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LARGE DEVIATION PRINCIPLE FOR THE MAXIMAL EIGENVALUE OF

INHOMOGENEOUS ERDŐS-RÉNYI RANDOM GRAPHS

ARIJIT CHAKRABARTY, RAJAT SUBHRA HAZRA, FRANK DEN HOLLANDER,
AND MATTEO SFRAGARA

Abstract. We consider an inhomogeneous Erdős-Rényi random graph GN with vertex set
[N ] = {1, . . . , N} for which the pair of vertices i, j ∈ [N ], i 6= j, is connected by an edge
with probability r( i

N
, j
N

), independently of other pairs of vertices. Here, r : [0, 1]2 → (0, 1) is a
symmetric function that plays the role of a reference graphon. Let λN be the maximal eigenvalue
of the adjacency matrix of GN . It is known that λN/N satisfies a large deviation principle as
N → ∞. The associated rate function ψr is given by a variational formula that involves the rate
function Ir of a large deviation principle on graphon space. We analyse this variational formula
in order to identify the properties of ψr, specially when the reference graphon is of rank 1.

1. Introduction and main results

1.1. Motivation. In the past 20 years, many properties have been derived about spectra of
random matrices associated with random graphs, like the adjacency matrix and the Laplacian
matrix [3, 7, 9, 15, 18, 20–25, 30, 31]. The focus of the present paper is on inhomogeneous Erdős-
Rényi random graphs, which are rooted in the theory of complex networks. We consider the
dense regime, where the average degree of the vertices are proportional to the size of the graph,
and analyse the rate function of the large deviation principle for the maximal eigenvalue of the
adjacency matrix derived in [17]. In [10] the non-dense non-sparse regime was considered, where
the degrees diverge but sublinearly in the size of the graph, and identified the scaling limit of the
empirical spectral distribution of both the adjacency matrix and the Laplacian matrix. Recent
results on the maximal eigenvalue in the sparse regime, where the degrees are stochastically
bounded, can be found in [6].

Large deviations of Erdős-Rényi random graphs were studied in [12, 13, 27] with the help of
the theory of graphons, in particular, subgraph densities and maximal eigenvalues. We refer to
[12] for a comprehensive review of the literature. Large deviation theory for random matrices
started in [4], with the study of large deviations of the empirical spectral distribution of β-
ensembles with a quadratic potential. The rate was shown to be the square of the number of
vertices, and the rate function was shown to be given by a non-commutative notion of entropy.
The maximal eigenvalue for such ensembles was studied in [5]. Large deviations of the empirical
spectral distribution of random matrices with non-Gaussian tails were derived in [8]. More
recently, the maximal eigenvalue in that setting was studied in [1, 2]. The adjacency matrix of
an inhomogeneous Erdős-Rényi random graph does not fall in this regime, and hence different
techniques are needed in the present paper.

1.2. LDP for inhomogeneous Erdős-Rényi random graphs. Let

W =
{
h : [0, 1]2 → [0, 1] : h(x, y) = h(y, x) ∀x, y ∈ [0, 1]

}
(1.1)
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denote the set of graphons. Let M be the set of Lebesgue measure-preserving bijective maps
φ : [0, 1] 7→ [0, 1]. For two graphons h1, h2 ∈ W, the cut-distance is defined by

d�(h1, h2) = sup
S,T⊂[0,1]

∣∣∣∣ ∫
S×T

dx dy
[
h1(x, y)− h2(x, y)

]∣∣∣∣, (1.2)

and the cut-metric by

δ�(h1, h2) = inf
φ∈M

d�(h1, h
φ
2 ), (1.3)

where hφ2 (x, y) = h2(φ(x), φ(y)). The cut-metric defines an equivalence relation ∼ on W by

declaring h1 ∼ h2 if and only if δ�(h1, h2) = 0, and leads to the quotient space W̃ =W/∼. For

h ∈ W, we write h̃ to denote the equivalence class of h in W̃. The equivalence classes correspond

to relabelings of the vertices of the graph. The pair (W̃, δ�) is a compact metric space [26].
Let r ∈ W be a reference graphon satisfying

∃ η > 0: η ≤ r(x, y) ≤ 1− η ∀x, y ∈ [0, 1]2. (1.4)

Fix N ∈ N and consider the random graph GN with vertex set [N ] = {1, . . . , N} where the pair

of vertices i, j ∈ [N ], i 6= j, is connected by an edge with probability r( i
N ,

j
N ), independently of

other pairs of vertices. Write PN to denote the law of GN . Use the same symbol for the law on
W induced by the map that associates with the graph GN its graphon hGN , defined by

hGN (x, y) =

{
1, if there is an edge between vertex dNxe and vertex dNye,
0, otherwise.

(1.5)

Write P̃N to denote the law of h̃GN .
The following LDP is proved in [17] and is an extension of the celebrated LDP for homogeneous

ERRG derived in [13] and further properties of the rate functions were derived in [27].

Theorem 1.1. [LDP for inhomogeneous ERRG] Subject to (1.4), the sequence (P̃N )N∈N
satisfies the large deviation principle on (W̃, δ�) with rate

(
N
2

)
, i.e.,

lim sup
N→∞

1(
N
2

) log P̃N (C) ≤ − inf
h̃∈C

Jr(h̃) ∀ C ⊂ W̃ closed,

lim inf
N→∞

1(
N
2

) log P̃N (O) ≥ − inf
h̃∈O

Jr(h̃) ∀O ⊂ W̃ open,

(1.6)

where the rate function Jr : W̃ → R is given by

Jr(h̃) = inf
φ∈M

Ir(h
φ), (1.7)

where h is any representative of h̃ and

Ir(h) =

∫
[0,1]2

dx dy R
(
h(x, y) | r(x, y)

)
, h ∈ W, (1.8)

with

R
(
a | b

)
= a log a

b + (1− a) log 1−a
1−b (1.9)

the relative entropy of two Bernoulli distributions with success probabilities a ∈ [0, 1], b ∈ (0, 1)
(with the convention 0 log 0 = 0).

It is clear that Jr is a good rate function, i.e., Jr 6≡ ∞ and Jr has compact level sets. Note that
(1.7) differs from the expression in [17], where the rate function is the lower semi-continuous
envelope of Ir(h). However, it was shown in [28] that, under the integrability conditions
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log r, log(1 − r) ∈ L1([0, 1]2), the two rate functions are equivalent, since Jr(h̃) is lower semi-

continuous on W̃. Clearly, these integrability conditions are implied by (1.4).

1.3. Graphon operators. With h ∈ W we associate a graphon operator acting on L2([0, 1]),
defined as the linear integral operator

(Thu)(x) =

∫
[0,1]

dy h(x, y)u(y), x ∈ [0, 1], (1.10)

with u ∈ L2([0, 1]). The operator norm of Th is defined as

‖Th‖ = sup
u∈L2([0,1])
‖u‖2=1

‖Thu‖2, (1.11)

where ‖ · ‖2 denotes the L2-norm. Given a graphon h ∈ W, we have ‖Th‖ ≤ ‖h‖2. Hence, a
graphon sequence converging in the L2-norm also converges in the operator norm.

The product of two graphons h1, h2 ∈ W is defined as

(h1h2)(x, y) =

∫
[0,1]

dz h1(x, z)h2(z, y), (x, y) ∈ [0, 1]2, (1.12)

and the n-th power of a graphon h ∈ W as

hn(x, y) =

∫
[0,1]n−1

dz1 · · · dzn−1 h(x, z1)× · · · × h(zn−1, y), (x, y) ∈ [0, 1]2, n ∈ N. (1.13)

Definition 1.2. [Eigenvalues and eigenfunctions] µ ∈ R is said to be an eigenvalue of the
graphon operator Th if there exists a non-zero function u ∈ L2([0, 1]) such that

(Thu)(x) = µu(x), x ∈ [0, 1]. (1.14)

The function u is said to be an eigenfunction associated with µ.

Proposition 1.3. [Properties of the graphon operator] For any h ∈ W:
(i) The graphon operator Th is self-adjoint, bounded and continuous.
(ii) The graphon operator Th is diagonalisable and has countably many eigenvalues, all of which
are real and can be ordered as µ1 ≥ µ2 ≥ · · · ≥ 0. Moreover, there exists a collection of eigen-
functions which form an orthonormal basis of L2([0, 1]).
(iii) The maximal eigenvalue µ1 of the graphon operator h is strictly positive and has an asso-
ciated eigenfunction u1 satisfying u1(x) > 0 for all x ∈ [0, 1]. Moreover, µ1 = ‖Th‖, i.e., the
maximal eigenvalue equals the operator norm.

Proof. The claim is a special case of [29, Theorem 7.3] (when the compact Hermitian operators
considered there are taken to be the graphon operators). See also [14, Theorem 19.2] and [19,
Appendix A]. �

1.4. Main theorems. Let λN be the maximal eigenvalue of the adjacency matrix AN of GN .
Write P∗N to denote the law of λN/N .

Theorem 1.4. [LDP for the maximal eigenvalue] Subject to (1.4), the sequence (P∗N )N∈N
satisfies the large deviation principle on R with rate

(
N
2

)
and with rate function

ψr(β) = inf
h̃∈W̃
‖Th‖=β

Jr(h̃) = inf
h∈W
‖Th‖=β

Ir(h), β ∈ R. (1.15)
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Figure 1. Graph of β 7→ ψr(β).

Proof. Note that λN/N = ‖ThGN ‖, where h is any representative of h̃ (because ‖T
h̃
‖ = ‖Thφ‖

for all φ ∈ M). Also note that h̃ 7→ ‖T
h̃
‖ is a bounded and continuous function on W̃ [12,

Exercises 6.1–6.2, Lemma 6.2]. Hence the claim follows from Theorem 1.1 via the contraction
principle [16, Chapter 3]. �

Put
Cr = ‖Tr‖. (1.16)

When β = Cr, the graphon h that minimizes Ir(h) such that ‖Th‖ = Cr is the reference graphon
h = r almost everywhere, for which Ir(r) = 0 and no large deviation occurs. When β > Cr, we
are looking for graphons h with a larger operator norm. The large deviation cannot go above
1, which is represented by the constant graphon h ≡ 1, for which Ir(1) = C1

r . Similarly, when
β < Cr, we are looking for graphons h with a smaller operator norm. The large deviation
cannot go below 0, which is represented by the constant graphon h ≡ 0, for which Ir(0) = C0

r

(see Fig. 1).

Theorem 1.5. [Properties of the rate function] Subject to (1.4):
(i) ψr is continuous and unimodal on [0, 1], with a unique zero at Cr.
(ii) ψr is strictly decreasing on [0, Cr] and strictly increasing on [Cr, 1].
(iii) For every β ∈ [0, 1], the set of minimisers of the variational formula for ψr(β) in (1.15) is

non-empty and compact in W̃.

If the reference graphon r is of rank 1, i.e.,

r(x, y) = ν(x) ν(y), (x, y) ∈ [0, 1]2, (1.17)

for some ν : [0, 1] → [0, 1] that is bounded away from 0 and 1, then we are able to say more.
Define

mk =

∫
[0,1]

νk, k ∈ N. (1.18)

Note that Cr = m2. Abbreviate Br =
∫

[0,1]2 r
3(1 − r), and note that Br = m2

3 −m2
4. Further

abbreviate

N1
r =

∫
[0,1]2

1− r
r

, N0
r =

∫
[0,1]2

r

1− r
. (1.19)

Recall that M is the set of Lebesgue measure-preserving bijective maps φ : [0, 1]→ [0, 1].

Theorem 1.6. [Scaling of the rate function] Let ψr be the rate function in (1.15).
(i) Subject to (1.4) and (1.17),

ψr(β) = [1 + o(1)]Kr (β − Cr)2, β → Cr, (1.20)
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with

Kr =
C2
r

2Br
=

m2
2

2(m2
3 −m2

4)
. (1.21)

(ii) Subject to (1.4),

C1
r − ψr(β) = (1− β)

[
log

(
N1
r

1− β

)
+ 1 + o(1)

]
, β ↑ 1. (1.22)

(iii) Subject to (1.4),

C0
r − ψr(β) = β

[
log

(
N0
r

β

)
+ 1 + o(1)

]
, β ↓ 0. (1.23)

Theorem 1.7. [Scaling of the minimisers] Let hβ ∈ W be any minimiser of the second
infimum in (1.15).
(i) Subject to (1.4) and (1.17),

lim
β→Cr

(β − Cr)−1‖hβ − r − (β − Cr)∆‖2 = 0, (1.24)

with

∆(x, y) =
Cr
Br

r(x, y)2[1− r(x, y)], (x, y) ∈ [0, 1]2. (1.25)

(ii) Subject to (1.4),
lim
β↑1

(1− β)−1‖1− hβ − (1− β)∆‖2 = 0, (1.26)

with

∆(x, y) =
1

N1
r

1− r(x, y)

r(x, y)
, (x, y) ∈ [0, 1]2. (1.27)

(iii) Subject to (1.4),
lim
β↓0

β−1‖hβ − β∆‖2 = 0, (1.28)

with

∆(x, y) =
1

N0
r

r(x, y)

1− r(x, y)
, (x, y) ∈ [0, 1]2. (1.29)

1.5. Discussion and outline.

1. Theorem 1.5 confirms the picture of ψr drawn in Fig. 1. It remains open whether or not ψr
is convex. We do not expect ψr to be analytic, because bifurcations may occur in the set of
minimisers of ψr as β is varied.

2. Theorem 1.6 identifies the scaling of ψr near its zero and near its end points, provided r is of
rank 1. Theorem 1.7 identifies the corresponding scaling of the minimiser hβ of ψr. Interestingly,
the scaling corrections are not rank 1. It remains open to determine what happens near Cr when
r is not of rank 1 (see the Appendix).

3. The inverse curvature 1/Kr equals the variance in the central limit theorem derived in [11].
This is in line with the standard folklore of large deviation theory.

4. It would be interesting to investigate to what extent the condition on the reference graphon
in (1.4) can be weakened to some form of integrability condition. Especially for the upper bound
in the LDP this is delicate, because the proof in [17] is based on block-graphon approximation
(see [28]).

Outline. The proof of Theorems 1.5–1.7 is given in Section 3 and relies on the variational
formula in (1.15). Since the maximal eigenvalue is invariant under relabeling of the vertices, we
can work directly with Ir in (1.8) without worrying about the equivalence classes. In Section 2
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we derive an expansion for the operator norm of a graphon around any graphon of rank 1. This
expansion will be needed in Section 3.

2. Expansion around graphons of rank 1

In order to prepare for the proof of Theorem 1.6, we show how we can expand the operator
norm of a graphon around any graphon of rank 1.

Lemma 2.1. [Rank 1 expansion] Consider a graphon h̄ ∈ W of rank 1 such that h̄(x, y) =
ν̄(x)ν̄(y), x, y ∈ [0, 1]. For any h ∈ W such that ‖Th−h̄‖ < ‖Th‖, the operator norm µ = ‖Th‖ is
a solution of the equation

µ =
∑
n∈N0

1

µn
Fn(h, h̄), (2.1)

where

Fn(h, h̄) =

∫
[0,1]2

dx dy ν̄(x)(h− h̄)n(x, y)ν̄(y). (2.2)

Proof. By Proposition 1.3, we have

Thu = µu, (2.3)

where µ equals both the norm and the maximal eigenvalue of Th, and u is the eigenfunction of
h corresponding to u. Put g = h− h̄ and we have (µ− Tg)u = Th̄u. This gives

u = (µ− Tg)−1ν̄〈ν̄, u〉. (2.4)

where we use that µ− Tg is invertible because ‖Tg‖ = ‖Th−h̄‖ < ‖Th‖. Hence, taking the inner
product of u with ν̄ and observing that 〈ν̄, u〉 6= 0, we get

〈ν̄, u〉 = 〈ν̄, u〉〈ν̄, (µ− Tg)−1ν̄〉 (2.5)

which gives

µ = 〈ν̄, (1− Tg/µ)−1ν̄〉. (2.6)

We can expand the above to get

µ =

〈
ν̄,
∑
n∈N0

(
Tg
µ

)n
ν̄

〉
=
∑
n∈N0

1

µn

∫
[0,1]n+1

dx0 dx1 · · · dxn ν̄(x0)g(x0, x1)× · · · × g(xn−1, xn)ν̄(xn)

=
∑
n∈N0

1

µn
Fn(h, h̄).

(2.7)

Since ‖Th‖ = µ, we get (2.1). �

Subject to (1.17), it follows from Lemma 2.1 with h = h̄ = r that

Cr = ‖Tr‖ = m2, (2.8)

because only the term with n = 0 survives in the expansion.

Remark 2.2. [Higher rank] The expansion around reference graphons of rank 1 can be ex-
tended to finite rank. We provide the details in the Appendix. In this paper we focus on rank
1, for which Lemma 2.1 allows us to analyse the behaviour of ψr(β) near the values β = Cr,
β = 1 and β = 0. This corresponds to an expansion around the graphons h = ν × ν, h ≡ 1 and
h ≡ 0, which are all of rank 1. �
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3. Proofs of main theorems

Theorem 1.5 is proved in Section 3.1, Theorems 1.6–1.7 are proved in Sections 3.2–3.4.

3.1. Continuity, unimodality and unique minimisers.

Proof. We follow [12, Chapter 6]. Even though this monograph deals with constant reference
graphons only, most arguments carry over to r satisfying (1.4).

(i), (iii) Define

ψ+
r (β) = inf

h∈W
‖Th‖≥β

Ir(h), ψ−r (β) = inf
h∈W
‖Th‖≤β

Ir(h), β ∈ R. (3.1)

Because h 7→ ‖Th‖ is a nice graph parameter, in the sense of [12, Definition 6.1], it follows that
β 7→ ψ+

r (β) is non-decreasing and continuous, while β 7→ ψ−r (β) is non-increasing and continuous
[12, Proposition 6.1]. (The proof requires the fact that ‖fn − f‖2 → 0 implies Ir(fn) → Ir(f)
and that Ir(f) is lower semi-continuous on W.)

The variational formulas in (3.1) achieve minimisers. In fact, the sets of minimiser are non-

empty compact subsets of W̃ [12, Theorem 6.2]. In addition, all minimisers h of φ+
r (h) satisfy

h ≥ r almost everywhere, while all minimisers h of φ−r satisfy h ≤ r almost everywhere [12,
Lemma 6.3]. Moreover, because

h1 ≥ h2 ≥ r =⇒ ‖Th1‖ ≥ ‖Th2‖, Ir(h1) ≥ Ir(h2),

h1 ≤ h2 ≤ r =⇒ ‖Th1‖ ≤ ‖Th2‖, Ir(h1) ≤ Ir(h2),
(3.2)

(use that a 7→ R(a | b) is unimodal on [0, 1] with unique zero at b), it follows that both variational
formulas achieve minimisers with norm equal to β, and so

ψr(β) =

{
ψ+
r (β), β ≥ Cr,
ψ−r (β), β ≤ Cr.

(3.3)

Hence, ψr is continuous and unimodal on [0, 1]. Since Ir(h) = 0 if and only if h = r almost
everywhere, it is immediate that Cr is the unique zero of ψr.

(ii) The proof is by contradiction. Suppose that β 7→ ψ+
r (β) is not strictly increasing on [Cr, 1].

Then there exist β1, β2 ∈ [Cr, 1] with β1 < β2 such that ψ+
r is constant on [β1, β2]. Consequently,

there exist minimisers hφ1

β1
, hφ2

β2
with φ1, φ2 ∈M satisfying r ≤ hφ1

β1
≤ hφ2

β2
such that

Ir(h
φ1

β1
) = Ir(h

φ2

β2
), ‖T

h
φ1
β1

‖ = β1 < β2 = ‖T
h
φ2
β2

‖. (3.4)

However, since a 7→ R(a | b) is strictly increasing on [b, 1] (recall (1.8)), it follows that hφ1

β1
= hφ2

β2

almost everywhere. This in turn implies that ‖T
h
φ1
β1

‖ = ‖T
h
φ2
β2

‖, which is a contradiction. A

similar argument shows that β 7→ ψ−r (β) cannot have a flat piece on [0, Cr]. �

3.2. Perturbation around the minimum. Note that when β = Cr, the infimum in (1.15)
is attained at h = r and ψr(Cr) = 0. Take β = Cr + ε with ε > 0 small, and assume that the
infimum is attained by a graphon of the form h = r + ∆ε, where ∆ε : [0, 1]2 → R represents a
perturbation of the graphon r. Note that r+∆ε ∈ W, and so we are dealing with a perturbation
∆ε that is symmetric and bounded. We compare

ψr(Cr + ε) = inf
∆ε : [0,1]2→R
r+∆ε∈W

‖Tr+∆ε‖=Cr+ε

Ir(r + ∆ε) (3.5)
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with ψr(Cr) = 0 by computing the difference

δr(ε) = ψr(Cr + ε)− ψr(Cr) = ψr(Cr + ε) (3.6)

and studying its behaviour as ε→ 0. Since r(x, y) = ν(x)ν(y), x, y ∈ [0, 1], we can use Lemma 2.1
to control the norm of Th = Tr+∆ε . Pick h̄ = r and h = r + ∆ε in (2.1) such that ‖∆ε‖2 → 0 as
ε→ 0. Note that ‖T∆ε‖ ≤ ‖∆ε‖2 < Cr for ε small enough. Hence, writing out the expansion for
the norm, we get

‖Tr+∆ε‖ = Cr +
∑
n∈N

1

‖Tr+∆ε‖n
Fn(r + ∆ε, r). (3.7)

Since ‖Tr+∆ε‖ = Cr + ε, we have

Cr + ε = Cr +
〈ν,∆εν〉
Cr + ε

+
∑

n∈N\{1}

1

(Cr + ε)n
〈ν,∆n

ε ν〉 (3.8)

with 〈ν,∆εν〉 =
∫

[0,1]2 r∆ε. So

ε(Cr + ε) =

∫
[0,1]2

r∆ε +
∑

n∈N\{1}

1

(Cr + ε)n−1
〈ν,∆n

ε ν〉. (3.9)

Since ν is bounded, using the generalized Hölder’s inequality [27, Theorem 3.1] we get

|〈ν,∆n
ε ν〉| ≤ ‖∆ε‖n2 . (3.10)

Since ‖∆ε‖2 → 0 as ε → 0, we can choose ε small enough such that ‖∆ε‖2 < 1
2(Cr + ε), which

gives ∑
n∈N\{1}

1

(Cr + ε)n−1
〈ν,∆n

ε ν〉 = O
(
‖∆ε‖22

)
. (3.11)

The constraint ‖r + ∆ε‖ = Cr + ε therefore reads∫
[0,1]2

r∆ε = εCr + ε2 + O
(
‖∆ε‖22

)
. (3.12)

Observe that if ∆ε = ε∆ for some function ∆ ∈ L2([0, 1]2), then∫
[0,1]2

r∆ = Cr [1 + o(1)] . (3.13)

3.2.1. Small perturbation on a given region. In what follows we use the standard notation o(·),
O(·), � to describe the asymptotic behaviour in the limit as ε → 0. We start by considering
different types of small perturbations in a given region and computing their total cost.

We are interested in the finding the asymptotic behaviour of (3.5). In the next lemma we
show that it is enough to consider ∆ε of the form ε∆ for some ∆ ∈ L2([0, 1]2), because these
perturbations contribute to the minimum cost.

Lemma 3.1. [Order of minimal cost] Let ∆ε : [0, 1]2 → R be such that r + ∆ε ∈ W and
‖Tr+∆ε‖ = Cr + ε. Then

Ir(r + ∆ε) ≥ 2ε2. (3.14)

Moreover, if ∆ε = ε∆, then

Ir(r + ε∆) = [1 + o(1)] 2ε2
∫

[0,1]2

∆2

4r(1− r)
, ε→ 0. (3.15)
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Proof. Fix b ∈ [0, 1] and abbreviate (recall (1.9))

χ(a) = R(a | b) = a log
a

b
+ (1− a) log

1− a
1− b

, a ∈ [0, 1]. (3.16)

Note that
χ(b) = χ′(b) = 0, χ′′(a) ≥ 4, a ∈ [0, 1]. (3.17)

Consequently,
χ(a) ≥ 2(a− b)2, a ∈ [0, 1], (3.18)

and hence

Ir(r + ∆ε) ≥ 2

∫
[0,1]2

∆2
ε = 2‖∆ε‖22. (3.19)

Next observe that

Cr + ε = ‖Tr+∆ε‖ = ‖Tr + T∆ε‖ ≤ ‖Tr‖+ ‖T∆ε‖ ≤ Cr + ‖∆ε‖2, (3.20)

which gives ‖∆ε‖2 ≥ ε. Inserting this lower bound into (3.19), we get (3.14). To get (3.15), we
need a higher-order expansion of χ, namely, χ(x) = 1

2χ
′′(b)(x− b)2 + O((x− b)3), x→ b. Since

r is bounded away from 0 and 1, and the constraint r+ ∆ε ∈ W implies that ∆ε(x, y) ∈ [−1, 1],
we see that the third-order term is smaller than the second-order term when ∆ε = ε∆. Hence
(3.15) follows. �

Lemma 3.2. [Cost of small perturbations] Let B ⊆ [0, 1]2 be a measurable region with area
|B|. Suppose that ∆ε = εα∆ on B, with ε > 0, α > 0 and ∆: [0, 1]2 → R. Then the contribution
of B to the cost Ir(h) is∫

B
dx dyR(h(x, y) | r(x, y)) = [1 + o(1)] ε2α

∫
B

∆2

2r(1− r)
, ε→ 0. (3.21)

If the integral diverges, then the contribution decays slower than ε2α.

Proof. The proof is similar to that of Lemma 3.1. �

3.2.2. Approximation by block graphons. We next introduce block graphons, which will be useful
for our perturbation analysis. It follows from Lemma 3.1 that optimal perturbations with ∆ε

must satisfy ‖∆ε‖2 � ε, and hence it is desirable to have ∆ε = ε∆. We argue through block
graphon approximations that this is indeed the case.

Definition 3.3. [Block graphons] LetWN ⊂ W be the space of graphons with N blocks having
a constant value on each of the blocks, i.e., f ∈ WN is of the form

f(x, y) =

{
fi,j , (x, y) ∈ Bi ×Bj ,
0, otherwise,

(3.22)

where Bi = [ i−1
N , iN ), 1 ≤ i ≤ N − 1 and BN = [N−1

N , 1] and fi,j ∈ [0, 1]. Write Bi,j = Bi ×Bj.
With each f ∈ W associate the block graphon fN ∈ WN given by

fN (x, y) = N2

∫
Bi,j

dx′ dy′ f(x′, y′) = f̄N,ij , (x, y) ∈ Bi,j . (3.23)

Observe that if fN is the block graphon associated with a graphon f , then

‖TfN − Tf‖ = ‖TfN−f‖ ≤ ‖fN − f‖2. (3.24)

We know from [12, Proposition 2.6] that ‖fN − f‖2 → 0, and hence limN→∞ ‖TfN ‖ = ‖Tf‖ for
any f ∈ W and its associated sequence of block graphons (fN )N∈N. The following lemma shows
that the cost function associated with the graphons r and f is well approximated by the cost
function associated with the block graphons rN and fN .



10 A. CHAKRABARTY, R. S. HAZRA, F. DEN HOLLANDER, AND M. SFRAGARA

Lemma 3.4. [Convergence of the cost function] limN→∞ IrN (fN ) = Ir(f) for any f ∈ W.

Proof. Since f ∈ L2([0, 1]2), fN is bounded. The assumption in (1.4) implies that η ≤ rN ≤ 1−η
for all N ∈ N. We know from [17, Lemma 2.3] that there exists a constant c > 0 independent of
f such that

|IrN (f)− Ir(f)| ≤ c ‖rN − r‖1 ≤ c ‖rN − r‖2. (3.25)

Hence

|IrN (fN )− Ir(f)| ≤ |IrN (fN )− Ir(fN )|+ |Ir(fN )− Ir(f)|
≤ c ‖rN − r‖2 + |Ir(fN )− Ir(f)|.

(3.26)

But we know from [12, Proposition 2.6] that limN→∞ ‖rN −r‖2 = 0 and limN→∞ ‖fN −f‖2 = 0,
while we know from [28, Lemma 3.4] that Ir is continuous in the L2-topology on W. �

3.2.3. Block graphon perturbations. In what follows we fix N ∈ N, analyse different types of
perturbation and identify which one is optimal. For each N ∈ N, we associate with the perturbed
graphon h = r + ∆ε the block graphon hN ∈ WN given by

hN,ij(x, y) = rN,ij(x, y) + ∆εN,ij(x, y), (x, y) ∈ Bi,j , (3.27)

with

rN,ij = N2

∫
Bi,j

dx′ dy′ r(x′, y′), ∆εN,ij = N2

∫
Bi,j

dx′ dy′∆ε(x
′, y′). (3.28)

Observe that optimal perturbations must have ‖∆ε‖2 = O(ε), and hence the constraint in (3.12)
becomes

N∑
i,j=1

∫
Bi,j

r∆ε =
N∑

i,j=1

1

N2
r∆εN,ij = [1 + o(1)]Crε, ε→ 0. (3.29)

The block constraint in (3.29) implies that the sum over each block must be of order ε. We
therefore must have that

r∆εN,ij = O(ε), ε→ 0 ∀ (i, j), (3.30)

which means that

∆εN,ij = O(ε), ε→ 0 ∀ (i, j), (3.31)

since (1.4) implies that r∆εN,ij � ∆εN,ij . There are two possible cases:

(I) All blocks contribute to the constraint with a term of order ε (balanced perturbation).
(II) Some blocks contribute to the constraint with a term of order ε and some with o(ε)

(unbalanced perturbation).

Perturbations of type (I) consist of a small perturbation on each block, i.e., ∆εN,ij � ε for

each block Bi,j . By Lemma 3.2, this contributes a term of order ε2 to the total cost. Since
all blocks have the same type of perturbation, they all contribute in the same way, and so we
get IrN (hN ) � ε2. We will see in Corollary 3.6 that perturbations of type (II) are worse than
perturbations of type (I). Let 1 ≤ k ≤ N2 − 1 be the number of blocks that contribute a term
of order o(ε) to the constraint, i.e., ∆εN,ij = o(ε). By Lemma 3.2, these blocks contribute order

o(ε2) to the total cost. The remaining blocks must fall in the class of blocks of type (I), with a
perturbation of order ε on each of them. Lemma 3.6 below shows that the cost function attains
its infimum when the perturbation of order ε is uniform on [0, 1]2.
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3.2.4. Optimal perturbation. We have shown that perturbations of type (I) lead to the minimal
total cost. They consist of small perturbations of order ε on all blocks, and hence on [0, 1]2. A
sequence of such perturbations (∆ε,N )N∈N converges to a perturbation ∆ε as N →∞. We can
identify the cost of ∆ε = ε∆ with ∆: [0, 1]2 → R, which we refer to as a balanced perturbation.

Lemma 3.5. [Balanced perturbations] Suppose that ∆ε = ε∆ with ∆: [0, 1]2 → R. Let M
be the set of Lebesgue measure-preserving bijective maps. Then

δr(ε) = [1 + o(1)]Krε
2, ε→ 0, (3.32)

with

Kr =
1

2
C2
r inf
φ∈M

Dφ
r

(Bφ
r )2

, (3.33)

where Bφ
r =

∫
[0,1]2 r

φr2(1− r) and Dφ
r =

∫
[0,1]2(rφ)2r(1− r).

Proof. The constraint in (3.12) becomes∫
[0,1]2

r∆ = [1 + o(1)]Cr, ε→ 0, (3.34)

and we get

δr(ε) = inf
∆: [0,1]2→R
r+ε∆∈W∫

[0,1]2 r∆=[1+o(1)]Cr

Ir(r + ε∆)

= inf
∆: [0,1]2→R
r+ε∆∈W∫

[0,1]2 r∆=[1+o(1)]Cr

∫
[0,1]2

dx dyR
(
(r + ε∆)(x, y) | r(x, y)

)
.

(3.35)

By Lemma 3.2 (with α = 1), we have

δr(ε) = [1 + o(1)]Krε
2, ε→ 0, (3.36)

with

Kr = inf
∆: [0,1]2→R∫
[0,1]2 r∆=Cr

∫
[0,1]2

∆2

2r(1− r)
. (3.37)

The prefactor 1+o(1) in (3.36) arises after we scale ∆ by 1+o(1) in order to force
∫

[0,1]2 r∆ = Cr.

Note that the optimisation problem in (3.37) no longer depends on ε.
We can apply the method of Lagrange multipliers to solve this constrained optimisation

problem. To that end we define the Lagrangian

LAr(∆) =

∫
[0,1]2

∆2

2 r(1− r)
+Ar

∫
[0,1]2

r∆, (3.38)

where Ar is a Langrange multiplier. Since
∫

[0,1]2 r =
∫

[0,1]2 r
φ for any Lebesgue measure-

preserving bijective map φ ∈ M, we get that the minimizer (in the space of functions from
[0, 1]2 → R) is of the form

∆φ = −Ar rφr(1− r), φ ∈M. (3.39)

We pick Ar such that the constraint is satisfied, i.e.,

−ArBφ
r = [1 + o(1)]Cr (3.40)
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with

Bφ
r =

∫
[0,1]2

rφr2(1− r). (3.41)

We get

∆φ =
Cr

Bφ
r

rφr(1− r), φ ∈M, (3.42)

and

Kr = inf
φ∈M

∫
[0,1]2

(∆φ)2

2r(1− r)
=

1

2
C2
r inf
φ∈M

Dφ
r

(Bφ
r )2

(3.43)

with

Dφ
r =

∫
[0,1]2

(rφ)2r(1− r). (3.44)

�

We next show that the infimum in (3.43) is uniquely attained when φ is the identity. For this

we will show that Dφ
r /(B

φ
r )2 ≥ 1/Br with equality if and only if φ = Id. Indeed, write

BrD
φ
r − (Bφ

r )2

=

∫
[0,1]2

dx dy r(x, y)[1− r(x, y)]

∫
[0,1]2

dx̄ dȳ r(x̄, ȳ)[1− r(x̄, ȳ)]

×
{
r(x, y)2 rφ(x̄, ȳ)2 − r(x, y)rφ(x, y) r(x̄, ȳ)rφ(x̄, ȳ)

}
=

∫
[0,1]2

dx dy r(x, y)[1− r(x, y)]

∫
[0,1]2

dx̄ dȳ r(x̄, ȳ)[1− r(x̄, ȳ)]

× 1
2

{
r(x, y)2 rφ(x̄, ȳ)2 + rφ(x, y)2 r(x̄, ȳ)2 − 2r(x, y)rφ(x, y) r(x̄, ȳ)rφ(x̄, ȳ)

}
=

∫
[0,1]2

dx dy r(x, y)[1− r(x, y)]

∫
[0,1]2

dx̄ dȳ r(x̄, ȳ)[1− r(x̄, ȳ)]

× 1
2

(
r(x, y)rφ(x̄, ȳ)− rφ(x, y)r(x̄, ȳ)

)2
,

(3.45)

where the second equality uses the symmetry between the integrals. Hence BrD
φ
r − (Bφ

r )2 ≥ 0,
with equality if and only if r(x, y)/rφ(x, y) = C for almost every x, y ∈ [0, 1]2. Clearly, this can
hold only for C = 1, which amounts to φ = Id.

We conclude that the infimum in (3.43) equals 1/Br, and so we find that

Kr =
C2
r

2Br
. (3.46)

Finally, note that Cr = m2 by (2.8), and that Br = m2
3 − m2

4 by (1.18). This settles the
expression for Kr in (1.21).

Corollary 3.6. [Unbalanced perturbations] Perturbations of order ε that are not balanced,
i.e., that do not cover the entire unit square [0, 1]2, are worse than the balanced perturbation in
Lemma 3.5.

Proof. The argument of the variational formula can be reduced to an integral that considers
only those regions that contribute order ε2, which constitute a subset A ⊂ [0, 1]2. Applying the
method of Lagrange multipliers as in Lemma 3.5, we obtain that the solution is given by

δr(ε) = [1 + o(1)]K ′rε
2, ε→ 0, (3.47)
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with K ′r > Kr. The strict inequality comes from the fact that the optimal balanced perturbation
∆Id found in (3.39) is non-zero everywhere. �

In conclusion, we have shown that a balanced perturbation is optimal and we have identi-
fied in (3.42) the form of the optimal balanced perturbation. Lemma 3.5 settles the claim in
Theorem 1.6(i), while (3.42) settles the claim in Theorem 1.7(i).

3.3. Perturbation near the right end. Take β = 1 − ε and consider a graphon of the form
h = 1−∆ε, where ∆ε : [0, 1]2 → [0,∞) represents a symmetric and bounded perturbation of the
constant graphon h ≡ 1. We compare

ψr(1− ε) = inf
∆ε : [0,1]2→[0,∞)

1−∆ε∈W
‖T1−∆ε‖=1−ε

Ir(1−∆ε) (3.48)

with

C1
r = Ir(1) (3.49)

by computing the difference

δr(ε) = ψr(1)− ψr(1− ε) (3.50)

and studying its behaviour as ε ↓ 0. Since Ir(1) is a constant, we can write

δr(ε) = sup
∆ε : [0,1]2→[0,∞)

1−∆ε∈W
‖T1−∆ε‖=1−ε

[Ir(1)− Ir(1−∆ε)]. (3.51)

We again use the expansion in Lemma 2.1. Pick h̄ = 1 and h = 1−∆ε in (2.1), to get

‖T1−∆ε‖ = 1 +
∑
n∈N

1

‖T1−∆ε‖n
Fn(1−∆ε, 1). (3.52)

Since ‖T1−∆ε‖ = 1− ε, this gives

1− ε = 1 +
〈1, (−∆ε)1〉

1− ε
+
〈1, (−∆ε)

21〉
(1− ε)2

+
∑

n∈N\{1,2}

〈1, (−∆ε)
n1〉

(1− ε)n
. (3.53)

For ε ↓ 0 we have ‖∆ε‖2 ↓ 0 and |〈1, (−∆ε)
n1〉| = O(‖∆ε‖n2 ). Therefore

ε(1− ε) =

∫
[0,1]2

∆ε −
〈1,∆2

ε1〉
(1− ε)

+ O
(
‖∆ε‖32

)
. (3.54)

The restriction 1−∆ε ∈ W implies that ∆ε ∈ [0, 1]. Hence ‖∆ε‖22 ≤ ‖∆ε‖1. Moreover,

1− ε = ‖T1−∆ε‖ ≤ ‖1−∆ε‖2 ≤
√
‖1−∆ε‖1. (3.55)

Since ‖1−∆ε‖1 = 1− ‖∆ε‖1, we have

‖∆ε‖1 ≤ 1− (1− ε)2 = ε(2− ε). (3.56)

Since ‖∆ε‖32 = O(ε3/2), (3.54) reads

1

1− ε

∫
[0,1]3

dx dy dz∆ε(x, y)[1−∆ε(y, z)]−
ε

1− ε
‖∆ε‖1 = ε(1− ε) + O(ε3/2), (3.57)

which, because ‖∆ε‖1 = O(ε), further reduces to∫
[0,1]3

dx dy dz∆ε(x, y)[1−∆ε(y, z)] = ε [1 + O(ε1/2)]. (3.58)
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Note that when ∆ε = ε∆, the constraint reads∫
[0,1]2

∆ = 1 + O(ε1/2), ε ↓ 0. (3.59)

The following lemma gives an upper bound for Ir(1)− Ir(1−∆ε).

Lemma 3.7. [Order of minimal cost] Let ∆ε : [0, 1]2 → [0, 1] be such that 1−∆ε ∈ W and
‖T1−∆ε‖ = 1− ε. Then, for ε small enough,

Ir(1)− Ir(1−∆ε) ≤ ‖∆ε‖1 log
1

‖∆ε‖1
+ O(‖∆ε‖1). (3.60)

Moreover, δr(ε) ≤ ε log 1
ε + O(ε).

Proof. Abbreviate (recall (1.9))

χ(a) = R(a | r) = a log
a

r
+ (1− a) log

1− a
1− r

, a ∈ [0, 1]. (3.61)

Then
χ(1)− χ(1−∆ε(x, y))

= ∆ε(x, y) log

(
1−∆ε(x, y)

∆ε(x, y)

1− r(x, y)

r(x, y)

)
− log(1−∆ε(x, y)),

(3.62)

and so

Ir(1)− Ir(1−∆ε) =

∫
[0,1]2

[
∆ε log

(
1−∆ε

∆ε

1− r
r

)
− log(1−∆ε)

]
. (3.63)

Let µε be the probability measure on [0, 1]2 whose density with respect to the Lebesgue
measure is Z−1

ε (1−∆ε(x, y)), where Zε =
∫

[0,1]2(1−∆ε) = 1−O(ε). Since u 7→ s̄(u) = u log(1/u)

is strictly concave, by Jensen’s inequality we have∫
[0,1]2

∆ε log

(
1−∆ε

∆ε

)
= Zε

∫
[0,1]2

µεs̄

(
∆ε

1−∆ε

)
≤ Zεs̄

(
Z−1
ε ‖∆ε‖1

)
= ‖∆ε‖1 log

(
Zε
‖∆ε‖1

)
.

(3.64)
Moreover,∫

[0,1]2
∆ε log

(
1− r
r

)
= O(‖∆ε‖1), −

∫
[0,1]2

log(1−∆ε) = O(‖∆ε‖1). (3.65)

Hence

Ir(1)− Ir(1−∆ε) ≤ ‖∆ε‖1 log
1

‖∆ε‖1
+ O(‖∆ε‖1), ε ↓ 0, (3.66)

and since ‖∆ε‖1 = O(ε) also δr(ε) ≤ ε log 1
ε + O(ε). �

The following is the analogue of Lemma 3.2 for perturbations near the right end.

Lemma 3.8. [Cost of small perturbations] Let B ⊆ [0, 1]2 be a measurable region of area
|B|. Suppose that ∆ε = εα∆ on B with ε > 0, α ∈ (0, 1] and ∆: [0, 1]2 → [0,∞). Then the
contribution of B to the cost Ir(h) is∫
B

dx dy
[
R(1 | r(x, y))−R(1− εα∆(x, y) | r(x, y))

]
= [1 + o(1)]

∫
B
εα∆ log

(
1− r
εα∆r

)
, ε ↓ 0.

(3.67)
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Proof. The proof is the same as that of Lemma 3.7, with the observation that

R(1 | r)−R(1− εα∆ | r) = [1 + o(1)] εα∆ log

(
1− r
εα∆r

)
, ε ↓ 0. (3.68)

�

Following the argument in Section 3.2, we can approximate the cost function by using block
graphons. We see

N∑
i,j=1

∫
Bi,j

dx dy∆ε,N (x, y) =
N∑

i,j=1

1

N2
∆εN,ij = ε [1 + o(1)], ε ↓ 0. (3.69)

The block constraint in (3.69) implies that the sum over each block must be of order ε. Hence

∆εN,ij = O(ε), ε ↓ 0 ∀ (i, j). (3.70)

There are two cases to distinguish: all blocks contribute to the constraint with a term of order ε
(balanced perturbation), or some of the blocks contribute to the constraint with a term of order
ε and some with o(ε). Analogously to the analysis in Section 3.2, by using Lemma 3.8 we can
compute the total cost that different types of block perturbations produce. This again shows
that the optimal perturbations are the balanced perturbations, consisting of perturbations of
order ε on every block. As N →∞, a sequence of such perturbations converges to a perturbation
∆ε = ε∆ with ∆: [0, 1]2 → [0,∞), which we analyse next.

Lemma 3.9. [Balanced perturbations] Suppose that ∆ε = ε∆ with ∆: [0, 1]2 → [0,∞).
Then

δr(ε) = [1 + O(ε1/2)]

{
ε+ ε log

(
N1
r

ε

)}
+ O(ε2), ε ↓ 0. (3.71)

Proof. By (3.59) and (3.63),

δr(ε) = sup
∆: [0,1]2→[0,∞)

1−ε∆∈W∫
[0,1]2 ∆=1+O(ε1/2)

[
Ir(1)− Ir(1− ε∆)

]

= sup
∆: [0,1]2→[0,∞)

1−ε∆∈W∫
[0,1]2 ∆=1+O(ε1/2)

∫
[0,1]2

[
ε∆ log

(
1− ε∆
ε∆

1− r
r

)
− log(1− ε∆)

]
.

(3.72)

The integral in (3.72) equals∫
[0,1]2

[
ε∆ log

(
1− r
ε∆r

)
− (1− ε∆) log(1− ε∆)

]
=

∫
[0,1]2

ε∆ log

(
1− r
ε∆r

)
+ ε

∫
[0,1]2

∆ + O(ε2).

(3.73)
Hence

δr(ε) = [1 + O(ε1/2)]

ε+ sup
∆: [0,1]2→[0,∞)∫

[0,1]2 ∆=1

∫
[0,1]2

ε∆ log

(
1− r
ε∆r

)+ O(ε2), (3.74)

where the prefactor arises after we scale ∆ by 1 + O(ε1/2) in order to force
∫

[0,1]2 ∆ = 1. Note

that the constraint under the supremum no longer depends on ε.
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We can solve the optimisation problem by applying the method of Lagrange multipliers. To
that end we define the Lagrangian

LAr(∆) =

∫
[0,1]2

ε∆ log

(
1− r
ε∆r

)
+Ar

∫
[0,1]2

∆, (3.75)

where Ar is a Langrange multiplier. Since
∫

[0,1]2 log 1−r
r =

∫
[0,1]2 log 1−rφ

rφ
for any Lebesgue

measure-preserving bijective map φ ∈ M, we get that the minimizer (in the space of functions
from [0, 1]2 → R) is of the form

∆φ = e−
ε−Ar
ε

1

ε

1− rφ

rφ
, φ ∈M. (3.76)

We pick Ar such that the constraint
∫

[0,1]2 ∆ = 1 is satisfied. This gives

∆φ =
1

N1
r

1− rφ

rφ
, φ ∈M, (3.77)

with N1
r =

∫
[0,1]2

1−r
r . Hence the supremum in (3.74) becomes

sup
φ∈M

∫
[0,1]2

ε∆φ log

(
1− r
ε∆φr

)
. (3.78)

We have ∫
[0,1]2

ε∆φ log

(
1− r
ε∆φr

)
= ε log

(
N1
r

ε

)
− ε
∫

[0,1]2
∆φ log

(
∆φ

∆

)
, (3.79)

where we use that
∫

[0,1]2 ∆φ = 1. Since the function u 7→ s(u) = u log u is strictly convex on

[0,∞), Jensen’s inequality gives∫
[0,1]2

∆φ log

(
∆φ

∆

)
=

∫
[0,1]2

∆ s

(
∆φ

∆

)
≥ s

(∫
[0,1]2

∆
∆φ

∆

)
= s

(∫
[0,1]2

∆φ

)
= s(1) = 0,

(3.80)
where we use that

∫
[0,1]2 ∆ = 1. Equality holds if and only if ∆ = ∆φ almost everywhere on

[0, 1]2, which amounts to φ = Id. Hence the supremum in (3.78) is uniquely attained at φ = Id
and equals ∫

[0,1]2
ε

1

N1
r

(1− r)
r

log

(
N1
r

ε

)
= ε log

(
N1
r

ε

)
. (3.81)

Consequently, (3.74) gives (3.71). �

Lemma 3.9 settles the claim in Theorem 1.6(ii). Since we have shown that a balanced per-
turbation is optimal, (3.77) settles the claim in Theorem 1.7(ii).

3.4. Perturbation near the left end. Take β = ε and consider a graphon of the form h = ∆ε,
where ∆ε : [0, 1]2 → [0,∞) represents a symmetric and bounded perturbation of the constant
graphon h ≡ 0. We compare

ψr(ε) = inf
∆ε : [0,1]2→[0,∞)

∆ε∈W
‖∆ε‖=ε

Ir(∆ε) (3.82)

with

ψr(0) = Ir(0) (3.83)

by computing the difference

δr(ε) = ψr(ε)− ψr(0) (3.84)
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and studying its behaviour as ε→ 0.
We claim that analysing (3.84) is equivalent to analysing

δr̂(ε) = φr̂(1)− φr̂(1− ε), (3.85)

where r̂ is the reflection of r defined as

r̂(x, y) = 1− r(x, y), x, y ∈ [0, 1]. (3.86)

Indeed,

Ir(0) =

∫
[0,1]2

R(0 | r) =

∫
[0,1]2

log

(
1

1− r

)
=

∫
[0,1]2

R(1 | r̂) = Ir̂(1) (3.87)

and

Ir(∆ε) =

∫
[0,1]2

R(∆ε | r) =

∫
[0,1]2

[
∆ε log

(
∆ε

r

)
+ (1−∆ε) log

(
1−∆ε

1− r

)]
=

∫
[0,1]2

R(1−∆ε | r̂) = Ir̂(1−∆ε).

(3.88)

We can therefore use the results in Section 3.3. From Lemma 3.9 we know that

δr̂(ε) = [1 + O(ε1/2)]

{
ε+ ε log

(
N1
r

ε

)}
+ O(ε2), ε ↓ 0, (3.89)

and hence we obtain

δr(ε) = [1 + O(ε1/2)]

{
ε+ ε log

(
N0
r

ε

)}
+ O(ε2), ε ↓ 0, (3.90)

Consequently, the optimal perturbation is given by the balanced perturbation ∆ε = ε∆ with

∆ =
1

N0
r

r

1− r
, (3.91)

with N0
r =

∫
[0,1]2

r
1−r .

The scaling in (3.90) settles the claim in Theorem 1.6(iii). Since we have shown that a
balanced perturbation is optimal, (3.91) settles the claim in Theorem 1.7(iii).

Appendix A. Appendix

Lemma A.1. [Finite-rank expansion] Consider a graphon h̄ ∈ W such that

h̄(x, y) =
k∑
i=1

θiν̄i(x)ν̄i(y), x, y ∈ [0, 1], (A.1)

for some k ∈ N, where θ1 > θ2 ≥ . . . ≥ θk ≥ 0 and {ν̄1, ν̄2, . . . , ν̄k} is an orthonormal set in
L2[0, 1]. Then there exists an ε > 0 such that, for any h ∈ W satisfying ‖Th−h̄‖ < min(ε, ‖Th‖),
the operator norm ‖Th‖ solves the equation

‖Th‖ = λk

∑
n∈N0

‖Th‖−nFn(h, h̄)

 , (A.2)

where λk(M) is the largest eigenvalue of a k × k Hermitian matrix M , and Fn(h, h̄) is a k × k
matrix whose (i, j)-th entry is√

θiθj

∫
[0,1]2

dx dy ν̄i(x)(h− h̄)n(x, y)ν̄j(y) (A.3)

for 1 ≤ i, j ≤ k and n ∈ N0.
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Proof. Put µ = ‖Th‖, and let u be the eigenfunction of h corresponding to µ, i.e.,

Thu = µu. (A.4)

Put g = h− h̄ and rewrite the above as

(µ− Tg)u = Th̄u. (A.5)

The assumption ‖Th−h̄‖ < ‖Th‖ implies that µ− Tg is invertible, which allows us to write

u = (µ− Tg)−1Th̄u =

k∑
j=1

θj〈ν̄j , u〉(µ− Tg)−1ν̄j . (A.6)

For fixed 1 ≤ i ≤ k, it follows that

〈ν̄i, u〉 =

k∑
j=1

θj〈ν̄j , u〉〈ν̄i, (µ− Tg)−1ν̄j〉. (A.7)

Multiplying both sides by µ
√
θi, we get

Mv = µv, (A.8)

where M = (Mij)1≤i,j≤k is the k × k real symmetric matrix with elements

Mij =
√
θiθj

〈
ν̄i,

(
1− Tg

µ

)−1

ν̄j

〉
, 1 ≤ i, j ≤ k, (A.9)

and

v =
[√

θ1〈ν̄1, u〉, . . . ,
√
θk〈ν̄k, u〉

]′
. (A.10)

The first entry of v is non-zero for ε small with ‖Tg‖ < ε. Thus, (A.8) means that µ is an
eigenvalue of M . By studying the diagonal entries of M , we can shown with the help of the
Gershgorin circle theorem that, for small ‖Tg‖,

µ = λk(M). (A.11)

With the help of the observation

Mij =
√
θiθj

∑
n∈N0

µ−n〈ν̄i, gnν̄j〉, 1 ≤ i, j ≤ k, (A.12)

i.e.,

M =
∑
n∈N0

µ−nFn(h, h̄), (A.13)

this completes the proof. �
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Theory and Applications (to appear), page 2150009. URL https://doi.org/10.1142/

S201032632150009X.
[11] A. Chakrabarty, S. Chakraborty, and R. S. Hazra. Eigenvalues outside the bulk of inhomo-
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