How to initialise a second class particle?

Joint with Attila László Nagy

Márton Balázs

University of Bristol

Eindhoven, YEP XIII (LD for IPS and PDE) 8 March, 2016.

The models
Bricklayers

Hydrodynamics

The second class particle

Ferrari-Kipnis for TASEP

Let's generalise

- ► TASEP:
 - $\omega_i \in \{0, 1\}$, rate 1 if jump is allowed.

- ► TASEP:
 - $\omega_i \in \{0, 1\}$, rate 1 if jump is allowed.
 - ▶ Translation-invariant extremal stationary distributions are product Bernoulli(ϱ).

- ► TASEP:
 - $\omega_i \in \{0, 1\}$, rate 1 if jump is allowed.
 - ▶ Translation-invariant extremal stationary distributions are product Bernoulli(ϱ).
- ► TAZRP:
 - $\omega_i \in \mathbb{Z}^+$, rate is $r(\omega_i)$ for an $i \curvearrowright i+1$ jump.

- ► TASEP:
 - $\omega_i \in \{0, 1\}$, rate 1 if jump is allowed.
 - ▶ Translation-invariant extremal stationary distributions are product Bernoulli(ϱ).
- ► TAZRP:
 - $\omega_i \in \mathbb{Z}^+$, rate is $r(\omega_i)$ for an $i \curvearrowright i+1$ jump.
 - We only consider non-decreasing r (attractivity).

► TASEP:

- $\omega_i \in \{0, 1\}$, rate 1 if jump is allowed.
- ▶ Translation-invariant extremal stationary distributions are product Bernoulli(ϱ).

► TAZRP:

- $\omega_i \in \mathbb{Z}^+$, rate is $r(\omega_i)$ for an $i \curvearrowright i+1$ jump.
- We only consider non-decreasing r (attractivity).
- ► Translation-invariant extremal stationary distributions are still product, and rather explicit in terms of $r(\cdot)$.

► TASEP:

- $\omega_i \in \{0, 1\}$, rate 1 if jump is allowed.
- Translation-invariant extremal stationary distributions are product Bernoulli(ρ).

► TAZRP:

- $\omega_i \in \mathbb{Z}^+$, rate is $r(\omega_i)$ for an $i \curvearrowright i+1$ jump.
- We only consider non-decreasing r (attractivity).
- ► Translation-invariant extremal stationary distributions are still product, and rather explicit in terms of $r(\cdot)$.
- Examples:
 - $r(\omega_i) = \mathbf{1}\{\omega_i > 0\}$: classical zero range; $\omega_i \sim \text{Geom}(\theta)$.
 - $r(\omega_i) = \omega_i$: independent walkers; $\omega_i \sim \text{Poi}(\theta)$.

a brick is added with rate
$$[r(\omega_i) + r(-\omega_{i+1})]$$

a brick is added with rate
$$[\mathbf{r}(\omega_i) + r(-\omega_{i+1})]$$

 $(r(\omega) \cdot r(1 - \omega) = 1; \quad r \text{ non-decreasing}).$

a brick is added with rate
$$[\mathbf{r}(\omega_i) + r(-\omega_{i+1})]$$
 $(r(\omega) \cdot r(1 - \omega) = 1; \quad r \text{ non-decreasing}).$

a brick is added with rate
$$[\mathbf{r}(\omega_i) + r(-\omega_{i+1})]$$

 $(r(\omega) \cdot r(1 - \omega) = 1; \quad r \text{ non-decreasing}).$

a brick is added with rate
$$[\mathbf{r}(\omega_i) + r(-\omega_{i+1})]$$

 $(r(\omega) \cdot r(1 - \omega) = 1; \quad r \text{ non-decreasing}).$

a brick is added with rate
$$[\mathbf{r}(\omega_i) + r(-\omega_{i+1})]$$

 $(r(\omega) \cdot r(1 - \omega) = 1; \quad r \text{ non-decreasing}).$

a brick is added with rate
$$[\mathbf{r}(\omega_i) + r(-\omega_{i+1})]$$

 $(r(\omega) \cdot r(1 - \omega) = 1; \quad r \text{ non-decreasing}).$

a brick is added with rate
$$[\mathbf{r}(\omega_i) + r(-\omega_{i+1})]$$

 $(r(\omega) \cdot r(1 - \omega) = 1; \quad r \text{ non-decreasing}).$

a brick is added with rate
$$[r(\omega_i) + \mathbf{r}(-\omega_{i+1})]$$

 $(r(\omega) \cdot r(1 - \omega) = 1; \quad r \text{ non-decreasing}).$

a brick is added with rate
$$[r(\omega_i) + \mathbf{r}(-\omega_{i+1})]$$

 $(r(\omega) \cdot r(1 - \omega) = 1; \quad r \text{ non-decreasing}).$

a brick is added with rate
$$[r(\omega_i) + \mathbf{r}(-\omega_{i+1})]$$

 $(r(\omega) \cdot r(1 - \omega) = 1; \quad r \text{ non-decreasing}).$

a brick is added with rate
$$[r(\omega_i) + \mathbf{r}(-\omega_{i+1})]$$

 $(r(\omega) \cdot r(1 - \omega) = 1; \quad r \text{ non-decreasing}).$

a brick is added with rate
$$[r(\omega_i) + \mathbf{r}(-\omega_{i+1})]$$

 $(r(\omega) \cdot r(1 - \omega) = 1; \quad r \text{ non-decreasing}).$

a brick is added with rate
$$[r(\omega_i) + \mathbf{r}(-\omega_{i+1})]$$

 $(r(\omega) \cdot r(1 - \omega) = 1; \quad r \text{ non-decreasing}).$

a brick is added with rate
$$[r(\omega_i) + \mathbf{r}(-\omega_{i+1})]$$

 $(r(\omega) \cdot r(1 - \omega) = 1; \quad r \text{ non-decreasing}).$

a brick is added with rate
$$[r(\omega_i) + r(-\omega_{i+1})]$$

$$(r(\omega) \cdot r(1 - \omega) = 1; \quad r \text{ non-decreasing}).$$

a brick is added with rate $[r(\omega_i) + r(-\omega_{i+1})]$

a brick is added with rate $[r(\omega_i) + r(-\omega_{i+1})]$

a brick is added with rate $[r(\omega_i) + r(-\omega_{i+1})]$

a brick is added with rate $[r(\omega_i) + r(-\omega_{i+1})]$

a brick is added with rate $[r(\omega_i) + r(-\omega_{i+1})]$

a brick is added with rate $[r(\omega_i) + r(-\omega_{i+1})]$

a brick is added with rate $[r(\omega_i) + r(-\omega_{i+1})]$

a brick is added with rate $[r(\omega_i) + r(-\omega_{i+1})]$

a brick is added with rate $[r(\omega_i) + r(-\omega_{i+1})]$

$$\omega_i \in \mathbb{Z}$$

a brick is added with rate $[r(\omega_i) + r(-\omega_{i+1})]$

$$\omega_i \in \mathbb{Z}$$

a brick is added with rate $[r(\omega_i) + r(-\omega_{i+1})]$

$$\omega_i \in \mathbb{Z}$$

a brick is added with rate $[r(\omega_i) + r(-\omega_{i+1})]$

$$\omega_i \in \mathbb{Z}$$

a brick is added with rate $[r(\omega_i) + r(-\omega_{i+1})]$

$$\omega_i \in \mathbb{Z}$$

a brick is added with rate $[r(\omega_i) + r(-\omega_{i+1})]$

$$\omega_i \in \mathbb{Z}$$

a brick is added with rate $[r(\omega_i) + r(-\omega_{i+1})]$

$$\omega_i \in \mathbb{Z}$$

a brick is added with rate $[r(\omega_i) + r(-\omega_{i+1})]$

$$\omega_i \in \mathbb{Z}$$

a brick is added with rate $[r(\omega_i) + r(-\omega_{i+1})]$

$$\omega_i \in \mathbb{Z}$$

a brick is added with rate $[r(\omega_i) + r(-\omega_{i+1})]$

 $\omega_i \in \mathbb{Z}$

a brick is added with rate $[r(\omega_i) + r(-\omega_{i+1})]$

$$\omega_i \in \mathbb{Z}$$

a brick is added with rate $[r(\omega_i) + r(-\omega_{i+1})]$

$$\omega_i \in \mathbb{Z}$$

a brick is added with rate $[r(\omega_i) + r(-\omega_{i+1})]$

$$(r(\omega) \cdot r(1 - \omega) = 1; \quad r \text{ non-decreasing}).$$

$$\omega_i \in \mathbb{Z}$$

a brick is added with rate $[r(\omega_i) + r(-\omega_{i+1})]$

$$\omega_i \in \mathbb{Z}$$

a brick is added with rate $[r(\omega_i) + r(-\omega_{i+1})]$

$$\omega_i \in \mathbb{Z}$$

a brick is added with rate $[r(\omega_i) + r(-\omega_{i+1})]$

$$\omega_i \in \mathbb{Z}$$

a brick is added with rate $[r(\omega_i) + r(-\omega_{i+1})]$

$$\omega_i \in \mathbb{Z}$$

a brick is added with rate $[r(\omega_i) + r(-\omega_{i+1})]$

$$\omega_i \in \mathbb{Z}$$

a brick is added with rate $[r(\omega_i) + r(-\omega_{i+1})]$

$$\omega_i \in \mathbb{Z}$$

a brick is added with rate $[r(\omega_i) + r(-\omega_{i+1})]$

$$\omega_i \in \mathbb{Z}$$

a brick is added with rate $[r(\omega_i) + r(-\omega_{i+1})]$

Extremal translation-invariant distributions are still product, and rather explicit in terms of $r(\cdot)$.

A special case: $r(\omega_i) = \mathrm{e}^{\beta\omega_i}$: $\omega_i \sim \mathrm{discrete\ Gaussian}(\frac{\theta}{\beta}, \frac{1}{\sqrt{\beta}})$.

Hydrodynamics (very briefly)

```
Define the density \varrho := \mathbf{E}(\omega) and the hydrodynamic flux H := H(\varrho) := \mathbf{E}^{\varrho} [growth rate].
```

Hydrodynamics (very briefly)

Define the *density* $\varrho := \mathbf{E}(\omega)$ and the *hydrodynamic flux* $H := H(\varrho) := \mathbf{E}^{\varrho}$ [growth rate].

The hydrodynamics is

$$\partial_T \varrho + \partial_X \mathbf{H}(\varrho) = \mathbf{0}$$
 (conservation law).

Hydrodynamics (very briefly)

Define the *density* $\varrho := \mathbf{E}(\omega)$ and the *hydrodynamic flux* $H := H(\varrho) := \mathbf{E}^{\varrho}$ [growth rate].

The hydrodynamics is

$$\partial_T \varrho + \partial_X \mathbf{H}(\varrho) = \mathbf{0}$$
 (conservation law).

▶ The characteristic velocity is $H'(\varrho)$.

$$H'(\varrho) \searrow$$
 (H concave)

States ω and η only differ at one site.

Growth on the left: rate≥rate

States ω and η only differ at one site.

Growth on the left: rate≥rate with rate:

States ω and η only differ at one site.

Growth on the left: rate>rate with rate:

States ω and η only differ at one site.

Growth on the left: rate>rate with rate:

States ω and η only differ at one site.

States ω and η only differ at one site.

States ω and η only differ at one site.

States ω and η only differ at one site.

States ω and η only differ at one site.

States ω and η only differ at one site.

States ω and η only differ at one site.

States ω and η only differ at one site.

States ω and η only differ at one site.

States ω and η only differ at one site.

States ω and η only differ at one site.

States ω and η only differ at one site.

States ω and η only differ at one site.

States ω and η only differ at one site.

States ω and η only differ at one site.

States ω and η only differ at one site.

States ω and η only differ at one site.

States ω and η only differ at one site.

rate>rate with rate-rate:

States ω and η only differ at one site.

A single discrepancy, the second class particle, is conserved. Its position at time t is Q(t).

```
Blue TASEP \omega:
```

Bernoulli(ϱ) for sites {..., -2, -1, 0}, Bernoulli(λ) for sites {1, 2, 3, ...}.

Black TASEP η :

Bernoulli(ϱ) for sites $\{\ldots, -3, -2, -1\}$,

Bernoulli(λ) for sites $\{0, 1, 2, \dots\}$.

 $h_i(t)$, $g_i(t)$ are the respective numbers of particles jumping over the edge (i, i + 1) by time t (i > 0).

First realization:

• $\omega_i(0) = \eta_i(0) \sim \text{Bernoulli}(\varrho) \text{ for } i < 0$

- $\omega_i(0) = \eta_i(0) \sim \text{Bernoulli}(\varrho) \text{ for } i < 0$
- $(\omega_0(0), \eta_0(0)) = (0, 0)$ w. prob. 1ϱ $(\omega_0(0), \eta_0(0)) = (1, 0)$ w. prob. $\varrho - \lambda$ $(\omega_0(0), \eta_0(0)) = (1, 1)$ w. prob. λ

- $\omega_i(0) = \eta_i(0) \sim \mathsf{Bernoulli}(\varrho) \text{ for } i < 0$
- $(\omega_0(0), \eta_0(0)) = (0, 0)$ w. prob. 1ϱ $(\omega_0(0), \eta_0(0)) = (1, 0)$ w. prob. $\varrho - \lambda$ $(\omega_0(0), \eta_0(0)) = (1, 1)$ w. prob. λ
- $\omega_i(0) = \eta_i(0) \sim \text{Bernoulli}(\lambda) \text{ for } i > 0$

- $\omega_i(0) = \eta_i(0) \sim \mathsf{Bernoulli}(\varrho) \text{ for } i < 0$
- $(\omega_0(0), \eta_0(0)) = (0, 0)$ w. prob. 1ϱ $(\omega_0(0), \eta_0(0)) = (1, 0)$ w. prob. $\varrho \lambda$ 2nd class particle $(\omega_0(0), \eta_0(0)) = (1, 1)$ w. prob. λ
- $\omega_i(0) = \eta_i(0) \sim \text{Bernoulli}(\lambda) \text{ for } i > 0$

- $\omega_i(0) = \eta_i(0) \sim \text{Bernoulli}(\varrho) \text{ for } i < 0$
- $(\omega_0(0), \eta_0(0)) = (0, 0)$ w. prob. 1ϱ • $(\omega_0(0), \eta_0(0)) = (1, 0)$ w. prob. $\varrho - \lambda$ 2nd class particle • $(\omega_0(0), \eta_0(0)) = (1, 1)$ w. prob. λ
- $\omega_i(0) = \eta_i(0) \sim \text{Bernoulli}(\lambda) \text{ for } i > 0$

$$\mathsf{E} h_i(t) - \mathsf{E} g_i(t) = \mathsf{E} (h_i(t) - g_i(t)) = (\varrho - \lambda) \cdot \mathsf{P} \{ \mathsf{Q}(t) > i \}.$$

Second realization:

$$\omega_i(t) \equiv \eta_{i-1}(t) \quad \forall i, \ \forall t.$$

Second realization:

$$\omega_i(t) \equiv \eta_{i-1}(t) \quad \forall i, \ \forall t.$$

$$\mathsf{E}h_i(t) - \mathsf{E}g_i(t) = \mathsf{E}(h_i(t) - g_i(t)) = \mathsf{E}(\eta_i(t) - \eta_i(0)) = \mathsf{E}\eta_i(t) - \mathsf{E}\eta_i(0).$$

Thus,

$$\mathbf{E}h_i(t) - \mathbf{E}g_i(t) = \mathbf{E}(h_i(t) - g_i(t)) = (\varrho - \lambda) \cdot \mathbf{P}\{\mathbf{Q}(t) > i\},$$

$$\mathbf{E}h_i(t) - \mathbf{E}g_i(t) = \mathbf{E}(h_i(t) - g_i(t)) = \mathbf{E}\eta_i(t) - \mathbf{E}\eta_i(0),$$

Thus,

$$\begin{aligned} \mathbf{E}h_i(t) - \mathbf{E}g_i(t) &= \mathbf{E}(h_i(t) - g_i(t)) = (\varrho - \lambda) \cdot \mathbf{P}\{Q(t) > i\}, \\ \mathbf{E}h_i(t) - \mathbf{E}g_i(t) &= \mathbf{E}(h_i(t) - g_i(t)) = \mathbf{E}\eta_i(t) - \mathbf{E}\eta_i(0), \\ \mathbf{P}\{Q(t) > i\} &= \frac{\mathbf{E}\eta_i(t) - \mathbf{E}\eta_i(0)}{\varrho - \lambda}. \end{aligned}$$

Thus,

$$\begin{aligned} \mathbf{E}h_i(t) - \mathbf{E}g_i(t) &= \mathbf{E}(h_i(t) - g_i(t)) = (\varrho - \lambda) \cdot \mathbf{P}\{Q(t) > i\}, \\ \mathbf{E}h_i(t) - \mathbf{E}g_i(t) &= \mathbf{E}(h_i(t) - g_i(t)) = \mathbf{E}\eta_i(t) - \mathbf{E}\eta_i(0), \\ \mathbf{P}\{Q(t) > i\} &= \frac{\mathbf{E}\eta_i(t) - \mathbf{E}\eta_i(0)}{\varrho - \lambda}. \end{aligned}$$

Combine with hydrodynamics to conclude

$$\frac{\mathsf{Q}(t)}{t} \Rightarrow \begin{cases} \mathsf{shock} \; \mathsf{velocity} & \mathsf{in} \; \mathsf{a} \; \mathsf{shock}, \\ \mathsf{U}(H'(\varrho), H'(\lambda)) & \mathsf{in} \; \mathsf{a} \; \mathsf{rarefaction} \; \mathsf{wave}. \end{cases}$$

Let's generalise

Other models have more than 0 or 1 particles per site. How do we start the second class particle?

Shall we do

Let's generalise

Other models have more than 0 or 1 particles per site. How do we start the second class particle?

Shall we do

▶ Recall for TASEP we increased λ to ϱ by adding or not adding a 2nd class particle.

$$(\omega_0(0), \eta_0(0)) = (0, 0)$$
 w. prob. $1 - \varrho$
 $(\omega_0(0), \eta_0(0)) = (1, 0)$ w. prob. $\varrho - \lambda$
 $(\omega_0(0), \eta_0(0)) = (1, 1)$ w. prob. λ

Let's generalise: problems with coupling

Fix $\lambda < \varrho \leq \lambda + 1$. Is there a joint distribution of $(\omega_0, \, \eta_0)$ such that

- the first marginal is $\omega_0 \sim$ stati. μ^{ϱ} ;
- the second marginal is $\eta_0 \sim$ stati. μ^{λ} ;
- ▶ $\eta_0 \le \omega_0 \le \eta_0 + 1$?

Let's generalise: problems with coupling

Fix $\lambda < \varrho \leq \lambda + 1$. Is there a joint distribution of $(\omega_0, \, \eta_0)$ such that

- the first marginal is $\omega_0 \sim$ stati. μ^{ϱ} ;
- the second marginal is $\eta_0 \sim$ stati. μ^{λ} ;
- ▶ $\eta_0 \le \omega_0 \le \eta_0 + 1$?

Proposition

Of course for Bernoulli (TASEP).

Let's generalise: problems with coupling

Fix $\lambda < \varrho \leq \lambda + 1$. Is there a joint distribution of $(\omega_0, \, \eta_0)$ such that

- the first marginal is $\omega_0 \sim$ stati. μ^{ϱ} ;
- the second marginal is $\eta_0 \sim$ stati. μ^{λ} ;
- ▶ $\eta_0 \le \omega_0 \le \eta_0 + 1$?

Proposition

- Of course for Bernoulli (TASEP).
- ▶ No for Geometric (classical TAZRP with $r(\omega_i) = 1\{\omega_i > 0\}$).

Let's generalise: problems with coupling

Fix $\lambda < \varrho \le \lambda + 1$. Is there a joint distribution of $(\omega_0, \, \eta_0)$ such that

- the first marginal is $\omega_0 \sim$ stati. μ^{ϱ} ;
- the second marginal is $\eta_0 \sim$ stati. μ^{λ} ;
- ▶ $\eta_0 \le \omega_0 \le \eta_0 + 1$?

Proposition

- Of course for Bernoulli (TASEP).
- ▶ No for Geometric (classical TAZRP with $r(\omega_i) = \mathbf{1}\{\omega_i > 0\}$).
- ▶ No for Poisson (indep. walkers with $r(\omega_i) = \omega_i$).

Let's generalise: problems with coupling

Fix $\lambda < \varrho \le \lambda + 1$. Is there a joint distribution of $(\omega_0, \, \eta_0)$ such that

- the first marginal is $\omega_0 \sim$ stati. μ^{ϱ} ;
- the second marginal is $\eta_0 \sim$ stati. μ^{λ} ;
- ▶ $\eta_0 \le \omega_0 \le \eta_0 + 1$?

Proposition

- Of course for Bernoulli (TASEP).
- ▶ No for Geometric (classical TAZRP with $r(\omega_i) = 1\{\omega_i > 0\}$).
- ▶ No for Poisson (indep. walkers with $r(\omega_i) = \omega_i$).
- Yes for discrete Gaussian (bricklayers with $r(\omega_i) = e^{\beta \omega_i}$).

Keep calm and couple anyway.

Find a coupling measure ν with

- first marginal $\omega_0 \sim$ stati. μ^{ϱ} ;
- second marginal $\eta_0 \sim$ stati. μ^{λ} ;
- ▶ zero weight whenever $\omega_0 \notin \{\eta_0, \eta_0 + 1\}$.

Not many choices:

$$\begin{split} \nu(\textbf{\textit{x}},\,\textbf{\textit{x}}) &= \mu^{\varrho}\{-\infty\dots\textbf{\textit{x}}\} - \mu^{\lambda}\{-\infty\dots\textbf{\textit{x}}-\textbf{\textit{1}}\},\\ \nu(\textbf{\textit{x}}+\textbf{\textit{1}},\,\textbf{\textit{x}}) &= \mu^{\lambda}\{-\infty\dots\textbf{\textit{x}}\} - \mu^{\varrho}\{-\infty\dots\textbf{\textit{x}}\},\\ \nu &= \text{zero elsewhere}. \end{split}$$

$$\nu(\mathbf{x}, \mathbf{x}) = \mu^{\varrho} \{-\infty \dots \mathbf{x}\} - \mu^{\lambda} \{-\infty \dots \mathbf{x} - 1\},$$

$$\nu(\mathbf{x} + 1, \mathbf{x}) = \mu^{\lambda} \{-\infty \dots \mathbf{x}\} - \mu^{\varrho} \{-\infty \dots \mathbf{x}\},$$

$$\nu = \text{zero elsewhere.}$$

$$\begin{split} \nu(\mathbf{x},\,\mathbf{x}) &= \mu^{\varrho}\{-\infty\dots\mathbf{x}\} - \mu^{\lambda}\{-\infty\dots\mathbf{x}-\mathbf{1}\},\\ \nu(\mathbf{x}+\mathbf{1},\,\mathbf{x}) &= \mu^{\lambda}\{-\infty\dots\mathbf{x}\} - \mu^{\varrho}\{-\infty\dots\mathbf{x}\},\\ \nu &= \mathsf{zero}\;\mathsf{elsewhere}. \end{split}$$

▶ Bad news: $\nu(x, x)$ can be negative (e.g., Geom., Poi).

$$\begin{split} \nu(\textbf{\textit{x}},\,\textbf{\textit{x}}) &= \mu^{\varrho}\{-\infty\dots\textbf{\textit{x}}\} - \mu^{\lambda}\{-\infty\dots\textbf{\textit{x}}-\textbf{\textit{1}}\},\\ \nu(\textbf{\textit{x}}+\textbf{\textit{1}},\,\textbf{\textit{x}}) &= \mu^{\lambda}\{-\infty\dots\textbf{\textit{x}}\} - \mu^{\varrho}\{-\infty\dots\textbf{\textit{x}}\},\\ \nu &= \mathsf{zero}\;\mathsf{elsewhere}. \end{split}$$

- ▶ Bad news: $\nu(x, x)$ can be negative (e.g., Geom., Poi).
- ► Good news: Who cares? No 2nd class particle there.

$$\nu(\mathbf{x}, \mathbf{x}) = \mu^{\varrho} \{-\infty \dots \mathbf{x}\} - \mu^{\lambda} \{-\infty \dots \mathbf{x} - \mathbf{1}\},$$

$$\nu(\mathbf{x} + \mathbf{1}, \mathbf{x}) = \mu^{\lambda} \{-\infty \dots \mathbf{x}\} - \mu^{\varrho} \{-\infty \dots \mathbf{x}\},$$

$$\nu = \text{zero elsewhere.}$$

- ▶ Bad news: $\nu(x, x)$ can be negative (e.g., Geom., Poi).
- ► Good news: Who cares? No 2nd class particle there.
- ▶ Good news: $\nu(x+1, x) \ge 0$ (attractivity).

$$\begin{split} \nu(\textbf{\textit{x}},\,\textbf{\textit{x}}) &= \mu^{\varrho}\{-\infty\dots\textbf{\textit{x}}\} - \mu^{\lambda}\{-\infty\dots\textbf{\textit{x}}-\textbf{1}\},\\ \nu(\textbf{\textit{x}}+\textbf{1},\,\textbf{\textit{x}}) &= \mu^{\lambda}\{-\infty\dots\textbf{\textit{x}}\} - \mu^{\varrho}\{-\infty\dots\textbf{\textit{x}}\},\\ \nu &= \text{zero elsewhere}. \end{split}$$

- ▶ Bad news: $\nu(x, x)$ can be negative (e.g., Geom., Poi).
- ► Good news: Who cares? No 2nd class particle there.
- ▶ Good news: $\nu(x+1, x) \ge 0$ (attractivity).

We can still use the *signed measure* ν formally, as we only care about $\nu(x+1, x)$. Scale this up to get the initial distribution at the site of the second class particle:

$$\mu(\omega_0, \, \eta_0) = \mu(\eta_0 + 1, \, \eta_0) = \frac{\nu(\eta_0 + 1, \, \eta_0)}{\sum_{\mathbf{x}} \nu(\mathbf{x} + 1, \, \mathbf{x})} = \frac{\nu(\eta_0 + 1, \, \eta_0)}{\varrho - \lambda}.$$

$$\mu(\omega_0,\,\eta_0)=\frac{\nu(\eta_0+1,\,\eta_0)}{\varrho-\lambda}$$

- is a proper probability distribution;
- actually agrees with the coupling measure ν conditioned on a 2nd class particle when ν behaves nicely (Bernoulli, discr.Gaussian);
- allows the extension of Ferrari-Kipnis:

Theorem Starting in

$$\begin{split} & \bigotimes_{i < 0} \mu_i^\varrho \otimes \mu_0 \otimes \bigotimes_{i > 0} \mu_i^\lambda, \\ & \lim_{N \to \infty} \mathbf{P} \Big\{ \frac{\mathbf{Q}(NT)}{N} > X \Big\} = \frac{\varrho(X, T) - \lambda}{\varrho - \lambda} \end{split}$$

where $\varrho(X, T)$ is the entropy solution of the hydrodynamic equation with initial data

 ϱ on the left λ on the right.

What do we have?

$$\lim_{N\to\infty} \mathbf{P}\Big\{\frac{\mathbf{Q}(NT)}{N} > X\Big\} = \frac{\varrho(X, T) - \lambda}{\varrho - \lambda}$$

- \rightsquigarrow The solution $\varrho(X, T)$ is the distribution of the velocity for \mathbb{Q} .
 - Shock: distribution is step function, velocity is deterministic (LLN).
 - Rarefaction wave: distribution is continuous, velocity is random (e.g., Uniform for TASEP).

$$\omega_i = -1, \, 0, \, 1;$$

$$(0, \, -1) \to (-1, \, 0) \qquad \text{with rate } \frac{1}{2},$$

$$(1, \, 0) \to (0, \, 1) \qquad \text{with rate } \frac{1}{2},$$

$$(1, \, -1) \to (0, \, 0) \qquad \text{with rate } 1,$$

$$(0, \, 0) \to (-1, \, 1) \qquad \text{with rate } c.$$

Hydrodynamic flux $H(\varrho)$, for certain c:

Here is what can happen (R: rarefaction wave, S: Shock):

Examples for $\varrho(T, X)$:

$$\lim_{N\to\infty} \mathbf{P}\Big\{\frac{\mathbf{Q}(NT)}{N} > X\Big\} = \frac{\varrho(X, T) - \lambda}{\varrho - \lambda}$$

 \rightsquigarrow The solution $\varrho(X, T)$ is the distribution of the velocity for \mathbb{Q} .

I haven't seen a walk with a random velocity of *mixed distribution* before.

A few more remarks

▶ This work sheds light on a measure $\hat{\mu}$ we came up with in the 1/3-fluctuations papers (B., J. Komjáthy, T. Seppäläinen). At that time we had no idea why $\hat{\mu}$. It just worked nice with our formulas.

As it turns out:
$$\hat{\mu} = \lim_{\lambda \nearrow \varrho} \mu$$
.

A few more remarks

▶ This work sheds light on a measure $\hat{\mu}$ we came up with in the 1/3-fluctuations papers (B., J. Komjáthy, T. Seppäläinen). At that time we had no idea why $\hat{\mu}$. It just worked nice with our formulas.

As it turns out:
$$\hat{\mu} = \lim_{\lambda \nearrow \varrho} \mu$$
.

We can do symmetric models too. SSEP's second class particle is a SSRW so boring, but the ones of other symmetric models are interesting. We get diffusive scaling and non-trivial CLT.

A few more remarks

▶ This work sheds light on a measure $\hat{\mu}$ we came up with in the 1/3-fluctuations papers (B., J. Komjáthy, T. Seppäläinen). At that time we had no idea why $\hat{\mu}$. It just worked nice with our formulas.

As it turns out:
$$\hat{\mu} = \lim_{\lambda \nearrow \varrho} \mu$$
.

We can do symmetric models too. SSEP's second class particle is a SSRW so boring, but the ones of other symmetric models are interesting. We get diffusive scaling and non-trivial CLT.

Thank you.

Thank you.