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Abstract. We consider a general class of closed product-form queueing networks, consisting

of single-server queues and infinite-server queues. Even if a network is of product-form type,

performance evaluation tends to be difficult due to the potentially large state space and

the dependence between the individual queues. To remedy this, we analyze the model in a

Halfin-Whitt inspired scaling regime, where we jointly blow up the traffic loads of all queues

and the number of customers in the network. This leads to a closed-form limiting stationary

distribution, which provides intuition on the impact of the dependence between the queues on

the network’s behavior. We assess the practical applicability of our results through a series of

numerical experiments, which illustrate the convergence and show how the scaling parameters

can be chosen to obtain accurate approximations.
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1. Introduction

Queues are often part of larger systems. Aiming to evaluate their performance, a substantial

research effort has focused on the analysis of queueing networks, a prominent complication

being that the individual queues in the network are often dependent. A central role is played

by the class of networks obeying a product-form stationary distribution, where its components

correspond to the numbers of customers in the individual queues (also referred to as stations).

These product-form networks were first studied in the seminal papers by R. Jackson [14] and

J. Jackson [13] in the 1950s, triggering much research in this area. Most notably, a large class

of product-form networks, so-called BCMP networks [2], was identified in the 1970s, covering

queueing networks consisting of single-server, multi-server and infinite-server stations. Since

the discovery of the BCMP class, many further results have been obtained. On one hand, it has

been shown that introducing features such as batch routing [5], loss dynamics [1], discrete-time

dynamics [6, Chapter 6] and negative customers [9] does not break the product-form nature of

the stationary distribution. On the other hand, general properties of product-form networks

have been revealed, such as the arrival theorem [17] and aggregation theorems [4]. For an

overview of the queueing-network literature we refer to [6].

Within the study of queueing networks a distinction has been made between open and closed

networks. In open networks, i.e. networks with external arrivals and departures, if the

stationary distribution factorizes into components corresponding to individual queues, then

the queue lengths are mutually independent. Closed networks, however, have the additional

constraint that the sum of the queue lengths must equal the population size at any point in

time, rendering the individual queue lengths dependent. As a consequence, analytical and

numerical difficulties arise when one aims at evaluating performance measures. Closed-form

expressions are often beyond reach because the population-size constraint complicates the

evaluation of terms summing over all possible queue-length vectors, which appear in for

instance the normalization constant. Additionally, for large networks numerical approaches

face computational challenges, such as the need to evaluate summations over a large set of

states. In addition, there is the risk of running into computer-precision related problems, a

challenge that has been addressed by Lam [16], but only in relation to the evaluation of the

normalization constant.

To remedy the above-mentioned issues arising when analyzing closed product-form queueing

networks, in various papers one has advocated the use of scaling limits. Here the objective is to

obtain closed-form distributional results in specific asymptotic regimes. A prominent approach

relies on the method of integral representations, which has been used to asymptotically

evaluate the normalization constant [3, 19]. In [18] strong approximation theory is applied to

produce limit theorems for a large class of queueing networks. We also refer to the exact-order

asymptotic analysis developed in [11].

Our paper can be seen as part of the research area discussed in the previous paragraph, in that

it addresses the analytical and numerical difficulties of closed queueing networks by proposing

a scaling method. The general idea of such a method is to make some of the model parameters

depend on a number n in a certain way, and let n tend to infinity. When done in a suitable

way, one can obtain insightful asymptotic results, revealing a tractable approximation for the

behavior of the more complex unscaled system. A prime example of the effectiveness of scaling
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is the widely-recognized Halfin-Whitt regime [12]. For an Erlang loss queue, this regime scales

the workload and the number of servers in a quality-and-efficiency driven way: the utilization

of the servers approaches 100%, while the blocking probability remains close to zero. Halfin

and Whitt prove that the number of customers in the scaled system tends to a truncated

normal random variable in the limit.

For our model, i.e. a general closed product-form network consisting of both single-server

stations and infinite-server stations, we define a new scaling regime inspired by the Halfin-Whitt

scaling. Indeed, we extend the Halfin-Whitt scaling in such a way that it is applicable to

queueing networks rather than individual stations in isolation. This we do by letting the traffic

load at all stations become large and choosing the population size in such a way that the

joint queue-length distribution has a non-degenerate limit. We remark that for finite-capacity

open networks, our regime has the same quality-and-efficiency property as the Halfin-Whitt

regime. This study can be considered as an extension of our previous work [21], where a

similar approach has been followed for a specific three-station closed network representing an

extended machine-repair model. We substantially generalize the results from [21], in that we

establish similar asymptotic results for a more general class of closed product-form networks.

The contributions of this paper are the following. Under the Halfin-Whitt inspired scaling, we

obtain the asymptotic stationary joint distribution of all queue lengths in the closed product-

form network. This specifically entails that, appropriately normalized, the queue lengths

of the single-server stations behave as (possibly truncated) exponential random variables,

whereas the queue lengths of the infinite-server stations behave as (possibly truncated) normal

random variables. Whether the truncation needs to be imposed, depends on whether the

queue under consideration is a dominant queue, i.e. the station with largest queue-length

variance. In the typical case that there is a single dominant station, the queue lengths are

asymptotically independent. Importantly, although the pre-limit stationary distribution is

relatively involved, it considerably simplifies under our scaling. Furthermore, we observe

by means of numerical experiments that for a reasonably sized system, the queue-length

distributions are well approximated by their limit distributions.

The paper is organized as follows. In Section 2 we describe our model in detail, analyze the

normalization constant and introduce our scaling regime. The main results are then stated and

discussed in Section 3. The proof of our main theorem is given in Section 4, where we leave

some technical details for Appendix A. Subsequently, the practical relevance of our model is

discussed in greater detail in Section 5, while numerical results in Section 6 show that the

limiting queue-length distributions are able to yield accurate approximations. We conclude

and provide pointers for further research in Section 7.

2. Model and Preliminaries

This section presents the model description and a number of key concepts that play an

important role in this paper. First, Section 2.1 introduces the product-form stationary

distribution and describes which networks satisfy it. We discuss the normalization constant of

this stationary distribution in Section 2.2. Subsequently, Section 2.3 gives the precise definition

of the scaling regime that we study in this paper.
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Figure 1. Closed queueing network with infinite-server (IS) stations and single-

server (SS) stations.

2.1. Model description. We consider a closed queueing network with C customers. Each

station can be of two types: R stations are infinite-server queues, while the remaining K + 1

are single-server queues. At a later stage we omit one single-server station, as its queue length

equals C minus the sum of the other queue lengths. It is worth noting that the total service

rate provided to all customers in any of the R infinite-server stations is linear in the number

of customers present, since all customers can be served simultaneously in an infinite-server

queue. In any of the single-server stations, however, the service rate provided is constant

whenever the number of customers present is positive, and zero otherwise. See Figure 1 for an

example of such a network. Let B1, . . . , BR be the stationary numbers of customers at the

infinite-server stations, and D1, . . . , DK+1 their counterparts at the single-server stations.

The only further assumption we impose on our model is that it has the following product-form

stationary distribution: for b1, . . . , bR, d1, . . . , dK+1 such that b1 + ...+ bR + d1 + ...+ dK+1 = C,

P(B1 = b1, ..., BR = bR, D1 = d1, ..., DK+1 = dK+1) = p̃0

R∏
r=1

ηbrr
br!

K+1∏
k=1

θdkk . (1)

Here ηr, θk > 0 are parameters representing traffic loads of individual stations, and p̃0 is the

normalization constant, which ensures that all probabilities sum to 1.

The stationary distribution (1) applies under fairly broad conditions. A precise specification

providing all instances that yield this particular product form is rather challenging (see [6,

Section 5.7] for a detailed discussion). However, an important sufficient network property for

this is quasi-reversibility. This property, concerning individual stations, states that if a station

has a Poisson arrival process, its departure process is also Poisson and the queue length is

independent of past departures (see e.g. [15, Section 6] for more background). If all stations of

the network are quasi-reversible when considered in isolation, then the stationary distribution

is guaranteed to obey the product form (1). To give an example, quasi-reversibility holds for

infinite-server stations under arbitrary service time distributions, and for single-server stations

when service times are exponential under FCFS, or when the server applies processor sharing

or the LCFS pre–emptive resume discipline. Quasi-reversibility is a sufficient condition for a

product-form stationary distribution, but it is not necessary (cf. [7]).

Although the network described above is assumed to be closed, there is also a class of finite-

capacity open networks with Poisson arrivals satisfying (1). Such networks are technically

open, but behave exactly like a closed network. This concept is explained in great detail
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in [20], in the context of computer systems with window flow control. A similar reasoning

applies to an open queueing network with R +K stations, where external arrivals are blocked

when there are already C customers present in the network. To see why this system can be

interpreted as a closed network, suppose that all departures out of the system join an artificial

single-server station (which we identify with station K + 1), and that all external admitted

arrivals form the departure process of this station. The system is now closed, and with the

total number of customers being equal to C, the behavior at the original stations is the same.

Indeed, the original situation where a customer is blocked is equivalent to the situation where

no customers are present in station K + 1.

We proceed with a few notational issues. Throughout this paper we will denote vectors by

bold symbols. This for instance means that we denote by b and d the vectors (b1, ..., bR) and

(d1, ..., dK), respectively. We also introduce specific notation related to the truncation of such

vectors to their first entries: for instance for r 6 R we mean by br the vector (b1, ..., br), so

that bR = b. For the sum of the entries of vectors we use the well-known norm notation, e.g.,

‖b‖ :=
∑R

r=1 br. Furthermore, we use the convention that a geometric random variable has

support {0, 1, 2, ...}; if the success probability is p, we write G (p). With P(µ) we denote a

Poisson random variable with mean µ. For sequences fn and gn, we write fn ∼ gn if fn/gn → 1

as n → ∞. Additionally, ‘=d’ and ‘→d’, respectively, denote equality in distribution and

convergence in distribution.

In this paper, we will work with a normalized version of (1). We assume without loss of

generality that θK+1 = maxk=1,...,K+1{θk}. Due to the closed nature of the network, rescaling

all station parameters through division by θCK+1 leads to a different normalization constant,

but otherwise this has no effect on the stationary joint distribution. Therefore, (1) can be

rewritten as, with ‖b‖+ ‖d‖ 6 C,

pb,d := P(B = b,D = d) = p0

R∏
r=1

ρbrr
br!

K∏
k=1

σdkk , (2)

where p0 = θCK+1p̃0, ρr = ηr/θK+1 for all r and σk = θk/θK+1 6 1 for all k. The parameters

ρ1, ..., ρR and σ1, ..., σK can be interpreted as the traffic loads of the corresponding stations.

The joint stationary distribution (2) is the starting point of the scaling analysis presented in

this paper, and we view ρ1, ..., ρR and σ1, ..., σK as system parameters. The results in the rest

of the paper are valid for every queueing network that satisfies (2).

Remark 1. In this paper we consider the system’s behavior in a specific regime in which

the total number of customers C grows, according to a scaling that we will specify later. By

(2), there is dependence between the stations: the individual stationary queue lengths are

correlated due to the constraint ‖B‖+ ‖D‖ 6 C. However, it also implies that when C grows

large, this dependence becomes weaker, and in the limit as C →∞, vanishes.

For the infinite-server station indexed by r 6 R, the probability of br customers at the station

is proportional to ρbrr /br!. For this reason, the queue length at infinite-server station r is

approximately distributed as P(ρr) as C grows large.

Likewise, for a single-server station index by k 6 K, the probability of dk customers at

the station is proportional to σdkk . If σk < 1 this implies that the queue-length distribution

approximately behaves as G (σk) as C grows large. �
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2.2. Normalization constant. We now turn our attention to the calculation of the normal-

ization constant p0 in (2). Note that since ‖B‖+ ‖D‖ 6 C, we have

p−1
0 =

∑
b,d : ‖b‖+‖d‖6C

R∏
r=1

ρbrr
br!

K∏
k=1

σdkk . (3)

Observe that the normalization constant involves summation over terms that are products of R

Poisson-type factors, and K geometric-type factors. Because of the R+K indices, the number

of terms in the summation in (3) is
(
C+R+K
R+K

)
, making a trivial calculation of the normalization

constant beyond reach. To remedy this, we now focus on a different representation of the

normalization constant. We do so by evaluating the summation over the K geometric-type

indices, and subsequently using a probabilistic argument for the summation over the R

Poisson-type factors.

For this purpose, it is useful to define

Sj(x) :=
∑

b : ‖b‖6C

R∏
r=1

(ρr/x)br

br!

∑
d : ‖d‖6C−‖b‖

j∏
k=1

(σk
x

)dk
, (4)

so that p−1
0 = SK(1). To evaluate the inner geometric sum, we wish to express p−1

0 = SK(1) in

terms of S0(x) for certain x. The following recursion is a key element in this derivation.

Lemma 1. For x 6= σj, Sj(x) satisfies the recursion

Sj(x) =
1

1− σj/x
Sj−1(x)− (σj/x)C+1

1− σj/x
Sj−1(σj), j = 1, ..., K.

Proof. The recursion follows from an evaluation of the geometric series. Taking the sum over

dj, we see that for x 6= σj,

Sj(x) =
∑

b : ‖b‖6C

R∏
r=1

(ρr/x)br

br!

∑
dj−1 : ‖dj−1‖6C−‖b‖

j−1∏
k=1

(σk
x

)dk
× 1− (σj/x)C−‖b‖−‖dj−1‖+1

1− σj/x

=
1

1− σj/x

( ∑
b : ‖b‖6C

R∏
r=1

(ρr/x)br

br!

∑
dj−1 : ‖dj−1‖6C−‖b‖

j−1∏
k=1

(σk
x

)dk
− (σj/x)C+1

∑
b : ‖b‖6C

R∏
r=1

(ρr/σj)
br

br!

∑
dj−1 : ‖dj−1‖6C−‖b‖

j−1∏
k=1

(
σk
σj

)dk )

=
1

1− σj/x
Sj−1(x)− (σj/x)C+1

1− σj/x
Sj−1(σj),

(5)

thus proving the claim. �

The lemma shows that Sj(x) can be split into two terms, each involving Sj−1(·). We exploit

this recursion to derive an alternative expression for p0, which is presented in the following

lemma. As an aside, we remark that here and in the sequel, the cases σk = 1 for some k and

σj = σl for some j, l can be resolved using L’Hôpital’s rule.
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Lemma 2. The normalization constant equals

p0 =

(
K∏
k=1

1

1− σk

(
S0(1)−

K∑
l=1

σC+1
l

K∏
j=1, j 6=l

1− σj
1− σj/σl

S0 (σl)

))−1

, (6)

where

S0(x) =
C∑
i=0

(‖ρ‖ /x)i

i!
.

Proof. Note that by (3) and Lemma 1,

p−1
0 = SK(1) =

1

1− σK
SK−1(1)− σC+1

K

1− σK
SK−1(σK).

Applying Lemma 1 another K − 1 times leads to an expression of the form

p−1
0 = aS0(1) +

K∑
l=1

ul S0 (σl) , (7)

where a and u1, ..., uK are coefficients depending on σ1, ..., σK . To find a, observe that the

only term with S0(1) results from the first term of Lemma 1 of all K iterations. Therefore,

a =
∏K

k=1(1− σk)−1. Similarly, observe that the only term with S0 (σK) follows from the

second term in the first iteration and then the first term in all remaining iterations. Therefore,

uK = −σC+1
K (1− σK)−1

∏K−1
j=1 (1− σj/σK)−1. Note that the single-server stations 1, ..., K are

identical in (3) up to their parameters σ1, ..., σK . By symmetry, we conclude that, for any

l = 1, . . . , K,

ul = − σC+1
l

1− σl

K∏
j=1, j 6=l

1

1− σj/σl
.

Thus, it holds that

p−1
0 = S0(1)

K∏
k=1

1

1− σk
−

K∑
l=1

S0 (σl)
σC+1
l

1− σl

K∏
j=1, j 6=l

1

1− σj/σl

=

(
K∏
k=1

1

1− σk

)
·

(
S0(1)−

K∑
l=1

S0 (σl)σ
C+1
l

K∏
j=1, j 6=l

1− σj
1− σj/σl

)
.

(8)

To prove Lemma 2, it remains to show that S0(x) =
∑C

i=0 (‖ρ‖ /x)i/i!. This is done by

expressing S0(x) in terms of cumulative Poisson probabilities. That is, using (4),

S0(x) =
∑

b :‖b‖6C

R∏
r=1

(ρr/x)br

br!

= e‖ρ‖/x
∑

b :‖b‖6C

P
(
P
(ρ1

x

)
= b1, ...,P

(ρR
x

)
= bR

)

= e‖ρ‖/xP

(
R∑
r=1

P
(ρr
x

)
6 C

)
= e‖ρ‖/xP

(
P

(
‖ρ‖
x

)
6 C

)
=

C∑
i=0

(‖ρ‖ /x)i

i!
,

which concludes the proof. �
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Although Lemma 2 provides an elegant expression for the normalization constant, the numerical

evaluation of the marginal queue-length distributions may still be hard due to the potentially

large state space. Additionally, the way in which the queue lengths are dependent on each

other cannot be easily seen from the stationary distribution (2). We resolve these issues by

working in a scaling regime, that will be introduced in the next subsection, and in which the

stationary distribution exhibits easy-to-interpret behavior. The asymptotic findings can be

used to devise approximations for the unscaled system, as will be pointed out in Section 6.

2.3. The scaling regime. When distributions do not allow a closed-form analysis, a com-

monly used approach in applied probability is to resort to scaling limits. The main idea is

to parametrize (a subset of) the system parameters by n, with the objective to arrive at an

explicit limiting distribution as n→∞. It is often not a priori clear how this parametrization

should be done; finding a scaling that leads to useful and meaningful results in the limit is an

art on its own. The resulting limiting distribution can be used to produce approximations for

the pre-limit system.

In their celebrated 1981 paper, Halfin and Whitt [12] introduced an important new scaling for

many-server queues. The asymptotic regime considered corresponds to letting the workload

ρ and the number of servers C grow to infinity in such a way that (C − ρ)/√ρ converges

to a constant β̄ > 0. In the specific context of the Erlang loss model, an appropriately

normalized version of the queue length then asymptotically behaves as a normal random

variable truncated at β̄ [12, Theorem 3]. The scaling we impose in our network setting is

inspired by the Halfin-Whitt regime, in that we also scale the parameter ρ and the total

number of customers C.

We now give a precise definition of the scaling we impose in this paper. Let ν1, ..., νR, α1, ..., αK ∈
R and w1, ..., wR, c1, ..., cK > 0 be scaling parameters for individual stations. It proves useful

to assume without loss of generality that ν1 > ... > νR and that α1 6 ... 6 αK . We scale the

system parameters as follows:

◦ we replace ρr by ρ
(n)
r for each r ∈ {1, ..., R},

◦ we replace σk by σ
(n)
k for each k ∈ {1, ..., K},

◦ we replace C by Cn,

where

ρ(n)
r = wr n

νr , σ
(n)
k :=

n

n+ cknαk
,

which can be interpreted as scaled traffic loads, and where for β > 0 and γ := max{1− α1,
1
2
ν1},

we let the total number of customers be defined as

Cn :=
⌊∥∥ρ(n)

∥∥+ βnγ
⌋
. (9)

Observe that in this scaling regime, the traffic loads of the infinite-server stations become

arbitrarily large as n→∞ (provided ν1, ..., νR > 0), and the traffic loads of the single-server

stations tend to 1 as n→∞ (provided α1, ..., αK < 1). To account for the large queue lengths

that are inherent for these traffic loads, also the population size Cn grows (at a suitable pace)

as n→∞.

Our precise choice (9) for Cn can be motivated as follows. It turns out that, to get non-

degenerate limits, the total number of customers should be picked such that it equals the mean



SCALING LIMITS FOR CLOSED PRODUCT-FORM QUEUEING NETWORKS 9

of ‖B‖ increased by a constant β times the largest of the standard deviations of all queue

lengths. As argued in Remark 1, when the total number of customers is large, Br behaves as

P(ρr) = P(ρ
(n)
r ), which has standard deviation

√
ρ(n)
r

=
√
wr n

1
2
νr . In addition, when σk < 1,

Dk behaves as G (1− σk) = G (1− σ(n)
k ), which has standard deviation
√
σ

(n)
k

1− σ(n)
k

∼ 1

ck
n1−αk .

Since ν1 > ... > νR and α1 6 ... 6 αK , the largest standard deviation is attained by either B1

or D1. Note that the first case applies if 1− α1 <
1
2
ν1, and the second if 1− α1 >

1
2
ν1. These

observations, and the fact that the population size must be an integer, intuitively explain our

choice (9) for Cn.

Under our scaling the queue lengths B at the infinite-server stations and the queue lengths D

at the single-server stations depend on n. In the sequel we let B(n) and D(n), respectively,

denote the corresponding random vectors. Our objective is to analyze their behavior as n→∞.

Since their means may become arbitrarily large with n, we consider normalized versions: for

r ∈ {1, . . . , R} and k ∈ {1, . . . , K},

B̄(n)
r :=

B
(n)
r − ρ(n)

r√
ρ

(n)
r

, and D̄
(n)
k := (1− σ(n)

k )D
(n)
k . (10)

3. Results

In this section, we derive the asymptotic joint distribution of (B̄(n), D̄(n)). The remaining

queue length, D
(n)
K+1, can then be obtained from the identity∥∥B(n)

∥∥+
∥∥D(n)

∥∥+D
(n)
K+1 = Cn. (11)

Our main result, which holds for ν1, ..., νR > 0 and α1, ..., αK < 1, is presented in Section 3.1.

Section 3.2 presents an adaptation of our main result for networks with only single-server

stations. The remaining cases, where νR 6 0 or αK > 1, are investigated in Section 3.3.

3.1. Main result. We first consider the case where the traffic loads are large at all stations.

That is, we assume that ν1, ..., νR > 0 (the traffic loads at infinite-server stations tend to

infinity) and α1, ..., αK < 1 (the traffic loads at single-server stations tend to 1). We study

the normalized queue lengths (B̄(n), D̄(n)) by means of their joint Laplace-Stieltjes transform

(LST). We define this LST using (10):

Pn(s, t) := E

(
R∏
r=1

e−srB̄
(n)
r

K∏
k=1

e−tkD̄
(n)
k

)

=
∑

b,d : ‖b‖+‖d‖6Cn

 R∏
r=1

e
−sr br−ρ

(n)
r√

ρ
(n)
r

 ·( K∏
k=1

e−tk(1−σ(n)
k )dk

)
P(B(n) = b,D(n) = d).

(12)

It is noted that strictly speaking Pn(s, t) is not an LST, as the random variables B̄
(n)
r may

attain negative values. This feature does not affect the upcoming analysis, including the

application of Lévy’s convergence theorem, and hence we will stick to the term LST.
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Our main theorem, to be proved in Section 4, gives an explicit expression for the limit of Pn(s, t)

as n→∞, from which we can directly derive the asymptotic distribution of (B̄(n), D̄(n)).

A bit of notation is necessary for the statement of the main theorem. First, for a standard-

normally distributed random variable, we write

φ(x) =
1√
2π
e−

1
2
x2

for its density function and Ψ(x) := Φ(x)/φ(x) for its Mills ratio, i.e. its distribution function

divided by its density function. Secondly, let R− 6 R be the largest integer such that

ν1 = ν2 = ... = νR− and let K− 6 K be the largest integer such that α1 = α2 = ... = αK− . Let

W :=
R−∑
r=1

wr and λ(s) :=

β +
R−∑
r=1

sr
√
wr

√
W

.

In addition, define

κjl(t) :=
cj(1 + tj)

cj(1 + tj)− cl(1 + tl)
, ζ(t) := 1−

K−∑
l=1

(
K−∏

j=1, j 6=l

κjl(t)

)
e−βcl(1+tl),

η(s, t) := Ψ (λ(s))−
K−∑
l=1

(
K−∏

j=1, j 6=l

κjl(t)

)
Ψ
(
λ(s)− cl(1 + tl)

√
W
)
,

ξ(s) := Φ (λ(s)) and χ(s) := φ(λ(s)).

With this notation, we can state the main theorem as follows.

Theorem 1. Consider a queueing network with stationary distribution (2). Assume that

νR > 0 and that αK < 1. Then the joint LST Pn(s, t) of (B̄(n), D̄(n)) satisfies

lim
n→∞

Pn(s, t) =

(
R∏
r=1

e
1
2
s2r

)(
K∏
k=1

1

1 + tk

)
· U(s, t), (13)

where

U(s, t) :=



ζ(t)

ζ(0)
if 1− α1 >

1
2
ν1,

χ(s)

χ(0)
· η(s, t)

η(0,0)
if 1− α1 = 1

2
ν1,

ξ(s)

ξ(0)
if 1− α1 <

1
2
ν1.

In all three cases we recognize known distributions from the joint LST. Let N1, ...,NR,E1, ...,EK
be independent random variables, the first R having standard-normal distributions and the last

K having unit-rate exponential distributions. In the corollary below we claim that the right-

hand side of (13) is the LST of the (R+K)-tuple (NNN ,EEE ) conditioned on Z (NNN R− ,EEE K−) 6 β,

where

Z (NNN R− ,EEE K−) := 1{1−α16 1
2
ν1}

R−∑
r=1

√
wrNr + 1{1−α1> 1

2
ν1}

K−∑
k=1

1

ck
Ek. (14)
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To provide some intuition why this condition makes sense, consider the population size

constraint
∥∥B(n)

∥∥+
∥∥D(n)

∥∥ 6 Cn. Subtracting
∥∥ρ(n)

∥∥ and dividing by nγ on both sides, we

have ∥∥B(n)
∥∥− ∥∥ρ(n)

∥∥
nγ

+

∥∥D(n)
∥∥

nγ
6
Cn −

∥∥ρ(n)
∥∥

nγ
. (15)

Recalling the scaled queue lengths (10), if B̄
(n)
r →d Nr for each r and D̄

(n)
k →d Ek for each k,

the inequality (15) would converge, as n→∞, to Z (NNN R− ,EEE K−) 6 β.

To summarize, Theorem 1 leads to the following corollary.

Corollary 1. As n→∞,

(B̄(n), D̄(n))→d

(
NNN ,EEE

∣∣Z (NNN R− ,EEE K−) 6 β
)
. (16)

Consequently, the random variables B̄
(n)
1 , ..., B̄

(n)
R , D̄

(n)
1 , ..., D̄

(n)
K are asymptotically independent

if either 1− α1 <
1
2
ν1 and R− = 1, or if 1− α1 >

1
2
ν1 and K− = 1.

Proof. With standard integration techniques one can check that the joint Laplace-Stieltjes

transform of the tuple (NNN ,EEE |Z (NNN R− ,EEE K−) 6 β) is precisely as given in Theorem 1 (see

Appendix C), so that the stated follows by Lévy’s convergence theorem. The independence

statement follows from the fact that in the mentioned cases, Z depends on just one random

variable. �

As mentioned, the condition Z (NNN R− ,EEE K−) 6 β relates to the condition that there are at

most Cn customers at the R + K stations. Note that if R− = 1 (equivalently: ν1 is the

unique maximum entry of ν), K− = 1 (equivalently: α1 is the unique minimum entry of α)

and 1 − α1 6= 1
2
ν1, the condition applies to only one random variable, which amounts to a

truncation of that variable.

Remark 2. Corollary 1 implicitly provides the asymptotic distribution of D
(n)
K+1. Dividing

the population size constraint (11) by nγ, we have that

D
(n)
K+1

nγ
=
Cn −

∥∥ρ(n)
∥∥

nγ
−
∥∥B(n)

∥∥− ∥∥ρ(n)
∥∥

nγ
−
∥∥D(n)

∥∥
nγ

.

By (9), (10) and Corollary 1, it thus holds that

D
(n)
K+1

nγ
→d β − (Z (NNN R− ,EEE K−) |Z (NNN R− ,EEE K−) 6 β)

as n→∞. �

3.2. Scaling result for R = 0. So far we have omitted networks consisting of single-server

stations only, because Theorem 1 relies on the value of ν1. In the case that R = 0, however,

this parameter does not exist. With a slight modification, we can establish the counterpart of

Corollary 1 for single-server networks.

Corollary 2. Suppose R = 0 and αK < 1. As n→∞,

D̄(n) →d

(
EEE
∣∣Z (0,EEE K−) 6 β

)
. (17)

The variables D̄
(n)
1 , ..., D̄

(n)
K are thus asymptotically independent if K− = 1.

Proof. The result follows from Corollary 1 by setting ν1 = −∞. �



12 L.R. VAN KREVELD, O.J. BOXMA, J.L. DORSMAN, AND M.R.H. MANDJES

3.3. Scaling results for νR 6 0 and/or αK > 1. Since Theorem 1 only covers the case

where νR > 0 and αK < 1, it remains to analyze its complement in which νR 6 0 and/or

αK > 1. Recall that in Section 2.3, we introduced normalized versions of B(n) and D(n) in

order to preserve finite mean. Note however that for infinite-server stations r with νr 6 0

and for single-server stations k with αk > 1, the unnormalized queue length converges to a

finite-mean random variable. Because of this, it is no longer necessary to normalize in these

cases. For all r ∈ {1, ..., R} for which νr 6 0, we will therefore consider the distribution of the

random variable B
(n)
r instead of B̄

(n)
r . Likewise, for all k ∈ {1, ..., K} for which αk > 1, we

will consider the distribution of the random variable D
(n)
k instead of D̄

(n)
k .

In this regime, a statement similar to Corollary 1 holds, which is given in the following

corollary.

Corollary 3. Assume that ν1 > 0 or α1 < 1. Let I be the smallest integer such that νI 6 0,

and let J be the smallest integer such that αJ > 1. As n→∞,(
B̄

(n)
1 , ..., B̄

(n)
I−1, D̄

(n)
1 , ..., D̄

(n)
J−1

)
→d

(
N1, ...,NI−1,E1, ...,EJ−1

∣∣Z (NNN R− ,EEE K−) 6 β
)
.

Proof. See Appendix B. �

Remark 3. The remaining random variables, i.e. B
(n)
I , ..., B

(n)
R and D

(n)
J , ..., D

(n)
K , all have

finite mean because νI , ..., νR 6 0 and αJ , ..., αK > 1. In the proof of Corollary 3 we will see

that they behave as Poisson random variables with means ρ
(n)
I , ..., ρ

(n)
R and geometric random

variables with parameters 1− σ(n)
J , ..., 1− σ(n)

K , respectively. This implies in particular that,

for each r such that νr < 0 and for each k such that αk > 1, the random variables B
(n)
r and

D
(n)
k become degenerate with value 0 as n→∞. �

Remark 4. Corollary 3 assumes that ν1 > 0 or α1 < 1 because our scaling would not make

sense otherwise. If ν1 6 0 and α1 > 1, the stations’ traffic loads no longer increase with n. �

4. Proof of Theorem 1

In this section we present a proof of our main theorem, Theorem 1, which consists of two parts.

First, in Section 4.1, we derive a structured expression for Pn(s, t) (Lemma 3) relying on

techniques similar to those used in the proof of Lemma 2 (the derivation of the normalization

constant). Then, we discuss this expression piece by piece, already recognizing some known

LSTs and providing intuition.

In the second part of the proof (Section 4.2), we asymptotically analyze in Lemmas 5-8 all

parts of the expression obtained from Lemma 3. In most cases, we can build on a version of

the central limit theorem (Lemma 4) to find the asymptotics. One particular case, however,

requires more subtle asymptotic bounds, and this case is treated in Lemma 8. We finish the

proof by substituting the asymptotically analyzed parts back into the expression for Pn(s, t).

In the proofs, some mathematical expressions will repeatedly appear in our calculations. To

keep these calculations readable, we use the following notation.
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◦ The adapted traffic load for infinite-server station r:

ζ(n)
r (sr) := ρ(n)

r exp

− sr√
ρ

(n)
r

 , ζ(n)(s) :=
R∑
r=1

ζ(n)
r (sr).

◦ The adapted traffic load for single-server station l:

δ
(n)
l (tl) := σ

(n)
l e−tl(1−σ

(n)
l ).

◦ A frequently occurring quantity related to the single-server stations j and l:

y
(n)
jl (tj, tl) :=

1− δ(n)
j (tj)

1− δ(n)
j (tj)/δ

(n)
l (tl)

.

◦ A Poisson probability related to S0(1):

f (n)(s) := P
(
P
(
ζ(n)(s)

)
6 Cn

)
.

◦ A Poisson probability related to S0(δ
(n)
l (tl)):

g
(n)
l (s, tl) := P

(
P
(
ζ(n)(s)/δ

(n)
l (tl)

)
6 Cn

)
.

◦ A quantity appearing in Pn(s, t):

h
(n)
l (s, tl) := exp

(
ζ(n)(s)

(
1

δ
(n)
l (tl)

− 1

))
·
(
δ

(n)
l (tl)

)Cn+1

.

4.1. Structured form of LST. The following lemma gives an exact expression for the LST

Pn(s, t) in terms of the new notation that was introduced above, and forms the backbone of

the proof of Theorem 1.

Lemma 3. The LST of (B̄(n), D̄(n)) satisfies

Pn(s, t) =

(
R∏
r=1

e−ρ
(n)
r +sr

√
ρ
(n)
r +ζ

(n)
r (sr)

)
×

(
K∏
k=1

1− σ(n)
k

1− δ(n)
k (tk)

)

×
f (n)(s)−

K∑
l=1

(
K∏

j=1, j 6=l
y

(n)
jl (tj, tl)

)
g

(n)
l (s, tl)h

(n)
l (s, tl)

f (n)(0)−
K∑
l=1

(
K∏

j=1, j 6=l
y

(n)
jl (0, 0)

)
g

(n)
l (0, 0)h

(n)
l (0, 0)

.

(18)

Proof. Denote by p
(n)
b,d and p

(n)
0 , respectively, the stationary distribution and normalization

constant of the scaled system. Then, we can rewrite the joint LST of (B̄(n), D̄(n)) in (12) as

Pn(s, t) =
∑

b,d : ‖b‖+‖d‖6Cn

 R∏
r=1

e
−sr br−ρ

(n)
r√

ρ
(n)
r

 ·( K∏
k=1

e−tk(1−σ(n)
k )dk

)
p

(n)
b,d

= p
(n)
0

(
R∏
r=1

esr
√
ρ
(n)
r

) ∑
b : ‖b‖6Cn

 R∏
r=1

(
ζ

(n)
r (sr)

)br
br!

 ∑
d : ‖d‖6Cn−‖b‖

(
K∏
k=1

(
δ

(n)
k (tk)

)dk)

= p
(n)
0

(
R∏
r=1

esr
√
ρ
(n)
r

)
S

(n)
K (1),
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where S
(n)
j (x) is obtained from Sj(x) when (ρr, σk, C) is replaced by (ζ

(n)
r (sr), δ

(n)
k (tk), Cn).

Therefore we have by (8) that

Pn(s, t) = p
(n)
0

(
R∏
r=1

esr
√
ρ
(n)
r

)
·

(
K∏
k=1

1

1− δ(n)
k (tk)

)
·(

S
(n)
0 (1)−

K∑
l=1

(
δ

(n)
l (tl)

)Cn+1
( K∏
j=1, j 6=l

y
(n)
jl (tj, tl)

)
S

(n)
0

(
δ

(n)
l (tl)

))

= p
(n)
0

(
R∏
r=1

esr
√
ρ
(n)
r

)
·

(
K∏
k=1

1

1− δ(n)
k (tk)

)
·

(
eζ

(n)(s)P
(
P
(
ζ(n)(s)

)
6 Cn

)
−

K∑
l=1

(
δ

(n)
l (tl)

)Cn+1
( K∏
j=1, j 6=l

y
(n)
jl (tj, tl)

)
e

1

δ
(n)
l

(tl)
ζ(n)(s)

P

(
P

(
1

δ
(n)
l (tl)

ζ(n)(s)

)
6 Cn

))

= p
(n)
0

(
R∏
r=1

esr
√
ρ
(n)
r +ζ

(n)
r (sr)

)
·

(
K∏
k=1

1

1− δ(n)
k (tk)

)
·(

f (n)(s)−
K∑
l=1

( K∏
j=1, j 6=l

y
(n)
jl (tj, tl)

)
g

(n)
l (s, tl)h

(n)
l (s, tl)

)
. (19)

Using Pn(0,0) = 1 we find that p
(n)
0 equals(

R∏
r=1

e−ρ
(n)
r

)
·

(
K∏
k=1

(
1− σ(n)

k

))
·

(
f (n)(0)−

K∑
l=1

( K∏
j=1, j 6=l

y
(n)
jl (0, 0)

)
g

(n)
l (0, 0)h

(n)
l (0, 0)

)−1

,

and after substituting this back in (19), the proof is completed. �

The expression for Pn(s, t) in Lemma 3 is a product of three factors (separated by the ×-

symbols). These factors, say u
(n)
1 , u

(n)
2 , and u

(n)
3 , each play an intuitively appealing role in

relation to Corollary 1. More specifically, our analysis below reveals that as n → ∞ the

first two factors u
(n)
1 and u

(n)
2 correspond to the transforms of the normal and exponential

distribution, respectively. In addition, we show that as n→∞ the factor u
(n)
3 (which is the

second line of (18)) immediately relates to the condition Z (NNN R− ,EEE K−) 6 β. As will become

clear in the proofs, the factor u
(n)
3 is significantly more subtle to analyze than the factors u

(n)
1

and u
(n)
2 .

Let us start with u
(n)
1 . By applying a standard Taylor expansion to exp(−sr/

√
ρr

(n)) around

zero, we obtain

exp

(
−ρ(n)

r + sr

√
ρ

(n)
r + ζ(n)

r (sr)

)

= exp

−ρ(n)
r + sr

√
ρ

(n)
r + ρ(n)

r

1− sr√
ρ

(n)
r

+
s2
r

2ρ
(n)
r

+ o

(
1

ρ
(n)
r

) . (20)

As n→∞, Expression (20) converges to exp(1
2
s2
r), which can be recognized as the transform

E (exp(−srN )) of a standard-normal random variable N . From this we can conclude that,

as n→∞, u
(n)
1 converges to a product of R standard-normal LSTs.
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For u
(n)
2 , we can apply the same strategy: for each k and αk < 1, as n→∞, we have σ

(n)
k → 1

so that we can apply a Taylor expansion to exp(−tk(1− σ(n)
k )) around zero. Therefore,

1− σ(n)
k

1− δ(n)
k (tk)

=
1− σ(n)

k

1− σ(n)
k (1− tk(1− σ(n)

k ) + o(1− σ(n)
k ))

=
1− σ(n)

k

(1− σ(n)
k )(1 + σ

(n)
k tk) + o(1− σ(n)

k )
. (21)

As n → ∞, Expression (21) converges to (1 + tk)
−1, which is the LST of an exponentially

distributed random variable with rate 1. This implies that, as n → ∞, u
(n)
2 converges to a

product of K unit-rate exponential LSTs.

With the asymptotic behavior of u
(n)
1 and u

(n)
2 at hand, to prove Theorem 1 it remains to

analyze u
(n)
3 . To this end, we inspect the behavior of the functions f (n)(s), g

(n)
l (s, tl) and

h
(n)
l (s, tl) in the limiting regime for n→∞, distinguishing different values of α1 and αl. This

analysis is covered by the next subsection.

In addition to f (n)(s), g
(n)
l (s, tl) and h

(n)
l (s, tl), the sequence u

(n)
3 also contains the coefficients∏K

j=1, j 6=l y
(n)
jl (tj, tl) for each single-server station l = 1, ..., K. Multiplying the numerator and

denominator of

y
(n)
jl (tj, tl) =

1− δ(n)
j (tj)

1− δ(n)
j (tj)/δ

(n)
l (tl)

by n/δ
(n)
j (tj), it follows that

y
(n)
jl (tj, tl) =

n
(
etj(1−σ

(n)
j ) − 1

)
+ cjn

αjetj(1−σ
(n)
j )

n
(
etj(1−σ

(n)
j ) − etl(1−σ

(n)
l )
)

+ cjnαje
tj(1−σ

(n)
j ) − clnαletl(1−σ

(n)
l )

. (22)

As αj, αl < 1, we have

y
(n)
jl (tj, tl) ∼

cj(1 + tj)

cj(1 + tj)− clnαl−αj(1 + tl)
→


0 if αj < αl,

cj(1 + tj)

cj(1 + tj)− cl(1 + tl)
if αj = αl,

1 if αl < αj,

(23)

as n→∞. In particular, it holds that

lim
n→∞

K∏
j=1, j 6=l

y
(n)
jl (tj, tl) = 0 ⇐⇒ αl > α1.

This fact has an intuitive backing: we expect the condition in Corollary 1 to apply only to

the stations with largest variability in queue lengths. For single-server stations, these are the

stations l for which αl is minimal.

4.2. Asymptotic analysis of f (n)(·), g(n)
l (·, ·) and h

(n)
l (·, ·). In Lemmas 5-8 we explicitly

analyze the asymptotic behavior of the functions f (n)(s), g
(n)
l (s, tl) and h

(n)
l (s, tl) for all values

of the parameters α and ν. To evaluate the cumulative Poisson probabilities appearing in

f (n)(s) and g
(n)
l (s, tl), we require an additional central-limit type result given in Lemma 4. All

lemmas in this subsection are proved in Appendix A.
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Lemma 4. Suppose xn → ∞ as n → ∞. If (Cn − xn)/
√
xn → Q with Q ∈ [−∞,∞], then

P (P(xn) 6 Cn)→ Φ(Q) as n→∞.

We proceed by determining the asymptotic behavior of the functions f (n)(s), g
(n)
l (s, tl) and

h
(n)
l (s, tl) as n→∞. This behavior is highly dependent on the values of ν1, α1 and αl, so that

it is necessary to distinguish various cases. In most cases standard asymptotic methods suffice

(Lemmas 5–7), but one particular case requires a more refined approach (Lemma 8).

Lemma 5. As n→∞,

f (n)(s)→

{
1 if 1− α1 >

1
2
ν1,

Φ (λ(s)) if 1− α1 6 1
2
ν1.

Lemma 6. As n→∞,

g
(n)
l (s, tl)→

{
1 if 1− α1 = 1− αl > 1

2
ν1,

Φ
(
λ(s)− cl(1 + tl)

√
W
)

if 1− α1 = 1− αl = 1
2
ν1.

Lemma 7. As n→∞,

h
(n)
l (s, tl)→



0 if 1− α1 > 1− αl and 1− α1 > ν1,

0 if ν1 > 1− α1 > 1− αl > 1
2
ν1,

exp (−βcl(1 + tl)) if 1− α1 = 1− αl > 1
2
ν1,

φ(λ(s))

φ
(
λ (s)− cl(1 + tl)

√
W
) if 1− α1 = 1− αl = 1

2
ν1.

The above lemmas treat all cases where either 1−α1 > ν1 or 1−αl > 1
2
ν1. Although g

(n)
l (s, tl)

is not evaluated in all these cases, observe that in (18) this function only occurs as the product

g
(n)
l (s, tl)h

(n)
l (s, tl). Since g

(n)
l (s, tl) ∈ [0, 1], it follows that its specific value is irrelevant as

long as h
(n)
l (s, tl)→ 0. We conclude that only the case where both 1−α1 < ν1 and 1−αl < 1

2
ν1

remains.

This last case requires a more subtle reasoning. Since g
(n)
l (s, tl)→ 0 and h

(n)
l (s, tl)→∞ as

n→∞, we must analyze the product of the two functions before taking the limit. The proof

of Lemma 8 relies on a change-of-measure argument.

Lemma 8. If 1− α1 < ν1 and 1− αl < 1
2
ν1, then g

(n)
l (s, tl)h

(n)
l (s, tl)→ 0 as n→∞.

We have now collected all the ingredients to establish the asymptotic expression for Pn(s, t)

as presented in Theorem 1.

Proof of Theorem 1. The result is a consequence of Lemma 3 when substituting Equations

(20), (21), and (23), in combination with the functions that we asymptotically evaluated in

Lemmas 5–8 (both for general s, t and for s = t = 0, that is). �

5. Applications

Corollary 1 describes the asymptotic joint queue-length distribution under our scaling. This

result may serve as the basis for approximations of the pre-limit distribution, which can be
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Figure 2. Extended machine-repair model.

Figure 3. Equivalent closed network.

used e.g. when designing the network. Closed queueing networks can be broadly applied, as

they can be used to represent for instance hospital units, computer systems, communication

networks and manufacturing systems. In this section we discuss two illustrative examples.

Example 1 (Extended machine-repair model). In the extended machine-repair model, prod-

ucts that require processing arrive at a facility with C machines. If all machines are occupied,

products are blocked and immediately leave the system upon arrival. An occupied machine

may break down, and resumes processing only after it has been repaired by a single repairer.

It is hereby assumed that a product remains assigned to the same machine for the duration

of its service, even if the machine breaks down intermediately. An in-depth analysis of this

system can be found in [21].

The queueing dynamics of this facility are visualized in Figure 2. The network is open, but by

the discussion in Section 2.1 it is equivalent to a closed network with two single-server stations

(the external station and the repair station) and an infinite-server station (processing station).

This closed network is depicted in Figure 3, and under the conditions described in Section 2 it

obeys a product-form distribution (2).

Corollary 1 then states that the normalized numbers of occupied and broken machines tend to

a normal and exponential distribution respectively, with a condition depending on the values

of the chosen scaling parameters. If 1− α1 >
1
2
ν1, the limiting distribution of the number of

broken machines is truncated at c1β. If 1− α1 <
1
2
ν1, the limiting distribution of the number

of occupied machines is truncated at β/
√
w1. Finally, if 1− α1 = 1

2
ν1, the condition amounts

to
√
w1N1 + 1

c1
E1 6 β, which in particular implies dependence between the queue lengths. �

Example 2 (Vehicle sharing system). In modern society the demand for flexible transportation

has led to the development of vehicle sharing systems. In such systems, a number of vehicles

is scattered among a fixed number of locations. Users may pick up a vehicle at any location
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Figure 4. Vehicle sharing system illustrated as a closed queueing network with

single-server stations (pick-up locations) and infinite-server stations (IS).

(if available) and drop it off at any, possibly different, location. To accurately describe the

behavior of such a system, a well-fitting model is important.

Closed queueing networks are often used in modeling vehicle sharing systems, see e.g. George

and Xia [10]. In this model, the population size C is the total number of vehicles across

the network. The pick-up (and drop-off) locations are modeled by single-server queues, and

between each ordered pair of pick-up locations, an infinite-server queue is used to describe the

time spent by a user between these locations. See Figure 4 for an example with three pick-up

locations.

Notice that the number of stations used to model the network grows quadratically in the number

of pick-up locations. For this reason, vehicle-sharing systems quickly become analytically

and numerically intractable when the number of pick-up locations increases. The result of

Corollary 1, however, does not become more complex as the number of stations grows. Under

typical circumstances R− and K− are low and the asymptotic queue-length distributions are

therefore (asymptotically) tractable. �

6. Numerical illustrations

In Section 4 we have established a convergence-in-distribution result for the random vector

(B̄(n), D̄(n)). In this section we will discuss the performance of approximations based on this

scaling limit. In Section 6.1, we assess the pre-limit distributions by means of numerical

experiments, and compare them to the limiting distributions of Corollary 1. Importantly, the

number of scaling parameters (relating to the vectors w, ν, c and α and the scalar β) exceeds

the number of parameters of our pre-limit model (i.e., the vectors ρ and σ and the scalar C).

This leaves us with some freedom to choose the scaling parameters; using an example network,

we show in Section 6.2 how this can be done. For the numerical results in this section, we

depend on simulation to evaluate the queue-length distributions, since their exact computation

is challenging due to the state-space explosion (recall the discussion at the end of Section 2.2).

6.1. Accuracy of approximation. We start by considering networks consisting of a large

number of stations — for instance, one can think of a vehicle-sharing system from Section 5
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Values of ν1, α1, α2

Condition on the joint

distribution of (B̄
(n)
1 , D̄

(n)
1 , D̄

(n)
2 )

Case 1 1− α1 > 1− α2, 1− α1 >
1
2
ν1

1
c1
D̄

(n)
1 6 β

Case 2 1− α1 = 1− α2 >
1
2
ν1

1
c1
D̄

(n)
1 + 1

c2
D̄

(n)
2 6 β

Case 3 1− α1 = 1− α2 = 1
2
ν1

√
w1B̄

(n) + 1
c1
D̄

(n)
1 + 1

c2
D̄

(n)
2 6 β

Case 4 1− α1 = 1
2
ν1 > 1− α2

√
w1B̄

(n) + 1
c1
D̄

(n)
1 6 β

Case 5 1− α1 <
1
2
ν1

√
w1B̄

(n) 6 β

Table 1. Five cases for the values of ν1, α1, α2 and the corresponding condition

on the joint distribution of (B̄
(n)
1 , D̄

(n)
1 , D̄

(n)
2 ).

ν1 α1 α2 w1 c1 c2 β n

Case 1 1 −1 0 1 1 1 1 15

Case 2 1 0.1 0.1 1 1 2 1 100

Case 3 1 0.5 0.5 1 1 2 1 100

Case 4 1 0.5 0.8 1 1 1 1 100

Case 5 1 0.9 0.9 1 1 1 1 100

Table 2. Scaling parameter values for the plots in Figure 5.

with ten pick-up locations, which has more than a hundred stations. We consider a setting with

R− = 1 and K− = 2. This entails by Corollary 1 that the variables B̄
(n)
2 , ..., B̄

(n)
R converge to

independent standard-normal random variables, and that D̄
(n)
3 , ..., D̄

(n)
K converge to independent

unit-rate exponential random variables. The asymptotic distributions of B̄
(n)
1 , D̄

(n)
1 and D̄

(n)
2

are less trivial because they may be affected by the condition Z (NNN R− ,EEE K−) 6 β. Figure

5 therefore focuses on these random variables: it shows their density functions, estimated

by simulation. Strictly, the variables B̄
(n)
1 , D̄

(n)
1 and D̄

(n)
2 have probability masses instead of

densities for finite n since they are discrete. However, we consider the scaled mass functions

of these variables and refer to them as densities in the sequel, so as to facilitate comparison

with their limits as n→∞.

How the condition Z (NNN R− ,EEE K−) 6 β impacts the distributions of B̄
(n)
1 , D̄

(n)
1 and D̄

(n)
2

depends mainly on the values of ν1, α1 and α2, see Table 1. The five different cases are visible

in the rows of Figure 5. In cases 1 and 5, the condition applies to only one random variable,

which causes the associated density function to be truncated at β.

In all of the cases the density of B̄
(n)
1 resembles the normal density, whereas the densities

of D̄
(n)
1 and D̄

(n)
2 resemble the exponential density. At a more detailed level, Figure 5 also

shows the impact of the different conditions (i.e. the five cases that were displayed in Table

2). In cases where B̄
(n)
1 (or D̄

(n)
1 , D̄

(n)
2 ) is not part of the condition, its density function is

simply a slightly perturbed version of that of a standard normal (or unit-rate exponential).

On the other hand, in cases where B̄
(n)
1 (or D̄

(n)
1 , D̄

(n)
2 ) is part of the condition, we see that

the corresponding random variable is less likely to assume larger values. We conclude that the
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Figure 5. Density functions of B̄
(n)
1 , D̄

(n)
1 and D̄

(n)
2 , estimated by simulation,

depending on the values of the scaling parameters ν1, α1, α2. The exact parameter

values for the five cases (top to bottom) can be found in Table 2.

structure of the limit distributions, as identified in Corollary 1, carries over to the pre-limit

setting.

6.2. Fitting scaling parameters. In the remainder of this section we show how to use our

scaling regime in a concrete queueing network model. The extended machine-repair model

described in Section 5 will serve as an example. The goal is to compare the actual queue-length

distributions (obtained by simulation) to the limiting distributions in the scaling regime (as

stated in Corollary 1).

To compare the behavior of the queue lengths under these parameter sets with our limit

results, we have to choose appropriate scaling parameters. Since we have 2R + 2K + 1 scaling

parameters (the entries of the vectors w, ν, c, and α and the scalar β) compared to only

R+K + 1 model parameters (the entries of the vectors ρ and σ and the scalar C), this can be

done in many different ways. Choosing appropriate scaling parameters is important, because

not all choices lead to accurate approximations. The following intuitive procedure may serve

as a guideline.

(1) First select which stations are dominant, i.e. the stations whose queue lengths will be

incorporated in the condition Z (NNN R− ,EEE K−) 6 β. These should correspond to the

queue lengths with largest variance, as these are affected most by the population size

constraint. These variances are, respectively, ρ1, ..., ρR, σ1/(1− σ1)2, . . . , σK/(1− σK)2
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(if we drop the population size constraint). There is some freedom in choosing the

number of dominant stations. Working with more dominant stations yields a limit

result that is more accurate but whose evaluation is more complex.

(2) Choose values for ν and α such that the dominant stations are indeed affected by the

condition, and the remaining stations are not.

(3) Fix n, and choose values for w, c, β such that the scaled network coincides with the

network under consideration.

With these underlying ideas, one may choose scaling parameters as follows.

(1) Let A denote the set of dominant stations, which we construct as follows. Order the

variances ρ1, ..., ρR, σ1/(1− σ1)2, . . . , σK/(1− σK)2 from high to low. Include in A the

smallest number of stations with highest variance, such that

∑
r∈A

ρr +
∑
k∈A

σk
(1− σk)2

> T ·

(
R∑
r=1

ρr +
K∑
k=1

σk
(1− σk)2

)

for some threshold fraction T 6 1. That is, choose the largest variances such that the

sum of these variances makes up for at least a fraction T of the total variance. The best

value of T may depend on the model at hand and the trade-off between accuracy and

complexity discussed above. We empirically observed that picking T = 0.8 provides

rather accurate approximations in most cases.

(2) For r, k ∈ A and some x > 0, choose values for νr, αk such that 1
2
νr = 1 − αk =

γ := max{1
2
ν1, 1− α1}. It turns out that the value γ may be chosen arbitrarily, since

each value leads to the same limit result (see the discussion below). For r, k /∈ A,

choose values for νr, αk such that 1
2
νr < γ and 1− αk < γ (the exact values are again

irrelevant).

(3) Pick any value for n. Then choose values for w1, ..., wR such that ρ(n) = ρ, values for

c1, ..., cK such that σ(n) = σ and β such that Cn = C.

Despite the freedom in choosing scaling parameters, we underline that the decision for the

set of dominant stations A completely determines the limit result. This can be verified with

the following argument. For non-dominant stations, observe that the queue lengths converge

to standard-normal and unit-rate exponential variables regardless of the scaling parameters.

The queue-length distributions of the dominant stations on the other hand, depend on the

condition
∑

r∈A
√
wrNr +

∑
k∈A

1
ck

Ek 6 β. It therefore seems like the distributions of the

dominant queue lengths depend on the values of w, c and β. However, the identities ρ(n) = ρ,

σ(n) = σ and Cn = C imply that wr = ρrn
−2γ for r ∈ A, ck = (σ−1

k − 1)nγ for k ∈ A and

β = (C − ‖ρ‖)n−γ. With these scaling parameter values, the factor n−γ cancels out of the

condition, which makes the values of n and γ irrelevant for the limit result.

We now move to the extended machine-repair model (described in Section 5) for a concrete

numerical example of the steps above. Recall that in this model, the queue lengths of interest

are the number of occupied machines and the number of broken machines. We denote these

random variables by B1 and D1 respectively. The model has three parameters: the total

number of machines C, the traffic load of the processing station ρ1, and the traffic load of the

repair station σ1. Consider the three sets of parameter values shown in Table 3.
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C ρ1 σ1

Parameter set 1 100 40 0.99

Parameter set 2 100 90 0.90

Parameter set 3 100 90 0.66

Table 3. Three parameter sets of the extended machine-repair model.

ν1 α1 w1 c1 β n

Scaling parameter set 1 1 −0.24567 1 1 0.61 40

Scaling parameter set 2 1 0.5 1 1.054 1.1 90

Scaling parameter set 3 1 0.8526 1 1 1.1 90

Table 4. Scaling parameter sets generating the same system as the parameter

sets in Table 3.

Figure 6. Density functions of B̄
(n)
1 (left) and D̄

(n)
1 (right) for parameter set 1,

both for n = 40 (dots) and for n→∞ (line).

Following the steps above, we find the scaling parameters given in Table 4. Note that by

definition of our scaling regime, taking scaling parameter set 1 induces precisely the machine-

repair model with parameter set 1. Hence, for this parameter set, comparing the actual

queue-length distributions and our limit results amounts to comparing n = 40 and n→∞.

The same holds for n = 90 and parameter sets 2 and 3.

In Figures 6–8 we show plots of the density functions of B̄
(n)
1 and D̄

(n)
1 for each parameter set,

obtained by simulation. For comparison, the densities are plotted against the limit results of

Corollary 1.

Parameter set 1. Observe that 1− α1 >
1
2
ν1. Corollary 1 states in this case that

B̄
(n)
1 →d N1, D̄

(n)
1 →d (E1 |E1 6 β)

as n→∞. Therefore, we have plotted in Figure 6 the densities of B̄
(40)
1 and D̄

(40)
1 (obtained

through simulation) against respectively a standard-normal density and a unit-rate exponential

density truncated at β.

Parameter set 2. Observe that 1− α1 = 1
2
ν1. Corollary 1 states for 1− α1 = 1

2
ν1 that

(B̄
(n)
1 , D̄

(n)
1 )→d (N1,E1|N1 + E1 6 β)
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Figure 7. Density functions of B̄
(n)
1 (left) and D̄

(n)
1 (right) for parameter set 2,

both for n = 90 (dots) and for n→∞ (line).

Figure 8. Density functions of B̄
(n)
1 (left) and D̄

(n)
1 (right) for parameter set 3,

both for n = 90 (dots) and for n→∞ (line).

as n→∞. Therefore, Figure 7 plots the densities of B̄
(90)
1 and D̄

(90)
1 against respectively the

densities of (N1 |N1 + E1 6 β) and (E1 |N1 + E1 6 β).

Parameter set 3. Observe that 1− α1 <
1
2
ν1. Corollary 1 states in this case that

B̄
(n)
1 →d (N1 |N1 6 β), D̄

(n)
1 →d E1

as n→∞. Therefore, Figure 8 plots the densities of B̄
(90)
1 and D̄

(90)
1 against respectively a

standard-normal density truncated at β and a unit-rate exponential density.

Figures 6–8 show that for a network with C = 100, Corollary 1 provides rather accurate

approximations of the queue-length densities. In relatively small networks there is the obvious

alternative of direct evaluation of the product-form density. For larger networks this will

lead to computational issues, whereas the complexity of our asymptotic results is just mildly

affected by the network size.

7. Discussion & further research

For a broad class of queueing networks, such as those of BCMP type, the joint queue-length

distribution has a product-form structure. It may seem to lend itself well to numerical

evaluation, but in case of closed networks the population size constraint makes this a non-

trivial task. To overcome such computational issues, we have proposed a scaling regime,

inspired by the Halfin-Whitt scaling. The corresponding limiting joint stationary queue-length

distribution is transparent, numerically tractable and provides insight into the dependencies

between the individual queue lengths. We point out how to map our scaling parameters on
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those of the queueing network under consideration. A series of numerical experiments shows

that the resulting approximations are close to the true (pre-limit, that is) values.

Scaling methods in queueing networks form a rich research area in which there is still ample

room to extend our current results. One option is to include multi-server stations in the

network. As the queue lengths become very large in our scaling regime, we expect that such a

station would effectively behave as a single-server station, with the service rate multiplied by

the number of servers. A formal proof may be challenging.

Another model extension preserving product form relates to multiclass networks. In these

models customers may be of different classes, where each class may have its specific routing

and service requirements. The product form of the stationary distribution is preserved under

class-dependent routing probabilities and, for certain station types, under class-dependent

service requirements. Many queueing network results apply to multiclass networks, but scaling

analysis becomes more involved, primarily because each customer class now has its own

population size.

Further research efforts could focus on exploiting our scaling results for design and optimization

purposes. In addition, as we have indicated, our scaling method provides freedom in relation

to the choice of the scaling parameters, which raises the question how to choose the entries of

w,ν, c,α and β so as to maximally accurately represent the underlying queueuing network.
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Appendix A. Proofs of Section 4

Lemma 4. Suppose xn → ∞ as n → ∞. If (Cn − xn)/
√
xn → Q with Q ∈ [−∞,∞], then

P (P(xn) 6 Cn)→ Φ(Q) as n→∞.

Proof. Observe that a Poisson random variable with mean m ∈ N can be written as a sum

of m Poisson random variables with mean 1. Therefore, with (Xi)i∈N, (Yi)i∈N i.i.d. copies of

P (1),

bxnc∑
i=1

Xi =d P(bxnc) 6st P(xn) 6st P(dxne) =d

dxne∑
i=1

Yi.

Substracting xn and dividing by
√
xn yields

1
√
xn

bxnc∑
i=1

(Xi − 1)− xn − bxnc√
xn

6st
P(xn)− xn√

xn
6st

1
√
xn

dxne∑
i=1

(Yi − 1) +
dxne − xn√

xn
.

Appropriately rewritten as

1√
bxnc+O(1)

bxnc∑
i=1

(Xi − 1)− O(1)
√
xn
6st

P(xn)− xn√
xn

6st
1√

dxne −O(1)

dxne∑
i=1

(Yi − 1) +
O(1)
√
xn
,

we may apply the central limit theorem to conclude that (P(xn)− xn)/
√
xn converges to a

standard-normal random variable as xn →∞. Using this observation the result immediately

follows from the fact that

P (P(xn) 6 Cn) = P
(

P(xn)− xn√
xn

6
Cn − xn√

xn

)
→ Φ(Q)
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as xn →∞. �

In the following proofs we write ρr, ζr, σl and δl for ρ
(n)
r , ζ

(n)
r (sr), σ

(n)
l and δ

(n)
l (tl) to simplify

the notation.

Lemma 5. As n→∞,

f (n)(s)→

{
1 if 1− α1 >

1
2
ν1,

Φ (λ(s)) if 1− α1 6 1
2
ν1.

Proof. We start with the case 1− α1 >
1
2
ν1. Note that in this case

Cn =

⌊
R∑
r=1

ρr + βn1−α1

⌋
.

To prove f (n)(s)→ 1, we apply Lemma 4 with

xn =
R∑
r=1

ζr =
R∑
r=1

(ρr − sr
√
ρr + o (

√
ρr))

(so that Q =∞).

For the limit of f (n)(s) in case 1− α1 6 1
2
ν1, an application of Lemma 4 with

xn =
R∑
r=1

ζr =
R∑
r=1

(ρr − sr
√
ρr + o (

√
ρr))

and

Cn =

⌊
R∑
r=1

ρr + βn
1
2
ν1

⌋
leads to

Q = lim
n→∞

Cn − xn√
xn

= lim
n→∞

βn
1
2
ν1 +

R∑
r=1

(
sr
√
ρr + o

(√
ρr
))

√
R∑
r=1

(ρr + o (ρr))

=
β +

∑R−

r=1 sr
√
wr√∑R−

r=1wr

= λ(s).

Recall that R− is defined as the largest integer such that ν1 = . . . = νR− . Hence, if 1−α1 6 1
2
ν1,

then f (n)(s)→ Φ (λ(s)). �

Lemma 6. As n→∞,

g
(n)
l (s, tl)→

{
1 if 1− α1 = 1− αl > 1

2
ν1,

Φ
(
λ(s)− cl(1 + tl)

√
W
)

if 1− α1 = 1− αl = 1
2
ν1.

Proof. The proof for g
(n)
l (s, tl) is similar to the proof for f (n)(s). Suppose first that 1− α1 =

1− αl > 1
2
ν1. Note that with

xn =
R∑
r=1

ζr/δl =
R∑
r=1

ρr
n+ cln

αl

n
exp(−sr/

√
ρr) e

tl(1−σl),



SCALING LIMITS FOR CLOSED PRODUCT-FORM QUEUEING NETWORKS 27

we have

Cn − xn√
xn

=

R∑
r=1

ρr + β
c1
n1−α1 −

R∑
r=1

(
ρr +O(nνr+αl−1)−O(n

1
2
νr)
)

√
R∑
r=1

(ρr + o(ρr))

.

When 1− α1 = 1− αl > 1
2
ν1 we take Q =∞ in Lemma 4, concluding that g

(n)
l (s, tl)→ 1.

Next, for g
(n)
l (s, tl) as 1− α1 = 1− αl = 1

2
ν1, an application of Lemma 4 with

xn =
R∑
r=1

ζr/δl =
R∑
r=1

ρr
n+ cln

αl

n
exp(−sr/

√
ρr) e

tl(1−σl)

and

Cn =

⌊
R∑
r=1

ρr + βn
1
2
ν1

⌋
leads to

Q = lim
n→∞

Cn − xn√
xn

= lim
n→∞

R∑
r=1

ρr + βn
1
2
ν1 −

R∑
r=1

(
ρr + cl(1 + tl)n

αl−1ρr − sr
√
ρr
)

+ o(
√
ρr)√

R∑
r=1

(ρr + o (ρr))

=

β +
R−∑
r=1

(
sr
√
wr − cl(1 + tl)wr

)
√

R−∑
j=1

wr

= λ(s)− cl(1 + tl)
√
W.

We conclude that if 1− α1 = 1− αl = 1
2
ν1, then g

(n)
l (s, tl)→ Φ(λ(s)− cl(1 + tl)

√
W ). �

Lemma 7. As n→∞,

h
(n)
l (s, tl)→



0 if 1− α1 > 1− αl and 1− α1 > ν1,

0 if ν1 > 1− α1 > 1− αl > 1
2
ν1,

exp (−βcl(1 + tl)) if 1− α1 = 1− αl > 1
2
ν1,

φ(λ(s))

φ
(
λ (s)− cl(1 + tl)

√
W
) if 1− α1 = 1− αl = 1

2
ν1.

Proof. We explicitly consider the two components of h
(n)
l (s, tl) separately. In the following

calculations, terms irrelevant as n→∞ will be dealt with using the ‘∼’ symbol. From the

first component of h
(n)
l (s, tl) we extract the leading terms by applying Taylor expansions. As

n→∞, this component can be rewritten as

exp

(
R∑
r=1

ρre
−sr/

√
ρr

(
etl(1−σl)

σl
− 1

))

∼ exp

(
R∑
r=1

ρr(1− sr/
√
ρr)

(
1

σl
− 1 +

tl(1− σl)
σl

+
1
2
t2l (1− σl)2

σl

))
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∼ exp

(
R∑
r=1

wrn
νr(1− sr/

√
wrnνr)

(
cln

αl−1 + tlcln
αl−1 +

1

2
c2
l t

2
l n

2αl−2

))

∼ exp

(
R∑
r=1

(
wrcl(1 + tl)n

αl−1+νr −
√
wrcl(1 + tl)srn

αl−1+ 1
2
νr +

1

2
wrc

2
l t

2
l n

2αl−2+νr

))
. (24)

We continue by considering the second component of h
(n)
l (s, tl). Defining τl(tl) := 1 −

σle
−tl(1−σl) = (1− e−tl(1−σl)) + (1− σl)e−tl(1−σl) and using that 1− σl ∼ cln

αl−1 − c2
l n

2αl−2, we

have for this component that(
σle
−tl(1−σl)

)Cn+1
=
(
σle
−tl(1−σl)

)
exp (Cn ln (1− τl(tl)))

= (1 + o(1)) exp

(
−Cn

(
τl(tl) +

1

2
τl(tl)

2 + o(τl(tl)
2)

))
.

Observing that τl(tl) ∼ (1 + tl)(1− σl)− (1
2
t2l + tl)(1− σl)2, this component thus equals

exp

(
−Cn

(
(1 + tl)(1− σl) +

1

2
(1− σl)2 + o(1− σl)2

))
∼ exp

(
−Cn

(
(1 + tl)(cln

αl−1 − c2
l n

2αl−2) +
1

2
c2
l n

2αl−2

))
= exp

(
−Cn

(
(1 + tl)cln

αl−1 − (
1

2
+ tl)c

2
l n

2αl−2

))
. (25)

When multiplying the two components (24) and (25), we conclude that h
(n)
l (s, tl) ∼ exp(H

(n)
l (s, tl))

as n→∞, with

H
(n)
l (s, tl) := (1 + tl)cln

αl−1

(
R∑
r=1

(
wrn

νr −
√
wrsrn

1
2
νr
)
− Cn

)

+ c2
l n

2αl−2

(
R∑
r=1

1

2
wrt

2
l n

νr + Cn(tl +
1

2
)

)

= −(1 + tl)cln
αl−1

(
R∑
r=1

√
wrsrn

1
2
νr +

(
Cn −

R∑
r=1

wrn
νr

))

+ c2
l n

2αl−2

(
1

2
(1 + tl)

2

R∑
r=1

wrn
νr + (

1

2
+ tl)

(
Cn −

R∑
r=1

wrn
νr

))

= −(1 + tl)cln
αl−1

(
R∑
r=1

√
wrsrn

1
2
νr + βnγ

)

+ c2
l n

2αl−2

(
1

2
(1 + tl)

2

R∑
r=1

wrn
νr + (

1

2
+ tl)βn

γ

)
. (26)

We consider (26) as a reference point from now on, and distinguish four cases:

(1) Suppose that 1 − α1 > 1 − αl and 1 − α1 > ν1. Then γ = 1 − α1 > ν1, so (26) has

leading term −cl(1 + tl)βn
αl−1+γ, which tends to −∞ as n→∞. Hence, in this case

h
(n)
l (s, tl)→ 0 as n→∞.
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(2) If ν1 > 1− α1 > 1− αl > 1
2
ν1, then nαl−1+ 1

2
νr = O(1), hence

h
(n)
l (s, tl) = exp

(
−(1 + tl)

(
O(1) + βcln

1−α1nαl−1
))
×

exp

(
O(1) + βn1−α1(

1

2
+ tl)c

2
l n

2αl−2

)
= exp

(
−(1 + tl)βcln

αl−α1 +O(1)
)
→ 0.

(3) If 1− α1 = 1− αl > 1
2
ν1, then nαl−1+ 1

2
ν1 = o(1), so with (26) we have

h
(n)
l (s, tl) = exp

(
−(1 + tl)

(
O(nαl−1+ 1

2
ν1) + βn1−α1cln

αl−1
))
×

exp
((
O(n2αl−2+ν1) +O(n2αl−2−(α1−1))

))
= exp (−(1 + tl)βcl + o(1))→ exp (−βcl(1 + tl)) .

(4) Finally, if 1− α1 = 1− αl = 1
2
ν1 , then with (26),

h
(n)
l (s, tl) = exp

(
− cl(1 + tl)

(
R∑
r=1

√
wrsrn

αl−1+ 1
2
νr + β

)

+
1

2
c2
l (1 + tl)

2

R∑
r=1

wrn
2αl−2+νr +O(n2αl−2+ 1

2
ν1)

)

→ exp

(
−cl(1 + tl)

(
β +

R−∑
r=1

sr
√
wr

)
+

1

2
c2
l (1 + tl)

2
R−∑
r=1

wr

)

= exp

(
−cl(1 + tl)

√
Wλ(s) +

1

2
c2
l (1 + tl)

2W

)
= exp

(
1

2

(
λ(s)− cl(1 + tl)

√
W
)2

− 1

2
λ(s)2

)
=

φ (λ(s))

φ
(
λ
(
s
)
− cl(1 + tl)

√
W
) .

This completes the proof of Lemma 7. �

Lemma 8. If 1− α1 < ν1 and 1− αl < 1
2
ν1, then g

(n)
l (s, tl)h

(n)
l (s, tl)→ 0 as n→∞.

Proof. Let

x
(n)
l = ζ(n)(s)/δ

(n)
l (tl) =

R∑
r=1

ρ
(n)
r

σ
(n)
l

exp(−sr/
√
ρ

(n)
r ) etl(1−σ

(n)
l );

in the sequel we write just xn for brevity. In this proof, our first objective is to identify the

asymptotics of g
(n)
l (s, tl) = P(P(xn) 6 Cn). To this end, let Pn =d P(xn), and let Q be an

alternative measure under which this Poisson random variable has mean Cn, such that

g
(n)
l (s, tl) = EP (1{Pn 6 Cn}) = EQ (L1{Pn 6 Cn}) ,

with L denoting the likelihood ratio or Radon-Nikodym derivative

L =
dP
dQ

=

(
e−xn(xn)Pn

Pn!

)/(
e−Cn(Cn)Pn

Pn!

)
= eCn−xn

(
xn
Cn

)Pn
.

We thus arrive at

g
(n)
l (s, tl) = eCn−xnEQ

(
(xn/Cn)Pn 1{Pn 6 Cn}

)
.
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Define P̄n := (Pn − Cn)/
√
Cn and recall that, by the central limit theorem, the distribution of

P̄n converges to a standard-normal distribution. In terms of this new random variable, we

have

g
(n)
l (s, tl) = eCn−xn

(
xn
Cn

)Cn
qn, (27)

where

qn := EQ

((
(xn/Cn)

√
Cn
)P̄n

1{P̄n 6 0}
)

=

∫ 0

−∞

((
xn
Cn

)√Cn)y

dFP̄n(y), (28)

with FP̄n(y) being the distribution function of P̄n. The idea is to show that FP̄n(y) behaves as

a standard-normal distribution for sufficiently large Cn, and hence that

qn ∼
∫ 0

−∞

((
xn
Cn

)√Cn)y

φ(y) dy,

where φ(y) is the standard-normal density function in y. To formally achieve this, we bound

FP̄n(y) using the Berry-Esseen theorem. This states that for all Cn large enough,

sup
y

∣∣∣FP̄n(y)− Φ(y)− m3

6
√
Cn

(1− y2)φ(y)− φ(y)l(y)
∣∣∣ = O

(
1√
Cn

)
,

where m3 is the third moment of a Poisson(1) random variable and l(·) is a function that is

bounded by a constant times 1/
√
Cn.

We proceed by analyzing qn using the Berry-Esseen theorem. Observe that (28) contains

the density of P̄n, whereas ‘Berry-Esseen’ concerns a bound in terms of the corresponding

distribution function. Therefore, we apply integration by parts, yielding

qn =

∫ 0

−∞

((
xn
Cn

)√Cn)y

dFP̄n(y) =

∫ 0

−∞
eany

d

dy
(FP̄n(y)− FP̄n(0)) dy

= −
∫ 0

−∞
ane

any (FP̄n(y)− FP̄n(0)) dy, (29)

where an :=
√
Cn ln(xn/Cn). Now applying the Berry-Esseen bound in (29),

qn = −
∫ 0

−∞
ane

any (Φ(y)− Φ(0)) dy +

∫ 0

−∞
ane

any
m3

6
√
Cn

(
(1− y2)φ(y)− φ(0)

)
dy

+

∫ 0

−∞
ane

any (φ(y)l(y)− φ(0)l(0)) dy +

∫ 0

−∞
ane

any ·O
(

1√
Cn

)
dy.

Recall that l(y) = O
(
1/
√
Cn
)
, so the last three integrals contain a term of that order. For

the first integral, we integrate by parts once more to obtain

qn =

∫ 0

−∞
eanyφ(y) dy +

1√
Cn

∫ 0

−∞
ane

anyr(y) dy,
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where r(y) is bounded by a quadratic function. Observe that the second integral converges, so

the second term is O(1/
√
Cn). Therefore, completing the square in the exponent,

qn =

∫ 0

−∞

1√
2π

exp

(
any −

y2

2

)
dy +O

(
1√
Cn

)
= exp

(
a2
n

2

)∫ 0

−∞

1√
2π

exp

(
−1

2
(y − an)2

)
dy +O

(
1√
Cn

)
= exp

(
a2
n

2

)
Φ(−an) +O

(
1√
Cn

)
= exp

(
a2
n

2

)
(1− Φ(an)) +O

(
1√
Cn

)
(30)

using the symmetry of the normal distribution. A known property of the tail of the normal

distribution is

ex
2/2 (1− Φ(x)) ∼ 1

x
√

2π
(31)

as x→∞ (cf. [8, p. 175]). To apply this property to the first term on the right-hand side of

(30), it is necessary to verify that an goes to ∞ as n→∞. This can be seen by relying on a

Taylor expansion, and recalling that 1− α1 < ν1 and 1− αl < 1
2
ν1:

an =
√
Cn ln

xn
Cn

=

√√√√ R∑
r=1

wrnνr + o(nν1) · ln


R∑
r=1

wrn
νr(1 + cln

αl−1)e
− sr√

wrnνr etl(1−σ
(n)
l )

R∑
r=1

wrnνr + o(nν1)


= Ω(n

1
2
ν1) · ln

(
1 + Ω

(
nαl−1

))
= Ω(n

1
2
ν1−(1−αl))→∞

as n→∞, where Ω(un) denotes a sequence vn such that for some constant c > 0 it holds that

limn→∞ vn/un > c. Using property (31) in (30), and substituting the result in (27), we thus

obtain that, as n→∞,

g
(n)
l (s, tl) = eCn−xn

(
xn
Cn

)Cn ( 1

an
√

2π
+O

(
1√
Cn

))
= eCn−xn

(
xn
Cn

)Cn
· o(1).

Multiplying with h
(n)
l (s, tl), and using δ

(n)
l (tl)xn = ζ(n)(s), it holds that

g
(n)
l (s, tl)h

(n)
l (s, tl) = eCn−xn

(
xn
Cn

)Cn
· o(1) · exn−ζ(n)(s)

(
δ

(n)
l (tl)

)Cn+1

= o(1) · eCn−ζ(n)(s)
(
ζ(n)(s)

Cn

)Cn
.

The stated result now follows from writing all terms as exponentials and applying the Taylor

expansion to the logarithm:

g
(n)
l (s, tl)h

(n)
l (s, tl) = o(1) exp

(
Cn − ζ(n)(s) + Cn ln

(
1 +

(
ζ(n)(s)− Cn

Cn

)))
= o(1) exp

(
Cn − ζ(n)(s) + Cn

ζ(n)(s)− Cn
Cn

+O(1)

)
→ 0,

as n→∞. �
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Appendix B. Proof of Corollary 3

Proof of Corollary 3. This proof mimics the proof of Theorem 1. For convenience we write

Tn(s, t) := E

(
I−1∏
r=1

e−srB̄
(n)
r

R∏
m=I

e−smB
(n)
m

J−1∏
k=1

e−tkD̄
(n)
k

K∏
l=J

e−tlD
(n)
l

)
,

which differs from Pn(s, t) in the fact that B
(n)
I , ..., B

(n)
R and D

(n)
J , ..., D

(n)
K are unscaled. We

now follow the line of the proof of Lemma 3, with a few adjustments for the unscaled random

variables:

◦ the factors esm
√
ρ
(n)
m are removed, for m = I, . . . , R,

◦ the variables ζ
(n)
m (sm) are defined as ρ

(n)
m e−sm rather than ρ

(n)
m e−sm/

√
ρ
(n)
m , for m =

I, . . . , R,

◦ tl(1− σl) is replaced by tl, for l = J, . . . ,K.

Hence, Tn(s, t) equals the right-hand side of (18) subject to the adjustments above. The first

term of Tn(s, t) then equals

I−1∏
r=1

e−ρ
(n)
r +sr

√
ρ
(n)
r +ζ

(n)
r (sr)

R∏
m=I

eρ
(n)
m (e−sm−1).

In this expression, the first I − 1 factors are as in (20) and converge to standard-normal LSTs

as n→∞. We recognize the latter R − I + 1 factors as LSTs of Poisson random variables

with mean ρ
(n)
m .

The second term of Tn(s, t) equals

J−1∏
k=1

1− σ(n)
k

1− δ(n)
k (tk)

K∏
l=J

1− σ(n)
l

1− σ(n)
l e−tl

.

With (21), the first J − 1 factors of this expression converge to LSTs of unit-rate exponential

random variables as n→∞, and the second K − J + 1 are easily identified as geometric LSTs

with parameter 1− σ(n)
l .

Following the proofs of Lemmas 5–8, it can be seen that the adjustments do not change the

asymptotic behavior of the last term of Tn(s, t). Therefore, the result follows from Theorem 1

and recognizing known LSTs in the first two terms of Tn(s, t) as described above. �

Appendix C. Proof of Corollary 1

Proof of Corollary 1. This proof amounts to verifying that the LST corresponding to

(NNN ,EEE |Z (NNN R− ,EEE K−) 6 β) equals the right-hand side of (13). This can be done with

standard integration techniques. In this section we illustrate the proof for the case that

1−α1 = 1
2
ν1. We leave out the other two cases, as these can be verified using the precise same

steps.

Rather than the LST of (NNN ,EEE |Z (NNN R− ,EEE K−) 6 β), we consider in this section the LST

of (NNN R− ,EEE K− |Z (NNN R− ,EEE K−) 6 β), which we call Q(s, t). The former LST can simply be
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obtained through multiplying Q(s, t) by R−R− standard-normal LSTs and K−K− unit-rate

exponential LSTs. For 1− α1 = 1
2
ν1, observe that the right-hand side of (13) equals

(
R−∏
r=1

e
1
2
s2r

)(
K−∏
k=1

1

1 + tk

)
· φ(λ(s))

φ(λ(0))
·
Ψ (λ(s))−

K−∑
l=1

(
K−∏

j=1, j 6=l
κjl(t)

)
Ψ
(
λ(s)− cl(1 + tl)

√
W
)

Ψ (λ(0))−
K−∑
l=1

(
K−∏

j=1, j 6=l
κjl(0)

)
Ψ
(
λ(0)− cl

√
W
) .

(32)

Our objective is to show that Q(s, t) equals (32).

To simplify the notation, we write

p := P

(
R−∑
r=1

√
wrNr +

K−∑
k=1

1

ck
Ek 6 β

)
, b̂ :=

R−∑
r=1

br
√
wr, and d̂j :=

j∑
k=1

dk/ck.

By definition of the LST, and with d(bR− ,dk) denoting an abbreviation for db1...dbR− dd1...ddk,

it follows that

Q(s, t) = E

((
R−∏
r=1

e−srNr

)(
K−∏
k=1

e−tkEk

) ∣∣∣ R−∑
r=1

√
wrNr +

K−∑
k=1

1

ck
Ek 6 β

)

=

∫
bR− ,dK− : b̂+d̂K−6β

(
R−∏
r=1

e−srbrφ(br)

)
·

(
K−∏
k=1

e−tkdke−dk

)
· 1

p
d(bR− ,dK−)

=
1

p

(
R−∏
r=1

e
1
2
s2r

) ∫
bR− ,dK− : b̂+d̂K−6β

(
R−∏
r=1

φ (br + sr)

)
·

(
K−∏
k=1

e−(tk+1)dk

)
d(bR− ,dK−).

This expression may be compared to Expression (3), where we encountered a large summation

containing products of Poisson-type and geometric-type factors. Here, we have its continuous

version: an integral containing products of normal and exponential densities. This effectively

means that the proof steps are similar to those of Lemmas 1 and 2: we give a recursive

argument to evaluate the integrals over exponential densities, and a probabilistic approach is

used for the integrals over normal densities.

For intermediate steps where j 6 K− integrals over exponential densities are left, define

Vj(x) = e−λ(s)
√
Wx+ 1

2
Wx2

∫
bR− : b̂6β

(
R−∏
r=1

φ (br + sr −
√
wrx)

)

×

c1(β−b̂)∫
d1=0

e

(
x
c1
−(t1+1)

)
d1 · · ·

cj(β−b̂−d̂j−1)∫
dj=0

e

(
x
cj
−(tj+1)

)
dj

d(bR− ,dj),

(33)

and notice that Q(s, t) = p−1
(∏R−

r=1 e
1
2
s2r

)
VK−(0).

Lemma 9. Vj(x) satisfies the recursion

Vj(x) =
cj

cj(1 + tj)− x
(Vj−1(x)− Vj−1(cj(1 + tj))) .



34 L.R. VAN KREVELD, O.J. BOXMA, J.L. DORSMAN, AND M.R.H. MANDJES

Proof. Integrating (33) over dj yields

Vj(x) = e−λ(s)
√
Wx+ 1

2
Wx2

∫
bR− : b̂6β

(
R−∏
r=1

φ (br + sr −
√
wrx)

)

×

c1(β−b̂)∫
d1=0

e

(
x
c1
−(1+t1)

)
d1 · · ·

cj−1(β−b̂−d̂j−2)∫
dj−1=0

e

(
x

cj−1
−(1+tj−1)

)
dj−1

d(bR− ,dj−1)

× cj
cj(1 + tj)− x

(
1− e(x−cj(1+tj))(β−b̂−d̂j−1)

)
.

Observe that the last exponential contains the indices b1, ..., bR− and d1, ..., dj−1. Carefully

distributing these indices over the corresponding integrals gives

Vj(x) =
cj

cj(1 + tj)− x

(
Vj−1(x)

− e−λ(s)
√
Wcj(1+tj)+

1
2(cj(1+tj)

√
W)

2
∫

bR− : b̂6β

(
R−∏
r=1

φ (br + sr −
√
wrcj(1 + tj))

)

c1(β−b̂)∫
d1=0

e

(
cj(1+tj)

c1
−(1+t1)

)
d1 · · ·

cj−1(β−b̂−d̂j−2)∫
dj−1=0

e

(
cj(1+tj)

cj−1
−(1+tj−1)

)
dj−1

d(bR− ,dj−1)

)

=
cj

cj(1 + tj)− x
(Vj−1(x)− Vj−1(cj(1 + tj))) ,

yielding the stated. �

We are finally ready to show that Q(s, t) is given by (32), which proves Corollary 1. We

proceed as follows: first, we use Lemma 9 to write Q(s, t) in terms of V0(x), for certain x.

A probabilistic argument subsequently gives an expression for the integrals in V0(x). Some

rearrangements then lead to the equality of Q(s, t) and (32).

Since Q(s, t) = p−1
∏R−

r=1 e
1
2
s2r VK−(0), we are interested in the value of VK−(0). For this

variable, Lemma 9 implies

VK−(0) =
1

1 + tK−
(VK−−1(0)− VK−−1(cK−(1 + tK−))) .

Iterating K− times gives an expression of the form

VK−(0) = a V0(0) +
K−∑
l=1

ul V0 (cl(1 + tl)) ,

where a and u1, ..., uK− are coefficients depending on c1, ..., cK− and t1, ..., tK− . To find a,

observe that the only term with V0(0) results from repeatedly taking the left term of all

K− iterations. Therefore, a =
∏K−

k=1(1 + tk)
−1. Similarly, observe that the only term with

V0 (cK−(1 + tK−)) results from taking the right term in the first iteration and then repeatedly
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taking the left term of the remaining iterations. Therefore,

uK− = − 1

1 + tK−

K−−1∏
j=1

cj
cj(1 + tj)− cK−(1 + tK−)

.

By symmetry, we conclude that, for any l = 1, ..., K−,

ul = − 1

1 + tl

K−∏
j=1, j 6=l

cj
cj(1 + tj)− cl(1 + tl)

.

Thus, it holds that

VK−(0) =

(
K−∏
k=1

1

1 + tk

)
V0(0)−

K−∑
l=1

1

1 + tl

(
K−∏

j=1, j 6=l

cj
cj(1 + tj)− cl(1 + tl)

)
V0 (cl(1 + tl))

=

(
K−∏
k=1

1

1 + tk

)
·

(
V0(0)−

K−∑
l=1

(
K−∏

j=1, j 6=l

κjl(t)

)
V0 (cl(1 + tl))

)
.

(34)

With expression (34) at hand, V0(x) still needs to be analyzed. Using (33) and observing that

its integral can be written as a probability involving R− normal random variables, we have

V0(x) = e−λ(s)
√
Wx+ 1

2
Wx2

∫
bR− : b̂6β

(
R−∏
r=1

φ (br + sr −
√
wrx)

)
dbR−

= e
1
2(λ(s)−

√
Wx)

2

e−
1
2
λ(s)2P

(
R−∑
r=1

√
wrN (

√
wrx− sr, 1) 6 β

)

=
φ(λ(s))

φ
(
λ(s)−

√
Wx

)P (N (wrx−
√
wrsr,W ) 6 β)

=
φ(λ(s))

φ
(
λ(s)−

√
Wx

)Φ
(
λ(s)−

√
Wx

)
= φ(λ(s))Ψ

(
λ(s)−

√
Wx

)
. (35)

Substituting (35) into (34), we conclude that

Q(s, t) =
1

p

(
R−∏
r=1

e
1
2
s2r

)
VK−(0) =

1

p

(
R−∏
r=1

e
1
2
s2r

)(
K−∏
k=1

1

1 + tk

)
φ(λ(s))

×

(
Ψ (λ(s))−

K−∑
l=1

(
K−∏

j=1, j 6=l

κjl(t)

)
Ψ
(
λ(s)− cl(1 + tl)

√
W
))

.

We now find the value of p by using that Q(0,0) = 1. We then indeed have that Q(s, t) equals

(32), which completes the proof. �
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