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Abstract

We consider an (R,Q) inventory model with two types of orders: normal orders
and emergency orders, which are issued at different inventory levels. Those orders
are delivered after exponentially distributed lead times. In between deliveries, the
inventory level decreases in a state-dependent way, according to a release rate function
α(·). This function represents the fluid demand rate; it could be controlled by a
system manager via price adaptations.

We determine the mean number of downcrossings θ(x) of any level x in one
regenerative cycle, and use it to obtain the steady-state density f(x) of the inventory
level. We also derive the rates of occurrence of normal deliveries and of emergency
deliveries, and the steady-state probability of having zero inventory.

1 Introduction

(R,Q) policies, also known as reorder-point/order-quantity policies, belong to the most
common policies in inventory control systems. In (R,Q)-type models considered in this
paper the inventory level is gradually decreasing, due to a deterministic fluid demand.
When the inventory level drops below a certain control level R, an order of size Q is
placed. That order arrives after a certain lead time, and at this time epoch the inventory
increases by Q. In contrast to classical EOQ models, the lead times are not negligible but
stochastic variables.

The problem faced by the controller is when to place an order and how much to order.
The decision variable R answers the when question and the decision variable Q answers
the how much question. In the broad literature of economics and finance similar models
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are called trigger-target models [1, 2, 3, 4, 12]; R is the value of the trigger and Q is the
value of the target.

The main contribution of our study is the analysis of an inventory model, called (R̄, Q̄),
with two types of orders: normal orders and emergency orders. Here R̄ = (rn, re) and
Q̄ = (qn, qe). There are two trigger levels: rn that triggers a normal order with normal
lead time v exp(λn) and re that triggers an emergency order with emergency lead time
v exp(λe). We also have two target sizes (qn, qe). We assume that re < rn, since an
emergency order is placed when the normal order is still pending while the inventory level
is close to 0 (we use the terminology that during its lead time an order is pending). We
assume, for the sake of simplicity, that qe = qn, although often in practice qe > qn because
the set-up cost of the emergency order might be higher than that of the normal order. Our
analysis goes through for qe > qn (or qn > qe) as well, but at the expense of an (even)
more intricate distinguishing of cases. These complications will become clear in the proof
of Theorem 1. In the sequel we simplify the notation and set re = a, rn = b > a and
qn = qe = q. Accordingly, the inventory considered here is characterized by the triple
(a, b, q) with q > b > a.

A key feature of our study is that the inventory level process V = {V(t) : t ≥ 0} de-
creases continuously according to a quite general state-dependent release rate function α(x),
when the inventory level is x, between positive replenishments of size q which are delivered
at the end of the respective lead times. The motivation for introducing a state-dependent
release rate α(·) stems from pricing. When the content level is too high the controller will
be interested in getting rid of excess inventory as quickly as possible, to reduce the holding
costs. To achieve this goal she lowers the price continuously in order to raise the demand
rate (it seems natural that price and demand rate are related deterministically). Similarly,
when the inventory level is low she will raise the price and thereby reduce the demand rate.
This way the risk of losses due to shortage and unsatisfied demand is also reduced.

The main result of the paper is an exact (non-transform) closed-form expression for the
stationary density of the inventory level, which turns out to be highly complicated. The
approach to derive this density also appears to be of methodological interest. We circum-
vent the problems that the inventory level process is not Markovian, and that deliveries do
not arrive according to a Poisson process, by relating the stationary inventory level density
f(x) to the mean number of downcrossings θ(x) of level x in one regenerative cycle, and
by first determining θ(x) – which subsequently also gives us f(x). We also derive the
rates of occurrence of normal deliveries and of emergency deliveries, and the steady-state
probability of having zero inventory.

Different supply modes are used in many real-world inventory systems. For example,
shipping of orders can be carried out on sea or land but also via air, probably at a higher
cost, or there may be more expensive sources of replenishments which are only used in
case of very low inventory levels. Complex emergency situations of this latter kind have
recently occurred in the worldwide hunt for medical equipment in the face of the corona
pandemic. Our model is a modest theoretical contribution to this problem area.

In the classical inventory literature, models with two supply modes have been frequently
suggested (see e.g. [7, 15, 17, 16, 10, 11, 13, 14]). In contrast to this paper, they assume
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stochastic demand, usually of jump type, and two deterministic lead times for the different
order types; their objective is multi-period optimization. In our model demand follows
deterministic paths but the lead times are random, and we derive the stationary charac-
teristics of the system. Only in [13] the policy studied here has been considered, albeit in
a different model. To the best of the authors’ knowledge, a steady-state analysis as in this
paper can nowhere be found.

The remainder of the paper is organized as follows. The model is described in more
detail in Section 2. In Section 3 we prove that the inventory level process is regenerative. Its
formidable steady-state distribution is subsequently determined in Section 4. We derive the
rate of emergency deliveries in Section 5 and that of normal deliveries in Section 6. Section 7
is devoted to a variant of the model, with a somewhat different procedure regarding normal
orders. Finally, Section 8 contains some suggestions for further research. In particular, we
briefly indicate how our steady-state results could be used for optimization purposes – an
important topic but outside the scope of the present paper.

2 Model description

In this section we describe the model in more detail. The inventory level process V =
{V(t) : t ≥ 0} under consideration is a jump-fluid process with state-dependent deter-
ministic release rate: for every state x > 0 the release rate (due to the fluid demand)
between jumps of size q is α(x). We discuss the jumps (occurring instantaneously after
order deliveries) below, but first we consider the release rate in more detail.

We assume that

A(x) :=

∫ x

0

1

α(w)
dw <∞, (1)

for every x > 0. The latter assumption simply says that level 0 can be reached in a finite
amount of time, since for every 0 ≤ x1 < x2, A(x2)−A(x1) is the time it takes to go from
level x2 all the way down to level x1 if no jumps (deliveries) occur in between. We refer
to Harrison and Resnick [9] for an early study of inventory and storage processes with a
state-dependent release rate, and to [5] for a steady-state analysis of storage processes with
state-dependent input and output rates.
The assumption (1) simplifies the analysis of the model, but is not necessary. It is enough
to assume that

∫ x
a

1
α(w)

dw < ∞. This means that level a can be reached from any level
x > a.

Remark 1. In practice, the price often cannot be changed continuously over time.
Thus, there are certain predetermined levels such that each of their downcrossings leads to
a change in the price. An example is the case when there are switchover levels γ1, γ2, ..., γn,
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such that

α(x) =


α1, 0 < x ≤ γ1,
α2, γ1 ≤ x < γ2,
·
·
αn, γn−1 ≤ x < γn.

That is, the controller switches between n different demand rates for which it is natural to
assume that α1 < α2 < · · · < αn. �

Next let us describe the jump structure of V using the language of normal and emer-
gency orders. If just before downcrossing level b no order is pending, the controller places
a normal order, of size q, immediately after the downcrossing of level b; but in case at least
one order is pending (a normal order or an emergency order) she will not place a new one.
If just before downcrossing level a (recall that a < b) no emergency order is pending, the
controller places an emergency order, also of size q, immediately after the downcrossing.
Note that at the moment of the latter downcrossing an emergency order is placed even if
a normal order is still pending. This policy is natural, since level a can be interpreted as a
warning level : the inventory level approaches 0 and the controller would like to avoid the
risky situation of an empty system, which is interpreted as a period of unsatisfied demand.
If just before downcrossing level a no normal order is pending, then also a normal order is
placed.

Remark 2. In Section 7 we study the following variant of the above-described model.
If just before downcrossing level b no normal order is pending, the controller places a
normal order – even if an emergency order is pending. The implication is that, in this
variant, there is always already a normal order pending when level a is reached. �

The lead times for normal orders, and also for emergency orders, are assumed to be
independent and identically distributed; normal lead times and emergency lead times are
also independent of each other. We suppose that normal lead times are exponentially
distributed with rate λn, while emergency lead times are exponentially distributed with
rate λe. It would be natural to assume that λe > λn, as an emergency lead time should
typically be stochastically shorter than a normal lead time; however, in our analysis such
a condition is not necessary.

In this study we restrict attention to parameters a, b, q satisfying 0 < a < b < q <
b + q < 2q + a (see Figure 1). This ordering seems natural, but one can think of other
parameter relations, like 0 < a < q < b < b + q < 2q + a. In principle the derivations
for such other cases are very similar. If one wants to do optimization, then of course all
possible orderings have to be taken into account.

3 V as a regenerative process

In this section we prove that the inventory level process is a regenerative process, with the
periods between two successive downcrossings of level a as regeneration cycle.
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Figure 1: The inventory level

The process V is not a Markov process (relative to its natural filtration), even though
the lead times are exponential. To see this, consider V for example at some time instant
t at which it hits level b. Then either one order is pending (possibly an emergency order)
or no order is pending in which case a new normal order is issued. Therefore the process
continues with one pending order whose residual lead time can be exp(λ) or exp(µ), both
cases occurring with positive probability. However, from the evolution of V before t it
might be known that exactly two jumps have happened before the first hitting of b at time
t; in this case it is clear that the two jumps are due to the arrivals of the normal and
the emergency order which were pending at the start of the current cycle, and now the
order which is pending immediately after t must be a normal one. Hence the conditional
probability law of the process after t is different from the one only conditional on V(t) = b.
In other words, given V(t), the future development from t on depends on the history prior
to t. Thus V is not a Markov process. Note however that the joint process of V and the
numbers of pending normal and emergency orders is a Markov process, whereas V alone
is also not Markovian relative to the filtration generated by the three processes together.
Furthermore, the jump process of V is not a Poisson process, since the arrival times of
future deliveries depend on the history of V. Notwithstanding, as we shall prove below,
V is a regenerative process, governed by three known parameters – the decision variables
(a; b; q) – and the known release rate function α(x).

Lemma 1 V is a regenerative process and the time between two downcrossings of level a
is a regenerative cycle that starts with two pending orders.

5



Proof. We focus on the question how V enters the set of states [0, a). Obviously, V
enters this set at a downcrossing time of level a. As we have seen in Section 2, at that
downcrossing time an emergency order was still pending or else a new emergency order is
placed, and the same holds for a normal order. Hence exactly two orders, one normal and
one emergency, are pending when the inventory process decreases from a onwards. The
assumption that all lead times are independent and exponentially distributed now implies
that V is a regenerative process, with regeneration epochs beginning and ending at the
time instants at which level a is downcrossed.

We are almost ready to derive the steady-state distribution of V and close this section
with an observation that plays an important role in that derivation, and – first – with a
lemma that provides some useful insight. In this second lemma we relate the number of
pending orders with certain subsets of the sample space of V.

Lemma 2 The state space of V is [0, a + 2q) and the following implications hold:
(a) V ∈ [0, a) =⇒ {two orders pending}
(b) V ∈ [a, b) =⇒ {exactly one order pending}
(c) V ∈ [b, a+ q) =⇒ {at most one order pending}
(d) V ∈ [a+ q, a+ 2q) =⇒ {no orders pending}

Proof. Since there are at most two orders pending, and the process decreases in between
order deliveries, while b < a+ q, we have V < a+ 2q.

(a) This assertion was already derived in the proof of Lemma 1.
(b) Consider the moment of the first delivery in the cycle. Immediately after this

epoch, V ∈ [q, a+ q). There are two possibilities. Possibility (i): the first delivery is of the
emergency type. Then no more emergency orders will be placed until the end of the cycle.
By Lemma 1, after V downcrosses level b only the normal order is pending. Possibility
(ii): the first delivery is of the normal type. Then the emergency order is still pending.
If it continues to be pending until the end of the cycle, no more normal orders will be
placed and level a will be reached with an emergency order pending. If the delivery of
the emergency order occurs before the end of the cycle, immediately after that delivery
V ≥ q > b. Once V returns to level b a normal order is placed and by Lemma 1, during the
time period it takes to go from level b down to level a, a normal order is always pending.

(c) As in (b), immediately after the first jump in the cycle we have V ∈ [q, a + q).
If during the way down towards level b no jump (delivery) occurs, V will reach level b
with one pending order. However, if during the way down towards level b the other jump
(delivery) occurs, V will reach level b with no pending orders.

(d) V enters this region only if the second delivery occurs in relatively close proximity
of the first one. Another jump will then only be possible after V reaches level b.

Remark 3. Suppose that a normal order is pending right after a downcrossing of level b.
This implies that no emergency order is pending (see Statement (b) of Lemma 2). During a
time period between a downcrossing of level b and the first subsequent downcrossing of level
a, there now is a geometrically distributed number of normal deliveries, with parameter
e−λn[A(b)−A(a)] (which is the probability of zero normal deliveries during this time interval).
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To see this, recall that order lead times are memoryless. If the delivery occurs before V
downcrosses level a, V jumps above level b. When, later, V downcrosses level b again the
controller will face a probabilistic replication of the situation at the previous downcrossing
of level b. This means that there are no interruptions during the time period of going from
level b down to level a, and the probability of the latter event is e−λn[A(b)−A(a)]. �

4 Steady-state analysis

In this section we determine the steady-state density f(·) of the inventory level process V.
Notice that this density always exists, and has finite support (0, a + 2q). As observed in
the previous section, V is not a Markov process. Moreover, the jump process representing
the delivery of orders is not a Poisson process since given the “present” value of V, future
deliveries depend on past deliveries. Thus, PASTA cannot be applied in order to find the
steady-state law by the traditional LCT (Level Crossing Technique, cf. [6, 8]) concept of
equating the rate of upcrossings of any fixed level x by V with the corresponding rate
of downcrossings. We obtain f(·) via an, as far as we know, novel application of LCT.
Introduce, for 0 < x < a+ 2q,

θ(x) := E[number of downcrossings of level x during a regenerative cycle].

In the sequel, C denotes the length of an arbitrary regenerative cycle, the time between
two successive downcrossings of level a. We relate f(x) to θ(x) in the following lemma.
Subsequently we determine θ(x) in Theorem 1.

Lemma 3 We have the following relation between the stationary inventory level density
f(x) and the mean number of downcrossings in a cycle, θ(x): for all x ∈ [0, a+ 2q),

θ(x) =
α(x)f(x)

α(a)f(a)
, (2)

so that

f(x) =
α(a)f(a)

α(x)
θ(x). (3)

Proof. Since θ(x) is the mean number of downcrossings per regenerative cycle, and E[C]
the mean cycle length, the downcrossing rate of level x equals θ(x)/E[C]. On the other
hand, the downcrossing rate of level x also equals α(x)f(x). To prove (2), and hence also
(3), it remains to show that

E[C] =
1

α(a)f(a)
. (4)

This relation follows by observing that level a is downcrossed exactly once per cycle, and
that the downcrossing rate of level a equals α(a)f(a).

7



We now derive some properties of f(·) (under the assumption that A(x) <∞ for all x > 0).
First, let π be the steady-state probability of having zero inventory. By the normalizing
condition we have ∫ a+2q

0

f(x)dx = 1− π. (5)

When A(x) = ∞, like for example in the shot noise case α(w) = w, we have π = 0

and the normalizing condition is
∫ a+2q

0
f(x)dx = 1. In addition, we have some continuity

properties, because the inventory level process decreases in a continuous way. In particular,

f(x−) = f(x+) for x = a, b, a+ q, b+ q, 2q. (6)

However, f(·) is not continuous at q, because there is a positive probability to reach q
from 0:

α(q)[f(q−)− f(q+)] = (λn + λe)π. (7)

Finally, LCT does work at level 0, where the upward jumps do occur according to a Poisson
process:

α(0)f(0) = (λn + λe)π. (8)

We are now in a position to introduce the steady-state equations which relate the rate
of downcrossings among different levels, and thus to obtain expressions for θ(x) which,
via (3), translate into expressions for the content level density f(x). In order to ease the
notation we use the following abbreviations:

fn :=
λn

λn + λe
, fe :=

λe
λn + λe

, (9)

which are the probabilities that a normal order comes first or that an emergency order
comes first, and

Jσ(x;w) := e−σ[A(x)−A(w)]. (10)

Observe that Jσ(x;w) is the probability that an exp(σ)-distributed random variable exceeds
the time to decrease from x to w, if no jumps occur. We shall take σ = λn, λe, λn + λe
below. In particular, if both a normal order and an emergency order are pending when the
process is at level x, then Jλn+λe(x;w) is the probability that level w is reached from level
x before an order is delivered. In the latter case, we even write J(x;w) := Jλn+λe(x;w). It
will be convenient, in the next theorem, to observe that

dJ(a;w) =
λn + λe
α(w)

e−(λn+λe)
∫ a
w

1
α(x)

dxdw

represents the probability that the first upward jump of the inventory level process, after
a has been downcrossed, occurs when the level is between w and w + dw, while J(a; 0),
the atom at zero, is the probability that zero has been reached from a before an upward
jump has occurred.
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Theorem 1 The following expressions hold for the expected number of downcrossings θ(x)
of level x during a regenerative cycle.
1. 0 ≤ x < a:

θ(x) = J(a;x). (11)

2. a ≤ x < b:

θ(x) = fe
1

Jλn(x; a)

+ fn

∫ a

0

[(1− Jλe(q + w;x))
1

Jλn(x; a)
+ (Jλe(q + w;x)− Jλe(q + w; a))(1 +

1

Jλn(x; a)
)

+ Jλe(q + w; a)]dJ(a;w). (12)

3. b ≤ x < q:

θ(x) = fe

∫ a

0

[(1− Jλn(q + w;x))
1

Jλn(b; a)

+ (Jλn(q + w;x)− Jλn(q + w; b))(1 +
1

Jλn(b; a)
)

+ Jλn(q + w; b)
1

Jλn(b; a)
]dJ(a;w)

+ fn

∫ a

0

[(1− Jλe(q + w;x))
1

Jλn(b; a)

+ (Jλe(q + w;x)− Jλe(q + w; b))(1 +
1

Jλn(b; a)
)

+ (Jλe(q + w; b)− Jλe(q + w; a))(1 +
1

Jλn(b; a)
) + Jλe(q + w; a)]dJ(a;w). (13)
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4. q ≤ x < a+ q.

θ(x) = fe

∫ a

x−q
[(1− Jλn(q + w;x))

1

Jλn(b; a)

+ (Jλn(q + w;x)− Jλn(q + w; b))(1 +
1

Jλn(b; a)
)

+ Jλn(q + w; b)
1

Jλn(b; a)
]dJ(a;w)

+ fe

∫ x−q

0

[(1− Jλn(q + w; b))
1

Jλn(b; a)

+ Jλn(q + w; b)
1− Jλn(b; a)

Jλn(b; a)
]dJ(a;w)

+ fn

∫ a

x−q
[(1− Jλe(q + w;x))

1

Jλn(b; a)

+ (Jλe(q + w;x)− Jλe(q + w; b))(1 +
1

Jλn(b; a)
)

+ (Jλe(q + w; b)− Jλe(q + w; a))(1 +
1

Jλn(b; a)
)

+ Jλe(q + w; a)]dJ(a;w)

+ fn

∫ x−q

0

[(1− Jλe(q + w; b))
1

Jλn(b; a)

+ (Jλe(q + w; b)− Jλe(q + w; a))
1

Jλn(b; a)
]dJ(a;w). (14)

5. a+ q ≤ x < b+ q.

θ(x) = fe

∫ a

0

[(1− Jλn(q + w; b))(1 + βn(x)) + Jλn(q + w; b)βn(x)]dJ(a;w)

+ fn

∫ a

0

[(1− Jλe(q + w; b))(1 + βn(x)) + Jλe(q + w; b)βe(x)]dJ(a;w), (15)

where βn(x) and βe(x) are given by

βn(x) =
1− Jλn(b;x− q)

Jλn(b; a)
, (16)

βe(x) = 1− Jλe(b;x− q) + (1− Jλn(b;x− q))1− Jλe(b; a)

Jλn(b; a)
. (17)

6. b+ q ≤ x < 2q:

θ(x) = fe

∫ a

0

(1− Jλn(q + w;x− q))dJ(a;w)

+ fn

∫ a

0

(1− Jλe(q + w;x− q))dJ(a;w). (18)
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7. 2q ≤ x < a+ 2q:

θ(x) = fe

∫ a

0

(1− Jλn(q + w;x− q))1q+w≥x−qdJ(a;w)

+ fn

∫ a

0

(1− Jλe(q + w;x− q))1q+w≥x−qdJ(a;w). (19)

Proof.

1. 0 ≤ x < a. In this region the number of downcrossings of level x is at most
one. Hence the mean number of downcrossings θ(x) of level x ∈ [0, a) equals the
probability that x is downcrossed, which is J(a;x) = Jλn+λe(a;x).

2. a ≤ x < b. By Lemma 2, in this region exactly one order is pending; it can either
be the normal order or the emergency order, but not both of them. Accordingly, to
determine θ(x) we distinguish the events where the emergency delivery occurs first
and the normal delivery occurs first. We shall now explain the terms of (12).
1. The term in line 1 of (12). This term corresponds to the case that the emergency
delivery comes first. The probability of that event is fe = λe

λn+λe
. After the arrival

of the emergency order, only the normal order is pending, and there will be no
more emergency order in the rest of the cycle. Immediately after the arrival of the
emergency order, V > b, and level x ∈ [a, b) will be downcrossed at least once until
the end of the cycle. That number of downcrossings Dx is geometrically distributed,

P (Dx = m) = Jλn(x; a)(1− Jλn(x; a))m−1, m = 1, 2, . . . , (20)

with mean EDx = 1/Jλn(x; a). Indeed, each time when x has been downcrossed, the
probability that level a will be reached (and hence the cycle will be ended) before
another normal delivery arrives (in which case b will be upcrossed and later down-
crossed again, and subsequently x will be downcrossed again) equals Jλn(x; a).
2. The term in lines 2-3 of (12). The probability that the normal delivery arrives
when the state is in (w,w + dw) (for 0 < w < a) and before the emergency delivery
is fndJ(a;w). Immediately after the arrival of the normal delivery the state becomes
q + w (by definition q + w > b), and from this moment only the emergency order is
pending. If that emergency delivery arrives before level x is downcrossed (which has
probability 1−Jλe(q+w;x)), the process jumps above b, and at the next downcrossing
of b a normal order is pending. Hence one then again has 1/Jλn(x; a) downcrossings
of level x. If the emergency delivery arrives after x is downcrossed but before a is
downcrossed (probability Jλe(q+w;x)(1−Jλe(x; a)) = Jλe(q+w;x)−Jλe(q+w; a)),
then x has already been downcrossed once, and the process jumps up by q, subse-
quently b is downcrossed again and a normal order is pending, and we have on average
1/Jλn(x; a) more downcrossings of level x. If the emergency delivery does not arrive
before a is reached (probability Jλe(q; a)), then we have just one downcrossing of x
in the cycle.
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At this stage we would like to emphasize that, with probability J(a; 0), zero is reached
before an order has arrived. Indeed, the atom at zero in the integral in (12) gives the
contribution
fnJ(a; 0)[(1− Jλe(q;x)) 1

Jλn (b;a)
+ (Jλe(q;x)− Jλe(q; a))(1 + 1

Jλn (b;a)
) + Jλe(q; a)].

These terms correspond to the case in which no delivery arrives before level 0 is
reached, after which a normal delivery arrives first (probability fnJ(a; 0)). In each of
the cases 3-6 below, where an integral

∫ a
w=0

z(w)dJ(a;w) appears, there is a similar
contribution z(0)J(a; 0) from the atom at 0 as when w is in the interior; similarly for∫ x−q
w=0

z(w)dJ(a;w) in case 4 below.

3. b ≤ x < q . We shall explain all terms of (13) successively.
1. The terms in lines 1-3 of (13). This concerns a case in which the emergency
delivery arrives first, when the state is in (w,w + dw) (or in 0, the contribution
from the atom). The process now jumps to q + w > x. From this moment only the
normal order is pending. We now consider the various possibilities for the arrival of
a normal delivery. (i) It arrives with probability 1−Jλn(q+w;x) before x is crossed.
That leads to a jump in the process, some time later a crossing of x and no further
orders until subsequently b is reached. The mean number of crossings of x is now
1+

1−Jλn (b;a)
Jλn (b;a)

= 1
Jλn (b;a)

. (ii) It arrives with probability Jλn(q+w;x)−Jλn(q+w; b) when

x has already been crossed a first time, but before b is reached. After b is reached,
there are on average 1

Jλn (b;a)
more crossings of x. (iii) It arrives with probability

Jλn(q+w; b) not before b is reached. After b is reached, there are on average
1−Jλn (b;a)
Jλn (b;a)

more arrivals of normal deliveries and subsequent crossings of x.
2. The terms in lines 4-6 of (13). This concerns a case in which the normal delivery
arrives first, when the state is in (w,w + dw) (or, again, in 0, the contribution from
the atom). Lines 4-5 are completely analogous to lines 1-2. Line 6 differs more
fundamentally from line 3. We get with probability Jλe(q + w; b) − Jλe(q + w; a)
an emergency delivery between b and a, giving rise to, on average, 1/Jλn(b; a) more
crossings of x. With probability Jλe(q + w; a) there is no emergency delivery before
a is reached and the cycle is ended; in this case, there was just one crossing of x.

4. q ≤ x < a+ q. We successively explain all terms of the 11 lines of (14).
1. Lines 1-3 of (14). These lines concern the case in which an emergency delivery
occurs first, when the state is in (w,w + dw), for x − q < w < a (so now there
is no contribution from an atom at 0). Distinguish between the three possibilities
in which (i) the normal delivery occurs before x is crossed; (ii) the normal delivery
occurs between the crossings of x and b; and (iii) the normal delivery has not yet
arrived when b is crossed. These three possibilities give rise to, on average, 1

Jλn (b;a)
,

1 + 1
Jλn (b;a)

and 1
Jλn (b;a)

crossings of x.

2. Lines 4-5 of (14). These lines concern the case in which the jump is from w ∈
[0, x − q) and hence ends up in q + w < x. Now there are two possibilities: (i)
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the normal delivery arrives before b is reached; (ii) the normal delivery has not yet
arrived before b is reached. These two possibilities give rise to, on average 1

Jλn (b;a)

and
1−Jλn (b;a)
Jλn (b;a)

crossings of x.

3. Lines 6-9 of (14). The normal delivery arrives first, when the state is in (w,w +
dw), where x− q ≤ w < a (lines 6-9). Now distinguish between the four possibilities
in which (i) the emergency delivery arrives before x is crossed; (ii) it arrives between
the crossings of x and b; (iii) it arrives between the crossings of b and a; (iv) it does
not arrive before the end of the cycle. The first three possibilities now give rise to,
on average, 1

Jλn (b;a)
, 1 + 1

Jλn (b;a)
and 1 + 1

Jλn (b;a)
crossings of x (actually, we could have

combined possibilities (ii) and (iii)). Possibility (iv) gives exactly one downcrossing
of x in the whole cycle.
4. Lines 10-11 of (14). Let 0 ≤ w < x − q. Now the first jump ends below x, and
hence all the mean numbers of crossings of x are one less then for x− q ≤ w < a.

5. a+ q ≤ x < b+ q. We successively explain both lines of (15). For this, we first need
to define the following two expectations:
βn(x) = mean number of downcrossings of x in a cycle, when starting from b with
only the normal order pending;
βe(x) = mean number of downcrossings of x in a cycle, when starting from b with
only the emergency order pending.
It is easily seen that βn(x) and βe(x) satisfy the following two equations:

βn(x) = (1− Jλn(b;x− q))(1 + βn(x)) + (Jλn(b;x− q)− Jλn(b; a))βn(x), (21)

βe(x) = (1− Jλe(b;x− q))(1 + βn(x)) + (Jλe(b;x− q)− Jλe(b; a))βn(x). (22)

Hence, with a ≤ x− q < b, Equations (16) and (17) follow.
Line 1 of (15). After the arrival of the emergency delivery and the corresponding
jump to q+w, only the normal order is pending. If it arrives before b is reached, the
process jumps up by q and we have one crossing of x, and subsequently the process
will reach b and we have on average another βn(x) crossings of x. If it does not arrive
before b is reached, we get on average βn(x) crossings of x.
Lines 2 of (15). Similar to line 1, but now the normal delivery is the first to arrive
when the process goes down from a to 0, and only the emergency order is pending.
If it arrives before b is reached, the process jumps up by q and we have one crossing
of x, and subsequently the process will reach b and we have on average another βn(x)
crossings of x. If it does not arrive before b is reached, we have on average βe(x)
crossings of x.

6. b + q ≤ x < 2q. In this range there is at most one downcrossing of x during a
cycle. Hence θ(x) is also the probability that level x is downcrossed during the cycle.
The first term in the righthand side of (18) concerns the case in which the emergency
delivery arrives first, the process jumps to level q+w, and the normal delivery arrives
before level x− q is reached, resulting in a jump to a level above x. From here on no
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delivery can arrive until level b is reached, and thereafter the process can never get
higher than b+ q anymore in the cycle. The second term does the same for the case
in which the normal delivery arrives first.

7. 2q ≤ x < a + 2q. In this range there is again at most one downcrossing of x during
a regenerative cycle. Hence θ(x) is again the probability that level x is downcrossed
during the cycle. The two terms in the righthand side of (19) are the same as the
first two terms in the righthand side of (18). It should be noticed that here, unlike
the cases 2-6, there is no contribution from the atom at 0: If 0 is reached in the
beginning of the cycle, then the level cannot reach 2q anymore during this cycle.

Remark 4. A few terms in (13) can be combined, yielding a slight simplification.
Observe that for w ∈ [b, q), the term inside the first square brackets for θ(x) in (13) can
be compressed into

1

Jλn(b; a)
+ (Jλn(q + w;x)− Jλn(q + w; b)).

A similar remark applies in some other formulas. We can now easily integrate that 1
Jλn (b;a)

term (taking the atom at 0 into account), which yields fe
1

Jλn (b;a)
.

It is reasonably straightforward to verify that (6) holds, viz., the continuity of f(x), and
hence of θ(x), in x = a, b, a+ q, b+ q, 2q. �

Theorem 1 uniquely determines θ(x). However, it follows from (3) that the content
level density f(x) is thus only determined up to the yet unknown constant f(a). The

normalizing condition provides one additional equation:
∫ a+2q

0
f(x)dx = 1 − π; but the

stationary probability π of having zero inventory is also unknown yet. LCT at level zero,
as given in (8), gives us the extra equation that we need:

(λn + λe)π = α(0)f(0),

in which an expression for f(0) (or rather f(0)/f(a)) is obtained by substituting x = 0 in
(11) and (3). It should be observed that π is also the fraction of time in which there is
zero inventory, during which no demand is satisfied.

Remark 5. In the region x ∈ (0, a) we can also use the traditional methodology of LCT
to obtain the same solution as given in (11). To see this, recall that two orders are pending
below level a. Since the two lead times are independent and exponentially distributed, we
conclude that, below level a, the arrival process of jumps is a Poisson process with rate
λn + λe. LCT now gives the balance equation

α(x)f(x) = (λn + λe)F (x),

where the righthand side, with F (x) the steady-state distribution of the inventory level,
gives the rate of upcrossings of level x ∈ (0, a). Rewriting this into

f(x)

F (x)
=
λn + λe
α(x)
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and integrating gives

F (x) = Ke(λn+λe)
∫ x
0

1
α(w)

dw,

with K some constant. Differentiation yields

f(x) =
α(a)f(a)

α(x)
J(a;x),

in agreement with (11); the last equality was obtained by substituting x = a.
This approach does not work for x > a since there the arrival process of the jumps is not
a Poisson process. �

Remark 6. For some special choices of the state-dependent release rate function α(·),
the expressions in Theorem 1 simplify considerably. We mention two special cases.
Example 1: α(x) ≡ α. In this case, A(x) ≡ x

α
and hence

Jσ(x; y) = e−
σ
α
(x−y). (23)

In this case, all integrals appearing in Theorem 1 can be easily evaluated.
Example 2: α(x) = rx. In this case, A(x) as defined in (1) would diverge. However, we
can still determine

Jσ(x; y) = (
y

x
)σ/r, x > y > 0; (24)

and it should be observed that Jσ(x; 0) = 0 (indeed, the origin can never be reached).
Various terms in (11)-(19) now disappear, and others become relatively simple. These two
special cases are quite natural. In the first example, one might try to choose α such that
a particular profit function is optimized. In the second example, the choice of r has to do
with pricing; its value reflects the demand caused by a certain price setting. �

5 Rate of emergency deliveries

In this section we determine the rate ρe of emergency deliveries. Let I be the number of
emergency deliveries during an arbitrary regenerative cycle. We have ρe = E[I]

E[C]
. In the

next theorem ρe is obtained by determining E[I].

Theorem 2 The rate of emergency deliveries is given by

ρe = α(a)f(a){fe + fn

∫ a

0

[1− Jλe(q + w; a)]dJ(a;w)}. (25)

Proof. First of all, we observe that the numbers of emergency deliveries I1, I2, ... in
successive cycles are independent, Bernoulli distributed random variables, and hence E[I] =
Pr(I = 1). Secondly, since E[C] = 1

α(a)f(a)
, we have ρe = α(a)f(a)Pr(I = 1). It remains

to show that Pr(I = 1) is given by the term between curly brackets in (25).
The cycle starts at level a where the two orders are pending. From this moment two

disjoint events may happen, corresponding to the two terms between curly brackets in the
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righthand side of (25): (i) the emergency delivery arrives first. The probability of this
event is fe. (ii) The normal delivery arrives first and finds V at level w (w = 0 gives
the contribution J(a; 0)[1 − Jλe(q; a)]). Then V jumps to level q + w. An emergency
order arrives before the inventory level decreases from q + w to a; its probability equals
1− Jλe(q + w; a).

6 Rate of normal deliveries

Let ρn be the rate of normal deliveries and E[N] the mean number of normal deliveries
per cycle. Then

ρn =
E[N]

E[C]
= α(a)f(a)E[N]. (26)

Below we determine E[N].
We shall repeatedly use the fact that (cf. (20)) the mean number of normal deliveries

from the moment b is reached while a normal order is pending is given by E[Db] − 1 =
1−Jλn (b;a)
Jλn (b;a)

.

Theorem 3 The rate of normal deliveries is given by

ρn = α(a)f(a){fe
∫ a

0

[(1− Jλn(q + w; b))
1

Jλn(b; a)
+ Jλn(q + w; b)

1− Jλn(b; a)

Jλn(b; a)
]dJ(a;w)

+ fn

∫ a

0

[1 + (1− Jλe(q + w; a))
1− Jλn(b; a)

Jλn(b; a)
]dJ(a;w)}. (27)

Proof. We need to show that the mean number E[N] of normal deliveries per cycle
is given by the expression between curly brackets in (27). First consider the first term
between curly brackets. It corresponds to the case that the emergency delivery comes first.
Now distinguish between the two cases in which (i) a normal delivery occurs before b is
first downcrossed (probability 1− Jλn(q + w; b)) and (ii) no normal delivery occurs before
b is first downcrossed. In case (i) we get on average E[Db] normal deliveries, and in case
(ii) one less.

Next consider the second term between curly brackets. This term corresponds to the
case that the normal delivery comes first, and the inventory is at level w, jumping to q+w.
That normal delivery contributes one unit to E[N]. With probability 1− Jλe(q +w; a) an
emergency delivery arrives before a is reached. It results in an upcrossing of level b, which
is on average followed by (1 − Jλn(b; a))/Jλn(b; a) normal deliveries until the end of the
cycle.

7 A model variant

In this section we briefly consider the following model variant. The only change with
respect to the model of Section 2 is that now, when level b is downcrossed, a normal order
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is always placed when it is not already pending – even if an emergency order is already
pending. As a result, it becomes less likely that level a is reached without any delivery
having arrived.

Lemma 1 remains true in this variant: the period between two downcrossings of level a
still is a regenerative cycle that starts with two pending orders. Statement (b) of Lemma
2 has to be adapted: for V ∈ [a, b), at least one order is pending, instead of exactly
one (and the normal order is always pending in this interval). Lemma 3, which relates
the inventory level density f(x) and the mean number of downcrossings θ(x), remains
unchanged. Theorem 1 needs to be adapted, but only in the region x ∈ [b, b + q) – which
corresponds to the four Cases 2− 5 of the theorem. The reason is that the only difference
with the model treated above occurs once level b is downcrossed. There is no change in the
regions [b+ q, 2q) and [2q, a+ 2q) (Cases 6 and 7) because levels higher than b+ q cannot
be reached in this model variant after level b is downcrossed. There is no change in the
region [0, a) (Case 1) because the regenerative cycle starts the same in the model variant
as in the original model, with both a normal order and an emergency order pending. In
[a, b+ q) the analysis becomes slightly more complicated than in Theorem 1. However, all
terms corresponding to cases in which the emergency order comes first in the regenerative
cycle are unaltered, because a normal order now becomes pending once b is downcrossed,
in both the variant and in the original model.

Below we show how Formula (2.2) needs to be adapted; this concerns Case 2, i.e., the
region [a, b). Similar adaptations have to be made for the region [b, b+ q).
Case 2 in the model variant. a ≤ x < b: the mean number of downcrossings of level x in
the model variant equals

θ(x) = fe
1

Jλn(x; a)

+ fn

∫ a

0

[(1− Jλe(q + w; b))
1

Jλn(x; a)
+ Jλe(q + w; b)g(x)]dJ(a;w), (28)

where g(x) is the mean number of downcrossings of level x ∈ [a, b) in a cycle, from the
moment level b is downcrossed in a cycle, given that an emergency order is pending.
The rationale behind (28) is the following.
The first term in the righthand side is the same as the first term in (12): this is the case
in which the emergency delivery occurs first.
The second term reflects the case in which the normal delivery occurs at level w and before
the emergency delivery. The process jumps to q + w. One possibility now is that the
emergency delivery comes before b is downcrossed. From then on, there are on average
1/Jλn(x; a) downcrossings of x in the remainder of the cycle. The second possibility is that
the emergency delivery has not occurred before b is reached. From then on, one has on
average g(x) downcrossings of level x.
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Here g(x) satisfies the following relation.

g(x) = Jλn+λe(b; a) (29)

+ fe(1− J(b;x))
1

Jλn(x; a)

+ fe(J(b;x)− J(b; a))(1 +
1

Jλn(x; a)
)

+ fn

∫ b

w=x

[(1− Jλe(q + w; b))
1

Jλn(x; a)
+ Jλe(q + w; b)g(x)]dJ(b;w)

+ fn

∫ x

w=a

[(1− Jλe(q + w; b))(1 +
1

Jλn(x; a)
) + Jλe(q + w; b)(1 + g(x))]dJ(b;w).

g(x) can be trivially solved from this relation; observe that one can add the two terms with
g(x) in the righthand side of (29) into the product of g(x) and an integral from a to b that
does not involve x.
The rationale behind (29) is the following. At the beginning of the remaining cycle, both a
normal order and an emergency order are pending. There are now five cases, corresponding
to the five lines in (29).
Case 1: both orders remain pending until a is reached. That gives exactly one downcross-
ing of x.
Case 2: an emergency delivery occurs first, and before x is downcrossed. The process
jumps up by q, and eventually reaches b again but there will be no more emergency order.
We have on average 1/Jλn(x; a) downcrossings of x.
Case 3: an emergency delivery occurs first, but between levels x and a. Now x has already
been downcrossed once, but thereafter the process jumps up by q, and eventually reaches
b again; now see Case 2 above.
Case 4: a normal delivery occurs first, and before x is downcrossed. The process jumps
up by q. Now there are two sub-cases: either an emergency delivery occurs before b is
reached, or it does not. In the former case one gets 1/Jλn(x; a) downcrossings of x, and in
the latter case the process reaches b again and we are back in the old situation: one has
on average g(x) more downcrossings of x.
Case 5: a normal delivery occurs first, but between levels x and a. Now x has already
been downcrossed once, but thereafter the process jumps up by q. Now there are again
two sub-cases, just as for Case 4.

Similar adaptations have to be made in Cases 3-4 of Theorem 1.

8 Conclusions and suggestions for further research

We have presented a steady-state analysis of the inventory level of an (R,Q) model with
normal orders and emergency orders, which are delivered after exponentially distributed
lead times. We have allowed a quite general state-dependent release rate for the inventory
level.
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Our results could be used for optimization purposes. Remember that ρe and ρn are
the average number of emergency and normal orders per unit time, respectively, and π is
the fraction of time having zero inventory and E[V] is the steady-state mean inventory
level. Clearly, the four quantities ρe, ρn, π and E[V] are functions of the decision variables
(a, b, q). We have shown how to derive explicit expressions for them. A linear combination
of these characteristics, say

R(a; b; q) = keρe + knρn + kuπ + hE[V],

would be a meaningful cost functional for evaluating the performance of the system. Here
ke is the set-up cost per emergency order, kn is the set-up cost per normal order, ku
is the penalty for a time unit of zero inventory and h is the holding cost per unit of
inventory. As the underlying stationary distribution of the inventory level turns out to be
of an extremely complicated form, calculating functionals like R(a, b, q) will certainly be a
numerically challenging endeavor.

Of course, next to costs there are also profits. The gross profit of the system can be
measured by the average value of the sales. For this a price function p(x) has to be specified,
where p(x) is the price charged for a unit when the inventory level is x. The inventory
level process was shown to be regenerative, and it therefore makes sense to consider V and
C, the stationary inventory level and the first cycle length, respectively. Then, using the
ergodic theorem for regenerative processes, the average sales value is given by

S(a; b; q) = E[p(V)] =
1

E[C]
E[

∫ C

0

p(V(t)) dt] =

∫ a+2q

0

p(x)f(x) dx.

Given p(x), the objective function to be maximized is S(a; b; q)−R(a; b; q). The selection of
a suitable price function will then be a second step for future research based on numerical
work.

Next to optimization, one could consider some more variants of the main model under
consideration. For example, one could take qe > qn (larger emergency orders), or even
allow random order sizes, or let the order size be state-dependent, too.
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