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TASEP, TAZRP

> :
» wi € {0, 1}, rate 1 if jump is allowed.
» Translation-invariant extremal stationary distributions are
product Bernoulli(p).
>

» wj € ZT, rateisr(w) forani ~ i+ 1 jump.
» We only consider non-decreasing r ( ).
» Translation-invariant extremal stationary distributions are
still product, and rather explicit in terms of r(-).
» Examples:
> r(wi) = 1{w; > 0}: classical zero range; w; ~ Geom(#).
» r(wi) = wi: independent walkers; w; ~ Poi(0).
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Extremal translation-invariant distributions are still product, and
rather explicit in terms of r(+).

A special case: r(w;) = €’ w; ~ discrete Gaussian(, ﬁ).
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Hydrodynamics (very briefly)

Define the density ¢ : = E(w)
and the hydrodynamic flux H : = H(p) : = E¢[growth rate].

» The hydrodynamics is

Oro+0xH()=0  ( )-

» The characteristic velocity is H'(o).



Hydro

Shock
o(T, X)
1.0+
0.8 +
Jam
6+
0.4+
0.2+
—_— —_— - - X

H'(0) \u (H concave)



Shock

1.0

0.8 1

Jam

H'(0) \u (H concave)



Shock

1.0

Jam

H'(0) \u (H concave)



Shock

1.0

Jam

H'(0) \u (H concave)



Shock

o(T, X)
1.0+
0.8 1
Jam
0.6 +
04+
0.2+
X
—_— —_— " —— - ——

H'(0) \u (H concave)



Shock

o(T, X)
1.0+
0.8
Jam
0.6 T+
04+
0.2+
X
—_— —_— " —— - ——

H'(0) \u (H concave)



Shock

1.0 1

0.8

0.6

0.4

0.2

Jam

H'(0)

(H concave)



Shock

1.0 1

0.8

0.6

0.4

0.2

Jam

H'(0)

(H concave)



Hydro

Shock
o(T, X)
1.0+
08
Jam
0.6 +
0.4+
0.2+
—_— —_— - - X

H'(0) \u (H concave)



Hydro

Shock
o(T, X)
1.0+
05
Jam
0.6 +
0.4+
0.2+
—_— —_— - - X

H'(0) \u (H concave)



Hydro

Shock
o(T, X)
1.0+
Jam
0.6 +
0.4+
0.2+
—_— —_— - - X

H'(0) \u (H concave)



Hydro

Shock
o(T, X)
1.0+
Jam
0.6 +
0.4+
0.2+
—_— —_— - - X

H'(0) \u (H concave)



Hydro

Shock
o(T, X)
1.0+
Jam
0.6 +
0.4+
0.2+
—_— —_— - - X

H'(0) \u (H concave)



Hydro

Shock
o(T, X)
1.0+
Jam
0.6 +
0.4+
0.2+
—_— —_— - - X

H'(0) \u (H concave)



Hydro

Shock
o(T, X)
1.0+
Jam
0.6 +
0.4+
0.2+
—_— —_— - - X

H'(0) \u (H concave)



Hydro

Shock
o(T, X)
1.0+
Jam
0.6 +
0.4+
0.2+
—_— —_— - - X

H'(0) \u (H concave)



Shock

o(T, X)
1.0+
Jam
0.6 +
04+
0.2+
X
—_— —_— " —— - ——

H'(0) \u (H concave)



Shock

o(T, X)
1.0+
Jam
0.6 +
04+
0.2+
X
—_— —_— " —— - ——

H'(0) \u (H concave)



Shock

o(T, X)
1.0+
Jam
0.6 +
04+
0.2+
X
—_— —_— " —— - ——

H'(0) \u (H concave)



Shock

o(T, X)
1.0+
Jam
0.6 +
04+
0.2+
X
—_— —_— " —— - ——

H'(0) \u (H concave)



Shock

o(T, X)
1.0+
Jam
0.6 +
04+
0.2+
X
—_— —_— " —— - ——

H'(0) \u (H concave)



Shock

o(T, X)
1.0+
Jam
0.6 +
04+
0.2+
X
—_— —_— " —— - ——

H'(0) \u (H concave)



Shock

o(T, X)
1.0+
Jam
0.6 +
04+
0.2+
X
—_— —_— " —— - ——

H'(0) \u (H concave)



Shock

o(T, X)
1.0+
Jam
0.6 +
04+
0.2+
X
—_— —_— " —— - ——

H'(0) \u (H concave)



Shock

o(T, X)
1.0+
Jam
0.6 +
04+
0.2+
X
—_— —_— " —— - ——

H'(0) \u (H concave)



Shock

o(T, X)
1.0+
Jam
0.6 +
04+
0.2+
X
—_— —_— " —— - ——

H'(0) \u (H concave)



Shock

o(T, X)
1.0+
Jam
0.6 +
04+
0.2+
X
—_— —_— " —— - ——

H'(0) \u (H concave)



Shock

o(T, X)
1.0+
Jam
0.6 +
04+
0.2+
X
—_— —_— " —— - ——

H'(0) \u (H concave)



Shock

o(T, X)
1.0+
Jam
0.6 +
04+
0.2+
X
—_— —_— " —— - ——

H'(0) \u (H concave)



Shock

o(T, X)
1.0+
Jam
0.6 +
04+
0.2+
X
—_— —_— " —— - ——

H'(0) \u (H concave)



Shock

o(T, X)
1.0+
Jam
0.6 +
04+
0.2+
X
—_— —_— " —— - ——

H'(0) \u (H concave)



Shock

o(T, X)
1.0+
Jam
0.6 +
04+
0.2+
X
—_— —_— " —— - ——

H'(0) \u (H concave)



Shock

o(T, X)
1.0+
Jam
0.6 +
04+
0.2+
X
—_— —_— " —— - ——

H'(0) \u (H concave)



Shock

o(T, X)
1.0+
Jam
0.6 +
04+
0.2+
X
—_— —_— " —— - ——

H'(0) \u (H concave)



Shock

o(T, X)
1.0+
Jam
0.6 +
04+
0.2+
X
—_— —_— " —— - ——

H'(0) \u (H concave)



Shock

o(T, X)
1.0+
Jam
0.6 +
04+
0.2+
X
—_— —_— " —— - ——

H'(0) \u (H concave)



Shock

o(T, X)
1.0+
Jam
0.6 +
04+
0.2+
X
—_— —_— " —— - ——

H'(0) \u (H concave)



Shock

o(T, X)
1.0+
Jam
0.6 +
04+
0.2+
X
—_— —_— " —— - ——

H'(0) \u (H concave)



Shock

o(T, X)
1.0+
Jam
0.6 +
04+
0.2+
X
—_— —_— " —— - ——

H'(0) \u (H concave)



Shock

o(T, X)
1.0+
Jam
0.6 +
04+
0.2+
X
—_— —_— " —— - ——

H'(0) \u (H concave)



Shock

o(T, X)
1.0+
Jam
0.6 +
04+
0.2+
X
—_— —_— " —— - ——

H'(0) \u (H concave)



Shock

o(T, X)
1.0+
Jam
0.6 +
04+
0.2+
X
—_— —_— " —— - ——

H'(0) \u (H concave)



Shock

o(T, X)
1.0+
Jam
0.6 +
04+
0.2+
X
—_— —_— " —— - ——

H'(0) \u (H concave)



Shock

o(T, X)
1.0+
Jam
0.6 +
04+
0.2+
X
—_— —_— " —— - ——

H'(0) \u (H concave)



Shock

o(T, X)
1.0+
Jam
0.6 +
04+
0.2+
X
—_— —_— " —— - ——

H'(0) \u (H concave)



Shock

o(T, X)
1.0+
Jam
0.6 +
04+
0.2+
X
—_— —_— " —— - ——

H'(0) \u (H concave)



Shock

o(T, X)
1.0+
Jam
0.6 +
04+
0.2+
X
—_— —_— " —— - ——

H'(0) \u (H concave)



Shock

o(T, X)
1.0+
Jam
0.6 +
04+
0.2+
X
—_— —_— " —— - ——

H'(0) \u (H concave)



Shock

o(T, X)
1.0+
Jam
0.6 +
04+
0.2+
X
—_— —_— " —— - ——

H'(0) \u (H concave)



Shock

o(T, X)
1.0+
Jam
0.6 +
04+
0.2+
X
—_— —_— " —— - ——

H'(0) \u (H concave)



Shock

o(T, X)
1.0+
Jam
0.6 +
04+
0.2+
X
—_— —_— " —— - ——

H'(0) \u (H concave)



Shock

o(T, X)
1.0+
Jam
0.6 +
04+
0.2+
X
—_— —_— " —— - ——

H'(0) \u (H concave)



Shock

o(T, X)
1.0+
Jam
0.6 +
04+
0.2+
X
—_— —_— " —— - ——

H'(0) \u (H concave)



Shock

o(T, X)
1.0+
Jam
0.6 +
04+
0.2+
X
—_— —_— " —— - ——

H'(0) \u (H concave)



Shock

o(T, X)
1.0+
Jam
0.6 +
04+
0.2+
X
—_— —_— " —— - ——

H'(0) \u (H concave)



Shock

o(T, X)
1.0+
Jam
0.6 +
04+
0.2+
X
—_— —_— " —— - ——

H'(0) \u (H concave)



Shock

o(T, X)
1.0+
Jam
0.6 +
04+
0.2+
X
—_— —_— " —— - ——

H'(0) \u (H concave)



Shock

o(T, X)
1.0+
Jam
0.6 +
04+
0.2+
X
—_— —_— " —— - ——

H'(0) \u (H concave)



Shock

o(T, X)
1.0+
Jam
0.6 +
04+
0.2+
X
—_— —_— " —— - ——

H'(0) \u (H concave)



Shock

o(T, X)
1.0+
Jam
0.6 +
04+
0.2+
X
—_— —_— " —— - ——

H'(0) \u (H concave)



Shock

o(T, X)
1.0+
Jam
0.6 +
04+
0.2+
X
—_— —_— " —— - ——

H'(0) \u (H concave)



Rarefaction fan

o(T, X)
1.0+
Jam
0.6 +
04+
0.2+
X
" —— " —— —_— —_—

H'(0) \u (H concave)



Hydro

Rarefaction fan

o(T, X)
1.0+
Jam
0.6 +
04+
0.2+
X
" —— " —— —_— —_—

H'(0) \u (H concave)



Hydro

Rarefaction fan

o(T, X)
1.0+
Jam
0.6 +
04+
0.2+
X
" —— " —— —_— —_—

H'(0) \u (H concave)



Hydro

Rarefaction fan

o(T, X)
1.0+
Jam
0.6 +
04+
0.2+
X
" —— " —— —_— —_—

H'(0) \u (H concave)



Hydro

Rarefaction fan

o(T, X)
1.0+
Jam
0.6 +
04+
0.2+
X
" —— " —— —_— —_—

H'(0) \u (H concave)



Rarefaction fan

o(T, X)
1.0+
Jam
0.6 +
04+
0.2+
X
" —— " —— —_— —_—

H'(0) \u (H concave)



Rarefaction fan

o(T, X)
1.0+
Jam
0.6 +
04+
0.2+
X
" —— " —— —_— —_—

H'(0) \u (H concave)



Rarefaction fan

o(T, X)
1.0+
Jam
0.6 +
04+
0.2+
X
" —— " —— —_— —_—

H'(0) \u (H concave)



Rarefaction fan

o(T, X)
1.0+
Jam
0.6 +
04+
0.2+
X
" —— " —— —_— —_—

H'(0) \u (H concave)



Rarefaction fan

o(T, X)
1.0+
"N
Jam
0.6 +
04+
0.2+
X
" —— " —— —_— —_—

H'(0) \u (H concave)



Rarefaction fan

o(T, X)
1.0+
Jam ,\
0.6 +
04+
0.2+
X
" —— " —— —_— —_—

H'(0) \u (H concave)



Rarefaction fan

o(T, X)
1.0+
N
Jam
0.6 +
04+
0.2+
X
" —— " —— —_— —_—

H'(0) \u (H concave)



Rarefaction fan

o(T, X)
1.0+
0.8 1
Jam
0.6 +
04+
0.2+
X
" —— " —— —_— —_—

H'(0) \u (H concave)



Rarefaction fan

o(T, X)
1.0+
0.8 1+
Jam
0.6 +
04+
0.2+
X
" —— " —— —_— —_—

H'(0) \u (H concave)



Rarefaction fan

o(T, X)
1.0+
0.8 1
Jam
0.6 +
04+
0.2+
X
" —— " —— —_— —_—

H'(0) \u (H concave)



Rarefaction fan

o(T, X)
1.0+
0.8 1
Jam
0.6 +
04+
0.2+
X
" —— " —— —_— —_—

H'(0) \u (H concave)



Hydro

Rarefaction fan

o(T, X)
1.0+
0.8 1
Jam

0.6

04+
0.2+

X
" —— " —— —_— —_—

H'(0) \u (H concave)



Hydro

Rarefaction fan

o(T, X)
1.0+
0.8 1
Jam

0.6

04+
0.2+

X
" —— " —— —_— —_—

H'(0) \u (H concave)



Hydro

Rarefaction fan

o(T, X)
10+
08—
Jam
0.6
0.4 -x
02+
X
—— —— —_— —_—

H'(0) \u (H concave)



Hydro

Rarefaction fan

o(T, X)
1.0+
08—+
Jam
0.6
0.4 -x
02+
X
—— —— —_— —_—

H'(0) \u (H concave)



Hydro

Rarefaction fan

o(T, X)
1.0+
0.8
Jam
0.6
0.4 -X
021
X
—— —— —_— —_—

H'(0) \u (H concave)



Hydro

Rarefaction fan

o(T, X)
1.0+
0.8 1
Jam
0.
04 _\
0.2+
X
" —— " —— —_— —_—

H'(0) \u (H concave)



Hydro

Rarefaction fan

o(T, X)
1.0+
0.8+
Jam
0. -
0.4 _\
02+
X
—— —— —_— —_—

H'(0) \u (H concave)



Hydro

Rarefaction fan

o(T, X)
1.0+
08—+
Jam
0. —
0.4 _\
02+
X
—— —— —_— —_—

H'(0) \u (H concave)



Hydro

Rarefaction fan

o(T, X)
1.0+
0.8+
Jam
0. -
0.4 _\
02+
X
—— —— —_— —_—

H'(0) \u (H concave)



Hydro

Rarefaction fan

o(T, X)
1.0+
08+
Jam
0.4 -\
02+
" —— " —— —_— —_— X

H'(0) \u (H concave)



Hydro

Rarefaction fan

o(T, X)
104+
081
Jam
0.4 -\
021
—— —— —_— —_— X

H'(0) \u (H concave)



Hydro

Rarefaction fan

o(T, X)
1.0+
08+
Jam
0.4 -\
02+
—— —— —_— —_— X

H'(0) \u (H concave)



Hydro

Rarefaction fan

o(T, X)
1.0+
0.8+
Jam
0.4 -\
0.2+
" —— " —— —_— —_— X

H'(0) \u (H concave)



Hydro

Rarefaction fan

o(T, X)
1.0+
081
Jam
0.4 -\
0.2
—— —— —_— —_— X

H'(0) \u (H concave)



Hydro

Rarefaction fan

o(T, X)
1.0+
081
Jam
0.4 -\
0.2
—— —— —_— —_— X

H'(0) \u (H concave)



znd ol

The second class particle

States w and 7 only differ at one site.




The second class particle

States w and 7 only differ at one site.

o0 oo
QD)
o0 oo



The second class particle

States w and 7 only differ at one site.

Yo

rate<rate

o0 oo
QD)
o0 oo



The second class particle

States w and 7 only differ at one site.

Yo

rate<rate
with rate:

o0 oo
QD)
o0 oo



znd ol

The second class particle

States w and 7 only differ at one site.

rate<rate
with rate:



znd ol

The second class particle

States w and 7 only differ at one site.

rate<rate
with rate:



znd ol

The second class particle

States w and 7 only differ at one site.

rate<rate
with rate:



znd ol

The second class particle

States w and 7 only differ at one site.

rate<rate
with rate:



znd ol

The second class particle

States w and 7 only differ at one site.

rate<rate
with rate:



znd ol

The second class particle

States w and 7 only differ at one site.

rate<rate
with rate:



znd ol

The second class particle

States w and 7 only differ at one site.

rate<rate
with rate:



znd ol

The second class particle

States w and 7 only differ at one site.

rate<rate
with rate:



znd ol

The second class particle

States w and 7 only differ at one site.

rate<rate
with rate:

%e %o



The second class particle

States w and 7 only differ at one site.

rate<rate
with rate:

o0 oo
D)
000000

*l



The second class particle

States w and 7 only differ at one site.

Yo

rate<rate
with rate-rate:

o0 oo
QD)
o0 oo



The second class particle

States w and 7 only differ at one site.

rate<rate
with rate-rate:




The second class particle

States w and 7 only differ at one site.

rate<rate
with rate-rate:




The second class particle

States w and 7 only differ at one site.

rate<rate
with rate-rate:




The second class particle

States w and 7 only differ at one site.

rate<rate
with rate-rate:




The second class particle

States w and 7 only differ at one site.

rate<rate
with rate-rate:




The second class particle

States w and 7 only differ at one site.

rate<rate
with rate-rate:




The second class particle

States w and 7 only differ at one site.

rate<rate
with rate-rate:




The second class particle

States w and 7 only differ at one site.

rate<rate
with rate-rate:




The second class particle

States w and 7 only differ at one site.

rate<rate
with rate-rate:




The second class particle

States w and 7 only differ at one site.

rate<rate
with rate-rate:

o0 o0
o o
(o0 @00)(]

|



The second class particle

States w and 7 only differ at one site.

rate>rate q

o0 oo
QD)
o0 oo



The second class particle

States w and 7 only differ at one site.

rate>rate N
with rate:

o0 oo
QD)
o0 oo



znd ol

The second class particle

States w and 7 only differ at one site.

rate>rate
with rate:



znd ol

The second class particle

States w and 7 only differ at one site.

rate>rate
with rate:



znd ol

The second class particle

States w and 7 only differ at one site.

rate>rate
with rate:



znd ol

The second class particle

States w and 7 only differ at one site.

rate>rate
with rate:



znd ol

The second class particle

States w and 7 only differ at one site.

rate>rate
with rate:



znd ol

The second class particle

States w and 7 only differ at one site.

rate>rate
with rate:



znd ol

The second class particle

States w and 7 only differ at one site.

rate>rate
with rate:



znd ol

The second class particle

States w and 7 only differ at one site.

rate>rate
with rate:



znd ol

The second class particle

States w and 7 only differ at one site.

rate>rate
with rate:

°
& %
oo oo

*l



The second class particle

States w and 7 only differ at one site.

:
-

rate>rate N
with rate:



The second class particle

States w and 7 only differ at one site.

rate>rate N
with rate-rate:

o0 oo
QD)
o0 oo



znd ol

The second class particle

States w and 7 only differ at one site.

rate>rate
with rate-rate:



znd ol

The second class particle

States w and 7 only differ at one site.

rate>rate
with rate-rate:



znd ol

The second class particle

States w and 7 only differ at one site.

rate>rate
with rate-rate:



znd ol

The second class particle

States w and 7 only differ at one site.

rate>rate
with rate-rate:



znd ol

The second class particle

States w and 7 only differ at one site.

rate>rate
with rate-rate:



znd ol

The second class particle

States w and 7 only differ at one site.

rate>rate
with rate-rate:



znd ol

The second class particle

States w and 7 only differ at one site.

rate>rate
with rate-rate:



znd ol

The second class particle

States w and 7 only differ at one site.

rate>rate
with rate-rate:



znd ol

The second class particle

States w and 7 only differ at one site.

rate>rate
with rate-rate:

°
% oo
YY)



znd ol

The second class particle

States w and 7 only differ at one site.

rate>rate
with rate-rate:

QD)
o0 oo
o0 oo



znd ol

The second class particle

States w and 7 only differ at one site.

rate>rate
with rate-rate:

;

—t—t—

. . f i L
A single discrepancyt, the second class particle, is conserved.
Its position at time t is Q(t).



Ferrari-Kipnis '95 for TASEP

Blue TASEP w:
Bernoulli(o) for sites {..., -2, —1, 0},
Bernoulli(\) for sites {1, 2, 3, ... }.

Black TASEP 7:

Bernoulli(o) for sites {..., =3, —2, —1},
Bernoulli(\) for sites {0, 1, 2, ... }.
Oi

hi(t), gi(t) are the respective numbers of particles jumping over
the edge (i, i + 1) by time t
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First realization:

» w;i(0) =n;(0) ~ Bernoulli(p) fori <0
> (wp(0), mo(0)) = (0, 0) w. prob. 1 — o

(wo(0), 10(0)) = (1, 0) w. prob. o — A 2" class particle

(wo(0), m0(0)) = (1, 1) w. prob. A
» wi(0) = 7;(0) ~ Bernoulli(\) fori > 0
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First realization:

» w;i(0) =n;(0) ~ Bernoulli(p) fori <0
> (wp(0), mo(0)) = (0, 0) w. prob. 1 — o

(wo(0), 10(0)) = (1, 0) w. prob. o — A 2" class particle

(wo(0), 70(0)) = (1, 1) w. prob. A
» wi(0) = 7;(0) ~ Bernoulli(\) fori > 0

o
L
I U
| 3 2 1 0 1 2 3 i

—A)-P{Q(t) > i}.



Ferrari-Kipnis '95 for TASEP, Part 2

Second realization:

Oi




Ferrari-Kipnis '95 for TASEP, Part 2

Second realization:




Ferrari-Kipnis '95 for TASEP

Ehi(t) — Egi(t) = E(hi(t) — gi(t)) = (¢ — A) - P{Q(t) > i},
i (hi(t) —gi(t)) = Em(t) — Emi(0),

T
=
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Combine with hydrodynamics to conclude

Q(t) { shock velocity in a shock,

t U(H'(0), H'(N)) in a rarefaction wave.
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Let's generalise

Other models have more than 0 or 1 particles per site. How do
we start the second class particle?

» Shall we do

? Or@? Or? Or...

» Recall for we increased ) to o by adding or not
adding a 2" class particle.
(«wo(0), 70(0)) = (0, 0) w. prob. 1 — ¢
(wo(0). 710(0)) = (L, 0) w. prob. o — A
(wo(0), m0(0)) = (1, 1) w. prob. A
oi
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Let's generalise: problems with coupling

Fix A < o < XA+ 1. Is there a joint distribution of (wg, ng) such
that

» the first marginal is wg ~ stati. u¢;
» the second marginal is ng ~ stati. p*;
> o Swo <o+ 17

Proposition
» Of course for Bernoulli ( ).
» No for Geometric ( with r(w;j) = 1{w; > 0}).
» No for Poisson ( with r(w;i) = wj).

» Yes for discrete Gaussian ( with r(w;) = €).



Let's generalise

Keep calm and couple anyway.

Find a coupling measure v with
» first marginal wo ~ stati. u¢;
» second marginal ng ~ stati. u*;
» zero weight whenever wg ¢ {ng, 10 + 1}.

Not many choices:

v(x, X) = p{—0co...x} — pM—o0...x —1},
v(x +1,x) = pM—00...x} — p¢{—00...x},
v = zero elsewhere.
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Let's generalise

v(x, X) = p{—oco...x} — p*{—o0...x — 1},
v(x +1,x) = pM—oc0...x} — p?{—0c0...x},
v = zero elsewhere.

» Bad news: v(x, x) can be negative (e.g., Geom., Poi).
» Good news: Who cares? No 2" class particle there.
» Good news: v(X + 1, x) > 0 (attractivity).

We can still use the signed measure v formally, as we only care
about v(x + 1, x). Scale this up to get the initial distribution at
the site of the second class particle:

v(no+1,m0) _ v(no+1, mo)
#wo mo) = plmo+1.m0) = 5= n 2755 = = oo
X Y




Let's generalise

~ v(no +1, no)
/.,L((UO, 770) - Q _ )\

» is a proper probability distribution;

» actually agrees with the coupling measure v conditioned
on a 2" class particle when v behaves nicely (Bernoulli,
discr.Gaussian);

» allows the extension of Ferrari-Kipnis:



Let's generalise

Theorem
Starting in
@) i @ 1o ® Q) hi's
i<0 i>0
__(Q(NT) X, T) = A
Nlinoo P{ N > X} N 0— A

where o(X, T) is the entropy solution of the hydrodynamic
equation with initial data

o onthe left
A on the right.



What do we have?

lim P{Q(NT) >X}= Q(Xéi)A_A

~+ The solution (X, T) is the distribution of the velocity for Q.

N—o0

» Shock: distribution is step function, velocity is deterministic
(LLN).

» Rarefaction wave: distribution is continuous, velocity is
random (e.g., Uniform for ).



A fun model (B., A.L. Nagy, I. Téth, B. Toth)

wi=-1,0,1;
. 1
(0, -1) —» (-1, 0) with rate >
. 1
(1,0)— (0, 1) with rate >
(1, -1) — (0, 0) with rate 1,

(0,0) —» (-1, 1) with rate c.



A fun model (B., A.L. Nagy, I. Téth, B. Toth)

Hydrodynamic flux H( o), for certain c:

=
o
(&)
o
o
(&)
[any



Gen.

A fun model (B., A.L. Nagy, I. Téth, B. Toth)

Here is what can happen (R: rarefaction wave, S: Shock):

0.0176654




A fun model (B., A.L. Nagy, I. Téth, B. Toth)

Examples for o(T, X):

~» The solution o(X, T) is the distribution of the velocity for Q.
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A few more remarks

» This work sheds light on a measure i we came up with in
the 1/3-fluctuations papers (B., J. Komjathy, T.
Seppaldinen). At that time we had no idea why /1. It just
worked nice with our formulas.

As itturns out: i = lim pu.
fr=im n

» We can do symmetric models too. 's second class
particle is a SSRW so boring, but the ones of other
symmetric models are interesting. We get diffusive scaling
and non-trivial CLT.

Thank you.



Thank you.



