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Joint work with Rick Durrett, Ed Perkins
(and Mathieu Merle if we get that far)

In a nutshell, the goal is to study a class of interacting particle
systems called voter model perturbations via:

• measure-valued limit approach

• hydrodynamic (pde) limit approach

In each case

• the rescaled particle systems converge to something

• the limit can be “inverted” to transfer information back to the
particle systems

Plan to give an introduction to the basic tools and methods used.
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Outline of talks

1 spin-flip systems, voter model (graphical representation,
duality, martingale problem), super-Brownian motion,
convergence

2 voter model perturbations, Lotka-Volterra model,
super-Brownian limit, consequences (survival/coexistence)

3 voter model perturbations, hydrodyamic limit, consequences,
cooperator/defector model, d = 2 Lotka-Volterra model(?)
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Outline Ia

1 Spin-flip systems
Basic questions

2 The voter model
Graphical construction/duality (first tool)
Martingale problem (second tool)
Measure-valued point of view

3 References

Ted Cox, Syracuse University Voter Model Perturbations 4/18



Spin-flip systems

Let Zd = d-dimensional integer lattice.

Consider Feller processes ξt, t ≥ 0 with state space {0, 1}Zd

,

ξt(x) = type (0 or 1) of “individual” at site x ∈ Zd at time t

Dynamics are determined by a translation invariant flip rate function

c(x, ξ) : Zd × {0, 1}Zd → [0,∞) via

P (ξt+h(x)6=ξt(x) | ξt) = h c(x, ξt) + o(h) as h ↓ 0

c(x, ξ) is just the rate at which the coordinate at x flips

More formally, . . .
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c(x, ξ) determines determines a (pre)generator

Gf(ξ) =
∑

x

c(x, ξ)[f(ξx)− f(ξ)]

where

• f : {0, 1}Zd → R depends on only finitely many coordinates

• ξx equals ξ except at x, where ξx(x) = 1− ξ(x)

Liggett (1972) gives conditions on rate functions c(x, ξ) which
guarantee existence/uniqueness of ξt with pregenerator G. All our
examples satisfy his conditions.

Notation: let |ξ|i =
∑

x 1{ξ(x) = i}, i = 0, 1
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Some basic questions

Point of view: particle systems are competition models

For a given rate function c(x, ξ), want to determine which if any of
the following hold:

• Type i survives: |ξ0|i ≥ 1 implies P (|ξt|i ≥ 1 ∀ t ≥ 0) > 0

• Type i takes over: |ξ0|i =∞ implies

P (ξt(x) = i for all large t) = 1 ∀ x ∈ Zd

• Coexistence: ∃ a stationary distribution µ for ξt s.t.

µ
(
|ξ|1 = |ξ|0 =∞

)
= 1
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The voter model

Will use throughout:

• p(x) = a symmetric step distribution of irreducible rw on Zd,
p(0) = 0, covariance matrix σ2I

• fi(x, ξ) =
∑
y∈Zd

p(y − x)1{ξ(y) = i} = frequency of type i near x

in ξ.

Voter model (neutral competition)

• Introduced independently: Clifford/Sudbury (1973), Holley/Liggett
(1975)

• Flip rate function is cv(x, ξ) =

{
f1(x, ξ) if ξ(x) = 0
f0(x, ξ) if ξ(x) = 1

• The individual at x dies at rate 1, is replaced by an individual of
type i with probability fi(x, ξ).
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Graphical construction I

• Λx,y, x, y ∈ Zd are independent, rate p(y − x) Poisson
processes.

• T x,y
n , n ≥ 1 are the arrival times of Λx,y

• At each time T x,y
n

• draw an arrow→ from y to x, and
• the voter at x adopts the opinion of the voter at y.

• Start with ξ0, determine ξt for all t > 0.

Note. More complicated c(x, ξ) also have graphical constructions.
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Graphical Construction II

0← space →

ti
m

e

t

y1
0

y2
1

x1 x2 x3x3
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Coalescing Random Walk Duality

Fix t > 0. For each x ∈ Zd let Bx,t
s , 0 ≤ s ≤ t trace the path

down and against the arrows from (x, t) to Zd × {0}. Then

• Bx,t
s is a rate one random walk with step distribution p(x),

Bx,t
0 = x.

• These walks are independent until they meet, at which time
they coalesce and move together

• The duality equation is: for 0 ≤ s ≤ t and x ∈ Zd

ξt(x) = ξs(B
x,t
t−s)
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Graphical construction III

0

s ξs0 1

← space →

ti
m

e
t

t− s

y1

0
y2

1

x1 x2 x3x3

ξt(x) = ξs(B
x,t
t−s)
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Let Bx
s , s ≥ 0, x ∈ Zd be a CRW family (note all s ≥ 0).

Sample Calculation I. Assume d ≤ 2, so rw is recurrent. For any
ξ0 and x 6= y,

P (ξt(x) 6= ξt(y)) = P (ξ0(Bx
t ) 6= ξ0(By

t ))
≤ P (Bx

t 6= By
t )

→ 0 as t→∞.

So no coexistence for d ≤ 2.
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Sample calculation 2. If ξu
0 (x) are iid Bernoulli(u), then

ξu
t ⇒ ξu

∞, whose law is a stationary distribution. ⇒ means: for
all finite A,B ⊂ Zd,

lim
t→∞

P (ξt ≡ 1 on A, ξt ≡ 0 on B) exists

Proof. Define the CRW probabilities

• [x|y]t = P (Bx
t 6= By

t )
• [x, y|z]t = P (Bx

t = By
t but 6= Bz

t ), etc.

Now calculate

P
(
ξt(x) =ξt(y) = 1, ξt(z) = 0

)

= P
(
ξ0(Bx,t

t ) = ξ0(By,t
t ) = 1, ξ0(Bz,t

t ) = 0
)

= u(1− u)[x, y|z]t + u2(1− u)[x|y|z]t
→ u(1− u)[x, y|z]∞ + u2(1− u)[x|y|z]∞ as t→∞

So, coexistence for d ≥ 3.
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Martingale problem

Recall

• Λx,y, x, y ∈ Zd are independent, rate p(y − x) Poisson
processes.

• T x,y
n , n ≥ 1 are the arrival times of Λx,y

• At each time T x,y
n

• draw an arrow from y to x
• the voter at x adopts the opinion of the voter at y.

and restrict to finitely many 1’s initially, |ξ0|1 <∞.

Then

ξt(x) = ξ0(x) +
∫ t

0

∑
y

(
ξs−(y)− ξs−(x)

)
Λx,y(ds)
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ξt(x) = ξ0(x) +
∫ t

0

∑
y

(
ξs−(y)− ξs−(x)

)
Λx,y(ds)

If Λ̃x,y(ds) = Λx,y(ds)− p(y − x)ds, then

ξt(x) = ξ0(x) +Dx
t +Mx

t , where

Dx
t =

∫ t

0

∑
y

(
ξs(y)− ξs(x)

)
p(y − x) ds

Mx
t =

∫ t

0

∑
y

(
ξs−(y)− ξs−(x)

)
Λ̃x,y(ds)

= a martingale with square function

〈Mx〉t =
∫ t

0

∑
y

(
ξs(y)− ξs(x)

)2
p(y − x) ds
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Measure-valued point of view

Put a unit mass at each 1 of ξt to get a measure on Rd,

Xt =
∑

x

ξt(x)δx

For φ : Rd → R put

Xt(φ) =
∑

x

ξt(x)φ(x) = X0(φ) +Dt(φ) +Mt(φ)

where Mt(φ) is a martingale, and (sum by parts)

• Dt(φ) =
∫ t

0

∑
x

ξs(x)(p− I)φ(x)ds =
∫ t

0
Xs((p− I)φ)ds

• 〈M(φ)〉t =
∫ t

0

∑
x

φ2(x)
∑

y

p(y − x)1{ξx(x) 6= ξs(y)}ds

Put φ ≡ 1 to get Dt ≡ 0, so |ξt|1 a nonnegative martingale. Thus
no type survives.
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Outline Ib

1 Super-Brownian motion
Branching random walk
Convergence to super-Brownian motion

2 Voter model convergence to super-Brownian motion
Voter model as branching random walk

Convergence to super-Brownian motion, d ≥ 3
Sketch of proof
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Branching Random Walk ηt
System of particles in Zd

• p(x) as before

• allow multiple particles per site, ηt(x) = the number of
particles at x at time t

• particles at a given site x
• die at rate δ
• while alive, give birth at rate β to a particle which

immediately jumps to site y with probability p(y − x)

• |ηt| =
∑

x ηt(x) is a cont. time nonspatial branching process

• †

For a measure-valued point of view, let

• MF = set of finite Borel measures on R

• µ(φ) =
∫

R
φ(x)µ(dx) for µ ∈MF and φ : R→ R.
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Branching Random Walk ⇒ Super-Brownian Motion

Scale space: pN (x) = p(x
√
N), x ∈ SN = Zd/

√
N .

Scale time: ηN
t (x) has rates

• particles die at rate N + δ

• particles give birth at rate N + β

Scale mass: mN = N and

XN
t =

1
mN

∑
x∈SN

ηN
t (x) δx ∈MF

Expect XN
· ⇒ something as N →∞. One can check that

Ted Cox, Syracuse University Voter Model Perturbations 3/12



Branching Random Walk ⇒ Super-Brownian Motion

Scale space: pN (x) = p(x
√
N), x ∈ SN = Zd/

√
N .

Scale time: ηN
t (x) has rates

• particles die at rate N + δ

• particles give birth at rate N + β

Scale mass: mN = N and

XN
t =

1
mN

∑
x∈SN

ηN
t (x) δx ∈MF

Expect XN
· ⇒ something as N →∞. One can check that

Ted Cox, Syracuse University Voter Model Perturbations 3/12



With ∆N = N(pN − I), smooth φ, and g = β − δ.

XN
t (φ) = XN

0 (φ) +DN
t (φ) +MN

t (φ), where

DN
t (φ) =

∫ t

0
XN

s (∆Nφ) ds+ g
∫ t

0
XN

s (φ) ds

≈ σ2

2

∫ t

0
XN

s (∆φ) ds+ g
∫ t

0
XN

s (φ) ds

〈MN (φ)〉t =
1
N

∫ t

0

∑
y

ξN
s (y)

∑
x

pN (y − x)(φ(y)− φ(x))2 ds

+ (2 +
g

N
)
∫ t

0
XN

s (φ2) ds

≈ 2
∫ t

0
XN

s (φ2) ds
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Theorem. If XN
0 → X0 ∈MF then XN

· ⇒ X· as N →∞,
where X· is SBM(X0, 2, σ2, g), an MF -valued processes.

SBM(X0, b, σ
2, g) Xt is characterized† by:

for φ ∈ C3
b (R),

• Xt(φ) = X0(φ) +
σ2

2

∫ t

0
Xs(∆φ) ds+ g

∫ t

0
Xs(φ) +Mt(φ)

• Mt(φ) is a continuous L2-martingale, with

〈M(φ)〉t = b

∫ t

0
Xs(φ2) ds and

• b = “branching” rate

• σ2 = “diffusion” rate

• g = “growth rate”
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Measure-valued branching diffusions Xt, t ≥ 0.

• Introduced independently: Watanabe (1968) and Dawson
(1977). (“super-process” name is by Dynkin in 198?)

• Large (!) research literature.

• Many interesting properties, such as: for SBM,

For d ≥ 2, Xt is a.s. supported on a set of zero Lebesgue
measure and uniformly spread on its support, in the sense of
Hausdorff measure.

Voter model vs. super-Brownian motion?

• Voter model studied since 1975

• SBM studied since 1977

• Some general similarities between the two, but just how
closely related can they be?
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Voter model as BRW?

ξ(x) = 1⇔ particle at x

ξ(x) = 0⇔ no particle at x

Can rephrase the voter dynamics from the particle point of view

Recall f0(x, ξ) =
∑

y p(y − x)1{ξt(y) = 0}.

A particle at x

• dies at rate f0(x, ξ)
• gives birth at rate f0(x, ξ) to a particle, which jumps to y

with probability p(y − x)1{ξ(y) = 0}/f0(x, ξ).

• per particle rates are random
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Voter Model ⇒ SBM

• Let ξN
t be the rate N voter model on SN = Zd/

√
N .

• γe =
∑

y p(y)[0|y]∞

• XN
t =

1
mN

∑
x∈SN

ξN
t (x)δx, (mN = N for d ≥ 3).

Theorem (C,Durrett, Perkins 2000)

Assume d ≥ 3, |ξN
0 | ≤ CN and XN

0 → X0. Then XN
· ⇒ X· as

N →∞ where X· is SBM(X0, 2γe, σ
2, 0).
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This is a low density result. It describes the behavior of the voter
model when 1’s are relatively sparse.

• Zd/
√
N has Nd/2 sites/volume, but

• |ξN
t |1 = O(N) (d ≥ 3)

• Consistent with behavior of supp(SBM).

Application: can use this to give a “simpler” proof of a result of
Sawyer (1977) (which has an amazing proof).

Our proof of voter model ⇒ SBM:

1 establish tightness by verifying Jakubowski’s conditions (see
Perkins (2002))

2 show all subsequential limits of XN
· satisfy SBM martingale

problem with the claimed parameters.
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In more detail . . .

AN ≈ BN means E|AN −BN |p → 0, some p ≥ 1.

Recall

XN
t (φ) =

1
mN

∑
x

ξN
t (x)φ(x) = XN

0 (φ) +DN
t (φ) +MN

t (φ)

1. The drift term is: with ∆N = N(pN − I),

DN
t (φ) =

N

mN

∫ t

0

∑
x

ξN
s (x)

∑
y

pN(y − x)(φ(y)− φ(x))ds

=
∫ t

0
XN

s (∆Nφ)ds

≈ σ2

2

∫ t

0
XN

s (∆φ)ds X
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2. The martingale square function

〈MN (φ)〉t =
∫ t

0

1

N

∑
x

φ2(x)
∑
y

pN(y − x)1{ξN
s (x) 6= ξN

s (y)})ds

≈ 2
∫ t

0

1

N

∑
x

φ2(x)
∑
y

pN(y − x)ξN
s (x)(1− ξN

s (y))ds

= 2
∫ t

0
mN(s)ds

Let tN ↓ 0 with NtN →∞, for s > tN put s′ = s− tN . Let
ÊN be law of rate N CRW’s.

Step 1

∫ t

0
mN(s)ds ≈

∫ t

tN

E(mN(s) | Fs′)ds X

Step 2 E(mN(s) | Fs′) ≈ γeX
N
s′ (φ)
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s ξN
sNs

s′ ξN
s′Ns′

Zd/
√

N← → tN

0
y

By,s
tN

1
x

Bx,s
tN

E(ξN
s (x)(1− ξN

s (y) | Fs′))

= ÊN (ξN
s′ (Bx

tN
)(1− ξN

s′ (By
tN

))) duality

≈ ÊN (ξN
s′ (Bx

tN
)1{Bx

tN
6= By

tN
}) sparse 1′s in ξN

s′

E(mN (s) | Fs′)

≈ 1
N

∑
x

φ2(x)
∑

y

pN (y − x)
[
↓

]
≈ 1
N

∑
x

φ2(x)ξN
s′ (x)

∑
y

p(y − x)[x|y]NtN
φ cont., Bx

tN
≈ x

= γN
e X

N
s′ (φ2), where γe =

∑
e

p(e)[0|e]∞ X
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