 (right) when varying the probability p1→1 = p2→2.

Figure 4 indicates that decreasing the uncertainty in the job types increases the achievable
stability bound in a convex manner. Moreover, for unbalanced server speeds, decreasing the un-
certainty about the job types at first does not have any effect on the achievable stability bound for
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the replication policy. However, the replication policy still achieves a larger achievable stability
bound than the rerouting policy, especially in scenarios with high uncertainty about the job types.

For balanced server speeds, it can be seen that the achievable stability bounds for the known
sizes, replication, rerouting and zero redundancy policy are all equal. Hence, for balanced server
speeds, thresholds do not increase the achievable stability bound even if the uncertainty in the
job types is decreased.

5.2.2. Independent and identically distributed replicas
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Figure 5: Achievable stability bound for i.i.d. replicas with exponentially distributed job sizes in the scenario I = 2, J = 2,
N = 10, n1 = n2 = 5, (r11, r21) = (1, rslow) and (r12, r22) = (rslow, 1) with corresponding probabilities p1 = p2 = 0.5,
with rslow = 0.1 (left) and rslow = 0.6 (right) when varying the probability p1→1 = p2→2.

Figure 5 reveals that the use of thresholds does not improve the achievable stability bound
for the replication policy. Interestingly, for the replication policy in a scenario with (highly)
unbalanced server speeds, decreasing the uncertainty has no effect on the achievable stability
bound at first. Namely, in the figure it can be seen that the achievable stability bound is constant
for p1→1 between 0.1 and 0.9, i.e., where the replication and full redundancy policy coincide.

6. Reducing the expected latency

In the previous sections we focused on the achievable stability bound as key performance
metric of interest. The present section aims to take a first step towards investigating how the use
of thresholds can help reduce the expected latency. Throughout this section we assume that the
service discipline of the two server pools is FCFS, and that there is only one server per pool, i.e.,
n1 = n2 = 1.

The expected latency has been studied from a somewhat related learning perspective before.
Among the numerous studies in the literature, we will highlight two. In [9] the performance of
several policies is compared in the setting with heterogeneous server speeds. In particular, the
JSQ-DAS (JSQ-d with Accomplishment Sampling) policy uses the idea of server accomplish-
ment to decide which servers to poll, which can be viewed as a learning scheme. In [2] a system
is introduced that improves the expected latency. The improvement is achieved by replication
of small jobs, which ensures that these jobs do not have to wait for large jobs, called stragglers.
Learning the optimal threshold for replication is of vital importance for the performance, i.e., the
expected latency.
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Consider the same model as for the analysis of the effective load per server. Again jobs are
assigned to a certain server pool and can be rerouted (or replicated) to the other pool after a
certain processing time. In this section we assume that the jobs arrive at the system according
to a Poisson process with parameter λ. We even know what fraction of jobs is rerouted (or

replicated) at server pool i, namely pτi :=
∑J

j=1 p jαi jP
(

Xi
ri j
> τi

)
. By the Poisson thinning property

these arrivals follow a Poisson process with parameter λpτi . However, the departure process, and
thus the arrival process at the other server pool after rerouting (or replication), is a complicated
process. It is not Poisson, not even a renewal process, even if the job sizes are exponentially
distributed. Still, it turns out that we can approximate the mean latency of jobs quite accurately
by assuming that jobs are rerouted (or replicated) according to a Poisson process. The Poisson
assumption is exact in the extreme cases of τ = 0, in which case all jobs are immediately rerouted
(or replicated) and of τ = ∞, in which case there is no rerouting (or replication). For large τ,
rerouted traffic should also be reasonably close to Poisson traffic, while its contribution to the
mean latency is quite small. The Poisson assumption allows us to use the well-known Pollaczek-
Khinchin formula for the mean delay in an M/G/1 queue.

The expected latency of a job that is initially assigned to server pool i under the S (A, τ)
rerouting policy is given by

E
[
T Rer

i (A, τ)
]
≈

λE
[(

BRer
i (A, τ)

)2
]

2
(
1 − λE

[
BRer

i (A, τ)
]) + E

[
XRer

i (τ)
]

+

λE
[(

BRer
l (A, τ)

)2
]

2
(
1 − λE

[
BRer

l (A, τ)
]) J∑

j=1

p jP
(

Xi

ri j
> τi

)
,

where, for i = 1, 2, the expected service time requirement is given by Equation (2) and

E
[(

BRer
i (A, τ)

)2
]

=

J∑
j=1

p jαi jE
(min

{
Xi

ri j
, τi

})2 +

J∑
j=1

p jαl jE
( Xi

ri j

)2

1

{
Xl

rl j
> τl

} ,
with

E
[
XRer

i (τ)
]

=

J∑
j=1

p j

(
E

[
min

{
Xi

ri j
, τi

}]
+ E

[
Xl

rl j
1

{
Xi

ri j
> τi

}])
.

Indeed, an arriving job at server pool i has to wait for all the jobs present, and this mean
delay is given by the Pollaczek-Khinchin formula for an M/G/1 queue. The expected service

time requirement of the job before rerouting is equal to E
[
min

{
Xi
ri j
, τi

}]
. With probability pτi the

job is rerouted to server pool l. Again the job has to wait for all the jobs present at this pool.
Moreover, in this case the service time requirement of the job was τi on server pool i and the

expected service time requirement is equal to E
[

Xl
rl j
1

{
Xi
ri j
> τi

}]
on pool l.

The expected latency of a job that is initially assigned to server pool i under the S (A, τ)
replication policy is given by

E
[
T Rep

i (A, τ)
]
≈

λE
[(

BRep
i (A, τ)

)2
]

2
(
1 − λE

[
BRep

i (A, τ)
]) + E

[
XRep

i (τ)
]
,
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Figure 6: Expected latency for identical replicas in the scenario I = 2, J = 2, N = 2, n1 = n2 = 1, (r11, r21) = (1, 0.1) and
(r12, r22) = (0.1, 1) with corresponding probabilities p1 = p2 = 0.5 when varying the arrival rate λ and degenerate (left)
and exponential (right) service times. The approximations are depicted by the dashed lines. For degenerate job sizes, the
replication policy is depicted with fixed τ = 1, while τ = 0 gives a lower expected latency. For exponential job sizes, the
replication and full redundancy policy are overlapping.

where, for i = 1, 2, the expected service time requirement is given by Equation (4) and

E
[(

BRep
i (A, τ)

)2
]

=

J∑
j=1

p jαi j

(
E

(min
{

Xi

ri j
, τi

})2 + k2
il, j(τi)

)
+

J∑
j=1

p jαl jk2
li, j(τl),

with

E
[
XRep

i (τ)
]

=

J∑
j=1

p j

(
E

[
min

{
Xi

ri j
, τi

}]
+ kil, j(τi)

)
,

for i = 1, 2.
Indeed, an arriving job at server pool i has to wait for all the jobs present, and this mean delay

is again given by the Pollaczek-Khinchin formula for an M/G/1 queue. The expected service

time requirement of the job before replication is equal to E
[
min

{
Xi
ri j
, τi

}]
. After replication the

(remaining) expected service time requirement is kil, j(τi).
To obtain the expected latency of an arbitrary job we can simply sum, the expected latency

for a job that is initially assigned to server pool i multiplied by the probability of assigning this
job to server pool i, over i. For example, in the rerouting policy we obtain

E
[
T Rer(A, τ)

]
=

2∑
i=1

J∑
j=1

p jαi jE
[
T Rer

i (A, τ)
]
.

Numerical results

We provide numerical results to give further insights in the expression derived for the ex-
pected latency.

In Figure 6 the expected latency is depicted as a function of λ, for degenerate and exponen-
tially distributed job sizes. The approximations of the expected latency (dashed lines) appear to
be reasonably good. Depending on the variability of the job size distribution either the rerouting
or replication policy achieves the lowest expected latency.
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7. Conclusion and suggestions for further research

We have quantified the effective load per server for a system with two server pools when
job types are completely unknown or partly known, but where jobs can either be rerouted or
replicated to the other server pool after receiving service for some amount of time. From the
numerical results we observed that in most of the scenarios rerouting nor replication increases
the achievable stability bound. Moreover, we observed that for balanced server speeds the zero
redundancy policy achieves the maximum achievable stability bound. We also observed that de-
creasing the uncertainty in job types increases the achievable stability bound in a convex manner.

Topics for further research include:
(i) Extension to multiple server pools. This is more involved than having two server pools,

since after rerouting or replication there is the extra choice to which server pool(s).
(ii) Extensions of the analysis of the expected latency in Section 6. One could, e.g., use ideas

from [5, 19] to approximate the departure process of a single-server queue. Moreover, note that
analytic expressions for the expected latency are lacking in the case of redundancy and thus it is
not known what the optimal expected latency is for generally distributed job sizes. The question
how uncertainty of job types affects the expected latency remains interesting.

(iii) Optimization of the expressions for the achievable stability bound under the S (A, τ)
policy.

(iv) Extension where the service does carry over. In this case the expected service time
requirement for the rerouting policy becomes

E
[
BRer

i (A, τ)
]

=

J∑
j=1

p jαi jE
[
min

{
X
ri j
, τi

}]
+

J∑
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[
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ri j
1

{
X
rl j
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}]
,

and for the replication policy

E
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]
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where

kil, j(y) = E
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.
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Appendix A. Additional numerical results

In this appendix we present additional numerical results for the achievable stability bound
in case of Pareto Type I distributed job sizes. For Figures A.7-A.10 the same scenarios as in
Figures 2-5 are considered, but now for Pareto distributed job sizes, with minimum possible
value 1 and index N

N−1 instead of exponentially distributed job sizes with mean N.
Figure A.7 reveals that, when comparing the policies for Pareto and exponentially distributed

job sizes, the achievable stability bound for the rerouting policy performs worse for Pareto, the
other policies achieve the same achievable stability bound. Only the rerouting policy performs
worse for Pareto and (highly) unbalanced server speeds.
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Figure A.7: Achievable stability bound for identical replicas with Pareto distributed job sizes in the same scenario as
Figure 2, i.e., I = 2, J = 2, N = 10, n1 = n2 = 5, (r11, r21) = (1, rslow) and (r12, r22) = (rslow, 1) with corresponding
probabilities p1 and p2 = 1 − p1, with rslow = 0.1 and p1 = p2 = 0.5 (right). In the left sub-figure, the replication and
full redundancy policy are overlapping.

Figure A.8 shows that, when comparing the policies for Pareto and exponentially distributed
job sizes, the known sizes, replication, full redundancy and rerouting policy all perform better
for Pareto distributed job sizes. Similar to Figure 3, the replication and full redundancy policy
both outperform the rerouting policy.
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Figure A.8: Achievable stability bound for i.i.d. replicas with Pareto distributed job sizes in the same scenario as Figure 3,
i.e., I = 2, J = 2, N = 10, n1 = n2 = 5, (r11, r21) = (1, rslow) and (r12, r22) = (rslow, 1) with corresponding probabilities
p1 = p2 = 0.5.

Figure A.9 indicates that, when comparing the policies for Pareto and exponentially dis-
tributed job sizes, for unbalanced server speeds, both the replication and rerouting policy perform
worse for Pareto distributed job sizes. For unbalanced server speeds Figure A.9 shows that the
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known sizes, replication, rerouting and zero redundancy policy all achieve the same achievable
stability bound. The numerical results for the exponential and Pareto job sizes suggest that these
policies are insensitive to the job size distribution, given its mean.
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Figure A.9: Achievable stability bound for identical replicas with Pareto distributed job sizes in the same scenario as
Figure 4, i.e., I = 2, J = 2, N = 10, n1 = n2 = 5, (r11, r21) = (1, rslow) and (r12, r22) = (rslow, 1) with corresponding
probabilities p1 = p2 = 0.5, with rslow = 0.1 (left) and rslow = 0.6 (right) when varying the probability p1→1 = p2→2.

Figure A.10 reveals that, when comparing the policies for Pareto and exponentially dis-
tributed job sizes, the known sizes, replication, full redundancy and rerouting policy all perform
better for Pareto distributed job sizes. This is due to the assumption of i.i.d. replicas and the
heavy tail of the Pareto distribution.
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Figure A.10: Achievable stability bound for i.i.d. replicas with Pareto distributed job sizes in the same scenario as
Figure 5, i.e., I = 2, J = 2, N = 10, n1 = n2 = 5, (r11, r21) = (1, rslow) and (r12, r22) = (rslow, 1) with corresponding
probabilities p1 = p2 = 0.5, with rslow = 0.1 (left) and rslow = 0.6 (right) when varying the probability p1→1 = p2→2.

Appendix B. Load of the system: n-threshold policy

Unknown job sizes

In this appendix we extend the expressions for the effective load per server, in the case of
unknown job sizes, of the rerouting policy, given by Proposition 1, by allowing for multiple
reroutings (see Definition 1). For the rerouting policy this means that after assigning a job to
server pool i, we can reroute the job to the other pool. In contrast to the threshold policy we can
reroute the job back to the pool it was initially assigned to. In the n-threshold policy we can in
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total reroute n times from one pool to the other.

As before, let A denote the 2 × J stochastic assignment matrix with elements αi j. Let T be
the 2 × n rerouting matrix, with rows (τi1, τi2, . . . , τin) denoting the rerouting vector for the job
initially assigned to server pool i, for i = 1, 2. We define τi0 = 0 for i = 1, 2.

Proposition 5. The effective load per server in pool i, for i = 1, 2, in the system with rerouting
under the S (A,T ) policy is
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+

n−1∑
m=1

J∑
j=1

p jαI(m) jE
[
min

{
Xi

ri j
, τI(m)m+1

}
· 1

{
τI(m)m−1 <

Xi

ri j
, τI(m)m <

Xl

rl j

}]

+

J∑
j=1

p jαI(n) jE
[

Xi

ri j
1

{
τI(n)n−1 <

Xi

ri j
, τI(n)n <

Xl

rl j

}]
,

where I(m) = l if m is odd, and I(m) = i if m is even.

Known job sizes

Proposition 6. The effective load per server in pool i, for i = 1, 2, in the system with rerouting
under the S (Ax,T x) policy, in case of known job sizes, is

ρRer,KS
i,S (Ax,T x) =

λE
[
BRer,KS

i (Ax,T x)
]

ni
,

where,

E
[
BRer,KS

i (Ax,T x)
]

=

∫∫
R2

 J∑
j=1

p jα
x
i j min

{
xi

ri j
, τx

i1

}

+

n−1∑
m=1

J∑
j=1

p jα
x
I(m) j min

{
xi

ri j
, τx

I(m)m+1

}
· 1

{
τx

I(m)m−1 <
xi

ri j
, τx

I(m)m <
xl

rl j

}

+

J∑
j=1

p jα
x
I(n) j

xi

ri j
1

{
τx

I(n)n−1 <
xi

ri j
, τx

I(n)n <
xl

rl j

} fX(x1, x2)dx1dx2.
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