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Abstract

Motivated by the trade-off issue between delay performance and energy
consumption in modern computer and communication systems, we consider
a single-server queue with Phase-type service requirements and with the
following two special features. Firstly, the service speed is a, piecewise
constant, function of the workload. Secondly, the server switches off when
the system becomes empty, only to be activated again when the workload
reaches a certain threshold. For this system, we obtain the steady-state
workload distribution and its moments of any order. We use this result to
choose the activation threshold such that a certain cost function, involving
processing costs, activation costs and mean workload, is minimized. In
the case of exponential service requirements, we also derive the Laplace-
Stieltjes transform of the length of the active period of the server.
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1 Introduction

We consider an M/PH/1 queue with two special features. Firstly, the service speed is a piece-
wise constant function of the workload. Secondly, the server switches off when the system
becomes empty, and it is re-activated when the workload reaches a certain threshold. In the
remainder of this section we discuss the motivation for our study (Subsection 1.1), mention
related literature (Subsection 1.2) and outline the rest of the paper (Subsection 1.3).
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1.1 Motivation

Cloud services have become ubiquitous in our modern information society. Cloud services are
even more and more important in the current era where we are facing the Covid-19 pandemic
for which remote work is strongly recommended to decrease the spread of the virus. Nowa-
days, most Internet users are familiar with some cloud-based storage services such as Dropbox,
Google drive etc. and with video-conferencing services such as Zoom, Microsoft Teams etc.
These systems are supported by large-scale data centers where thousands of servers are avail-
able, consuming a huge amount of energy. Thus, it is crucial to have mechanisms that can
balance energy consumption and performance.

While energy saving is indispensable to reduce the CO2, most data centers are still designed
for peak traffic. As a result, many servers are idle in off-peak periods – but they may still
consume about 60% of their peak energy consumption [15, 21]. Autoscaling techniques are
proposed to solve the trade-off between energy consumption and delay performance. In partic-
ular, an autoscaling algorithm adjusts the processing speed according to its workload. At the
data center level, an autoscaling algorithm controls the number of active servers in the system
in response to the workload [15, 21, 24, 27]. Furthermore, at the individual computer level, a
CPU is also able to adjust the processing speed by either dynamic frequency scaling or dynamic
voltage scaling techniques [35, 36, 37]. The processing speed is scaled up when the workload
is high and scaled down under a low workload. As a result, less energy is consumed under
off-peak periods while acceptable delay can be achieved in a heavy-load situation [13].

Queues with changeable service rate also fit the autoscaling mechanisms in 5G networks. In
5G networks, the key technology is network function virtualization (VNF) in which a physical
resource can be virtualized to network functions. The operator can dynamically add or release
these network functions to optimally construct cost-effective systems in response to their work-
load. As a result, these systems can be modeled using queueing models with changeable service
speeds [26, 27].

Apart from the interest in power-saving computer and communication systems, queues with
changeable service speed also naturally arise in service systems with human servers. In partic-
ular, in many real-world service systems such as call centers, staffs are scheduled to meet the
demands of customers. Also, a human server may serve at high speed when the workload is
high, and may spend more time on a job when the workload is low [11].

1.2 Related literature and our contribution

The topic of speed scaling in data centers and power-saving CPU and autoscaling of 5G net-
works provides motivation for our study. See [35] for an insightful discussion of speed scaling
and [26, 27] for queueing analysis of an autoscaling algorithm in 5G networks. Recent papers
which consider single server queues with speed scaling where the speed of the server is pro-
portional to the number of jobs in the system are, e.g., [25, 36, 37]. Multiserver queues with
ON-OFF control (turning idle servers off) have been extensively studied [15, 21, 24].
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Our model is related to the literature on queues and dams with a level-dependent outflow
rate. Influential early papers are [16, 17]; we refer to [4] for some more recent results and
further references.

Our model is also related to the rich vacation literature: the server takes a vacation when
the workload is zero, and returns to service when the workload reaches or exceeds a certain
level. Such a D-policy has been extensively studied for the classical M/G/1 queue. See [14]
for references and, in particular, for an optimality proof. For the case of switching costs and
running costs, and with a holding cost per time unit which is a non-negative decreasing right-
continuous function of the current workload, Feinberg and Kella [14] prove that D-policies are
optimal for the average-cost-per-time-unit criterion: there is an optimal policy that either runs
the server all the time or switches the server off when the system becomes empty and switches
it on when the workload reaches or exceeds some threshold D.

Markov modulated queues with workload dependent service rates have been extensively
studied in the literature [10, 12, 18, 22, 33, 38]. All these studies first reduce the models to
fluid models for which matrix analytic methods, spectral methods, and Schur decomposition
methods are applied to derive numerical solutions for the distribution of the workload processes
(See da Silva Soares and Latouche [10], Mandjes et al. [22] and Kankaya and Akar [18] for
the methodologies). In contrast to the above, motivated by power-saving in modern computer
and communication systems, we consider a model with Poisson input, Phase-type distribution,
and vacation. For this model, using the level-crossing method and renewal theory, we obtain a
direct solution for the workload distribution and its moments of any order. Our solution is more
direct in the sense that the workload distribution is expressed in terms of matrix exponentials
whose components are explicitly written in terms of given parameters. These results are then
used for an optimization problem balancing performance and energy-consumption tradeoff.

We finally would like to point out the relation to our recent paper [29]. There we propose
and analyze an M/G/1-type queueing model that also features two power-saving mechanisms.
The speed of the server is scaled according to the workload in the system. Moreover, the server
is turned off when the system is empty and is activated again once the workload reaches a certain
threshold. In the case of arbitrarily distributed service time and general service speed function,
the stationary workload is expressed in terms of a series whose terms are recursively obtained
by an integral formula. While the distribution of the workload can in principle be evaluated for
this general case, the computation is highly complex. Simpler expressions are obtained for the
case of exponential service requirement and the case where the service speed is a linear function
of the workload.

In the present paper our aim is to derive a computable solution for a relatively general model
with Phase-type service requirements and a piecewise constant service rate. Phase-type distri-
butions lie dense in the class of distributions with positive support and thus can approximate any
service requirement distribution with any accuracy. Furthermore, piecewise constant functions
can also be used to approximate an arbitrary function. In addition, from a practical point of
view, it is natural that the service rate is switched at discrete points [13].
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1.3 Structure of the paper

The remainder of the paper is organized as follows. In Section 2 we derive the stationary work-
load distribution for the case of an M/PH/1 queue with vacations and with only two processing
speeds. We first focus on this case, before tackling the case of an arbitrary number of different
processing speeds in Section 3, because the analysis is quite technical; in this way, we improve
the readability of the paper. We also obtain a computable form for the moments of any order
for the stationary workload. In Section 4, we demonstrate the analysis of the active period for
an M/M/1 with two processing speeds. An optimization problem is formulated in Section 5 and
finally numerical examples are presented in Section 6.

2 M/PH/1 queue with two processing speeds and vacations

In this section we consider the special case of a FCFS queue with a single server who, when
active, works at one of two possible speeds: when the workload is below a threshold d1 it works
at speed r1, and above it at speed r2. Furthermore, when the system becomes empty, the server is
switched off, only to be activated again when the workload exceeds some threshold level L. We
assume that L = d1 to keep the model for the moment as simple as possible while retaining its
essential elements. In Section 3, we shall consider the more general case of piecewise constant
service speed with K0 different speed values, and in which L not necessarily coincides with
one of the thresholds at which also the service speed in an active period changes. However,
the analysis of that case is quite involved, and consideration of the simpler case of the present
section will help the reader get acquainted with our approach.

The remainder of the section is organized as follows. Subsection 2.1 contains a more de-
tailed model description, as well as a lemma about the computation of the convolution of matrix
exponentials that will play a key role in the remainder of the paper. In Subsection 2.2, we de-
rive the stationary workload density when the server is inactive. In Subsections 2.3 and 2.4,
we successively determine the stationary workload density when the server is active while the
workload is above, respectively below, d1. The mean active period features in many of the
formulas; we compute it explicitly in Subsection 2.5.

2.1 Model description

We consider a single-server FCFS queue, where the server has a single waiting line with infinite
capacity. Customers arrive according to a Poisson process with rate λ > 0. The service require-
ments of the customers are independent and identically distributed (i.i.d.), generically indicated
by B, with the following phase-type distribution (see, e.g. [20])

B(x) = 1− τ exp(Tx)1, x ≥ 0, (2.1)

where τ is a (1 × N) probability row vector, and T is an (N × N) defective transition rate
matrix, where N is a positive integer, and 1 is a column vector with ones whose size will be
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determined in the context. The tail of B(·) is denoted by B(x) := 1−B(x).
Let Zt, where t ∈ R+ := [0,∞), denote the unfinished workload (workload, for short) in

the system at time t. According to the value or history of the workload, the server is assumed
to alternate between “inactive” and “active” states, which are referred to as modes 0 and 1,
respectively. Let St ∈ {0, 1} denote the mode of the server at time t, which is defined as
follows.

(i) When the workload Zt hits 0 at a time t, the server enters mode 0, i.e., St = 0. After
that, the server remains in mode 0 until the workload exceeds threshold L = d1 > 0, i.e.,
Su = 0 as long as 0 ≤ Zu ≤ d1 for u ≥ t.

(ii) When the workload Zt exceeds d1 at a time t while the mode was 0 at time t−, the server
changes its mode from 0 to 1, i.e., St = 1. The server remains in that mode until the
workload hits 0 again, i.e., Su = 1 as long as 0 < Zu < ∞ for u ≥ t.

The processing speed of the server is assumed to depend on both the server’s mode and
workload in the following way. Let si(x), where i = 0, 1 and x ≥ 0, denote the processing
speed of the server when (Zt, St) = (x, i); it is defined as follows:

s0(x) = 0, 0 ≤ x ≤ d1, (2.2)

s1(x) =

{
r1, 0 < x ≤ d1,

r2, d1 < x < ∞,
(2.3)

where r1 and r2 are positive numbers. {(Zt, St); t ≥ 0} is a Markov process. Figure 1 shows a
sample path of this Markov process.
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Figure 1: The workload process for the case of two processing speeds.

We assume that it is positive-recurrent, and denote its replica in steady state by (Z, S). The
stability condition of this Markov process is given as follows.

λτ (−T )−11 < r2, (2.4)
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where the lefthand side is the mean amount of work arriving in a unit of time, and the righthand
side is the processing rate of the server when the workload is greater than d1.

We introduce some notations. For i = 1, 2, let ni and ki be positive integers such that
ki ≤ ni. For an n1 × n2 matrix A := (aij; 1 ≤ i ≤ n1, 1 ≤ j ≤ n2), we denote the k1 × k2
northeast sub-matrix of A by [A](k1,k2), i.e.,

[A](k1,k2) = (aij; 1 ≤ i ≤ k1, n2 − k2 < j ≤ n2). (2.5)

For a positive integer n, let In denote the n × n identity matrix, and O denote a zero matrix
whose size will be determined in the context. Throughout this paper, the next lemma is useful
when we compute the convolution of matrix exponentials.

Lemma 2.1 For positive integers n1 and n2, let α, X , b, and Y be 1 × n1, n1 × n1, n1 × 1,
and n2 × n2 matrices, respectively. For x ≥ 0, the convolution of matrix exponentials∫ x

0

α exp(Xu)b exp(Y (x− u))du (2.6)

is computed as follows. Let M11 := In2 ⊗X , M12 := In2 ⊗ b, and M22 := Y , where ⊗ is the
Kronecker product, then (2.6) is given by∫ x

0

α exp(Xu)b exp(Y (x− u))du = (In2 ⊗α)[exp(Mx)](n1n2,n2), (2.7)

where

M :=

(
M11 M12

O M22

)
. (2.8)

Proof. The proof is similar to that of Theorem 1 of [34]. According to the partition in (2.8),
we denote F (x) := exp(Mx) by

F (x) =

(
F11(x) F12(x)

O F22(x)

)
. (2.9)

We note that F ′(x) := d
dx
F (x) = MF (x), i.e.,

F ′
11(x) = M11F11(x), (2.10)

F ′
12(x) = M11F12(x) +M12F22(x), (2.11)

F ′
22(x) = M22F22(x). (2.12)

From (2.10), (2.12), and F (0) = In1n2+n2 , we have

F11(x) = exp(M11x), F22(x) = exp(M22x). (2.13)

From (2.11) and the second equation of (2.13), we have

F ′
12(x) = M11F12(x) +M12 exp(M22x). (2.14)
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It is readily seen that the solution of the differential equation (2.14) is given by

F12(x) =

∫ x

0

exp(M11(x− u))M12 exp(M22u)du (2.15)

=

∫ x

0

(In2 ⊗ exp(X(x− u)))(In2 ⊗ b) exp(Y u)du. (2.16)

By pre-multiplying In2 ⊗α to (2.16), we obtain (2.7). 2

By choosing α := 1, X := 0, and b := 1 in Lemma 2.1, we obtain the next result.

Corollary 2.1 For an n2 × n2 matrix Y , we have∫ x

0

exp(Y u)du =

[
exp

((
O In2

O Y

)
x

)](n2,n2)

. (2.17)

In the subsequent subsections, we present a computational procedure for the stationary den-
sity of the workload.

2.2 Stationary density in mode 0

In this subsection we determine the steady-state density of the workload during the times in
which the server is in mode 0. Such an inactive period lasts from the instant the system becomes
empty until the next instant in which the workload exceeds a certain threshold level d1. Assume
that Z0 = 0, i.e., there is no workload in the system and the server is in mode 0 at time 0. For
i ∈ N0 := {0, 1, 2, . . .}, let θi denote the i-th arrival time after time 0, where θ0 := 0. For x ≥ 0,
let

ν(x) := sup{i ∈ N0;Zθi ≤ x}, (2.18)

which is the number of customer arrivals until the workload becomes larger than x. We note that
m(x) := E[ν(x)] is the renewal function with the renewal interval distribution B(x) (x ≥ 0) in
(2.1). From Theorem 3.1.2 in [20], we have for 0 ≤ x < d1,

m(x) =

∫ x

0

τ exp(Du)tdu = τ

[
exp

((
O IN
O D

)
x

)](N,N)

t, (2.19)

m′(x) = τ exp(Dx)t, (2.20)

where t := −T1 and D := T + tτ , and the second equation in (2.19) follows from Corol-
lary 2.1.

Remark 2.1 By Theorem 3.1.4 in [20], the renewal function and its derivative are given in
more explicit formulas as follows: for x ≥ 0,

m(x) = η−1x+ τ (exp(Dx)− I)(D −Π)−1t, (2.21)

m′(x) = η−1 + τD exp(Dx)(D −Π)−1t, (2.22)
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where Π := 1π and π is the stationary distribution of D, i.e., π is the nonnegative solution of
πD = 0 and π1 = 1. In this paper, we need to compute some convolutions including m′(x).
Therefore, we use (2.19) and (2.20) to obtain our formulas in a simpler form.

We are ready to consider the stationary density of the workload when the server is in mode
0. Let mi (i = 0, 1) be the mean length of a mode-i interval. From Subsection 2.1 of [29] we
have

m0 = λ−1(1 +m(d1)). (2.23)

Let v(x|S = 0), where x > 0, denote the conditional stationary density of the workload when
the server is in mode 0, which is given by (cf. Subsection 2.1 of [29])

v(x|S = 0) =

{
λ−1m′(x)

m0
, 0 < x ≤ d1,

0, x > d1.
(2.24)

From (2.23) and (2.24), we have

v(x|S = 0) =

{
m′(x)

1+m(d1)
, 0 < x ≤ d1,

0, x > d1.
(2.25)

For i = 0, 1, let pi := Pr(S = i), which is the marginal distribution when the server is in mode
i, and it is readily seen that pi = mi/(m0 +m1), i.e.,

p0 =
1 +m(d1)

1 +m(d1) + λm1

, p1 =
λm1

1 +m(d1) + λm1

, (2.26)

where m1 later will be determined by using a normalizing condition. Let v0(x), 0 < x ≤ d1,
denote the unconditional stationary density of the workload when the server is in mode 0, i.e.,
v0(x) =

d
dx

Pr(Z ≤ x, S = 0), then we have

v0(x) =

{
p0 · v(x|S = 0), 0 < x ≤ d1,

0, x > d1.
(2.27)

Furthermore, let V (0) := Pr(Z = 0, S = 0), which is the marginal probability that there are no
customers in the system, and which is given by V (0) = λ−1/(m0 +m1), i.e.,

V (0) =
1

1 +m(d1) + λm1

. (2.28)

Combining (2.25), (2.26) and (2.27), the results in this subsection can be summarized as
follows.

Lemma 2.2 The stationary density of the workload when the server is in mode 0 equals

v0(x) =

{
m′(x)

1+m(d1)+λm1
, 0 < x ≤ d1,

0, x > d1,
(2.29)

where m(x) is given by (2.19) and m′(x) by (2.20); the probability that there is no customer in
the system is given by (2.28).
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In the next two subsections we determine the stationary density in mode 1, distinguishing
between the cases that the workload is above d1 (Subsection 2.3) and below d1 (Subsection 2.4).

2.3 Stationary density in mode 1 when the workload is above d1

Let v1(x), where x > 0, denote the stationary density of the workload when the server is in
mode 1, i.e., v1(x) = d

dx
Pr(Z ≤ x, S = 1). We use the level crossing technique (see, e.g., [5]),

which states that, in steady state, each workload level is crossed just as often from above and
from below. Hence the stationary density of the workload, denoted by v(x) := v0(x) + v1(x),
where x > 0, satisfies the following relations.

r1(v(x)− v0(x)) = λV (0)B(x) + λ

∫ x

0

B(x− y)v(y)dy, 0 < x ≤ d1, (2.30)

r2v(x) = λV (0)B(x) + λ

∫ x

0

B(x− y)v(y)dy, d1 < x < ∞, (2.31)

where B(x) = τ exp(Tx)1 for x ≥ 0. We first solve (2.31), and show that the solution is given
by a matrix exponential form. To this end, for x > d1, we consider a (1×N) row vector, which
is denoted by v(x), and satisfies the following equation:

r2v(x) = λV (0)τ exp(Tx) + λ

∫ x

0

v(y)1τ exp(T (x− y))dy, d1 < x < ∞. (2.32)

We note that v1(x) = v(x) = v(x)1 for x > d1 from (2.31) and (2.32). Similar to [30], by
taking the derivative of (2.32) with respect to x, we have

r2v
′(x) = λV (0)τ exp(Tx)T + λv(x)1τ + λ

∫ x

0

v(y)1τ exp(T (x− y))dy · T

= r2v(x)(λr
−1
2 1τ + T ), d1 < x < ∞, (2.33)

where the last equality follows by applying (2.32) to the last term of the first line of (2.33). The
solution of (2.33) is given by the following matrix exponential form:

v(x) = ũ exp((λr−1
2 1τ + T )(x− d1)), d1 < x < ∞, (2.34)

where ũ is a (1×N) row vector, which will be determined later (see (2.48)).
The results in this subsection are summarized as follows.

Lemma 2.3 For x > d1, the stationary density of the workload when the server is in mode 1, is
given by v1(x) = v(x)1, where

v(x) = ũ exp((λr−1
2 1τ + T )(x− d1)), x > d1, (2.35)

where ũ is given by (2.48).
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2.4 Stationary density in mode 1 when the workload is below d1

We next solve (2.30). Since v(x) = v0(x) + v1(x), (2.30) is rewritten into

r1v1(x) = λV (0)B(x) + λ

∫ x

0

(v0(y) + v1(y))B(x− y)dy, 0 < x ≤ d1. (2.36)

To solve (2.36), we consider (1 × N) row vectors v0(x) and v1(x) satisfying the following
equation: for 0 < x ≤ d1,

r1v1(x) = λV (0)τ exp(Tx) + λ

∫ x

0

(v0(y) + v1(y))1τ exp(T (x− y))dy. (2.37)

We note that v0(x) = v0(x)1 and v1(x) = v1(x)1 for 0 < x ≤ d1. Similar to (2.33), by taking
the derivative of (2.37) with respect to x, and applying (2.37) to the derivative, we have

v′
1(x) = v1(x)(λr

−1
1 1τ + T ) + λr−1

1 v0(x)τ , 0 < x ≤ d1. (2.38)

Suppose that the solution of (2.38) is given by the following form:

v1(x) = w(x) exp((λr−1
1 1τ + T )x), 0 < x ≤ d1, (2.39)

where w(x) is a (1 × N) row vector and is determined as follows. By taking the derivative of
(2.39) with respect to x, we have

v′
1(x) = v1(x)(λr

−1
1 1τ + T ) +w′(x) exp((λr−1

1 1τ + T )x), 0 < x ≤ d1. (2.40)

By comparing (2.38) with (2.40), we have

w′(x) = λr−1
1 v0(x)τ exp(−(λr−1

1 1τ + T )x), 0 < x ≤ d1. (2.41)

We then have

w(x) =

∫ x

0

λr−1
1 v0(u)τ exp(−(λr−1

1 1τ + T )u)du+ c, 0 < x ≤ d1, (2.42)

where c is a (1×N) row vector and is determined as follows (see (2.45) below). By taking the
limit x ↓ 0 of (2.37), we have

r1v1(0+) = λV (0)τ =
λτ

1 +m(d1) + λm1

, (2.43)

where the last equality follows from (2.28). From (2.39) and (2.42), we have

v1(0+) = c. (2.44)

From (2.43) and (2.44), we obtain

c =
λr−1

1 τ

1 +m(d1) + λm1

. (2.45)

We are now ready to formulate the following lemma.
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Lemma 2.4 For 0 < x ≤ d1, the stationary density v1(x) when the server is in mode 1 is given
by v1(x) = v1(x)1, where

v1(x) =
λr−1

1 τ

1 +m(d1) + λm1

{
(IN ⊗ τ )

[
exp

(
Mx

)](N2,N)
+ exp((λr−1

1 1τ + T )x)

}
, (2.46)

with

M :=

(
IN ⊗D IN ⊗ t

O λr−1
1 1τ + T

)
. (2.47)

Furthermore,

ũ =
λr−1

2 τ

1 +m(d1) + λm1

{
(IN ⊗ τ )

[
exp

(
Md1

)](N2,N)
+ exp((λr−1

1 1τ + T )d1)

}
. (2.48)

Proof. From (2.29), (2.39), and (2.42) (see also (2.45)), v1(x) for 0 < x ≤ d1 is given by the
sum of the following two terms,

λr−1
1 τ

1 +m(d1) + λm1

∫ x

0

τ exp(Du)t exp((λr−1
1 1τ + T )(x− u))du (2.49)

and

λr−1
1 τ

1 +m(d1) + λm1

exp((λr−1
1 1τ + T )x). (2.50)

From Lemma 2.1, the integral in (2.49) is given by

(IN ⊗ τ )
[
exp

(
Mx

)](N2,N)
. (2.51)

From (2.49), (2.50), and (2.51), we obtain (2.46). Using (2.34) and (2.46), and observing that
v1(d1+) = r1r

−1
2 v1(d1−) from (2.32) and (2.37), we obtain (2.48). 2

2.5 Computation of the mean active period

In this subsection, we compute the mean active period m1 from the normalizing condition, i.e.,

V (0) +

∫ d1

0

v0(x)dx+

∫ d1

0

v1(x)dx+

∫ ∞

d1

v1(x)dx = 1. (2.52)

The three integrals are successively obtained in Lemmas 2.5, 2.6 and 2.7. We first use Lemma 2.2
to obtain

∫ d1
0

v0(x)dx.

Lemma 2.5 ∫ d1

0

v0(x)dx =
m(d1)

1 +m(d1) + λm1

, (2.53)

where

m(d1) = τ

[
exp

((
O IN
O D

)
d1

)](N,N)

t. (2.54)
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We next consider
∫ d1
0

v1(x)dx. From Corollary 2.1, we have

∫ d1

0

[
exp

(
Mx

)](N2,N)
dx =

[∫ d1

0

exp
(
Mx

)
dx

](N2,N)

=

[[
exp

((
O IN2+N

O M

)
d1

)](N2+N,N2+N)
](N2,N)

=

[
exp

((
O IN2+N

O M

)
d1

)](N2,N)

, (2.55)

and ∫ d1

0

exp((λr−1
1 1τ + T )x)dx =

[
exp

((
O IN
O λr−1

1 1τ + T

)
d1

)](N,N)

. (2.56)

The next lemma immediately follows from Lemma 2.4, (2.55) and (2.56).

Lemma 2.6 The second integral in the lefthand side of (2.52) is given by∫ d1

0

v1(x)dx =
λr−1

1 τ

1 +m(d1) + λm1

{
(IN ⊗ τ )

[
exp

((
O IN2+N

O M

)
d1

)](N2,N)

+

[
exp

((
O IN
O λr−1

1 1τ + T

)
d1

)](N,N)}
1, (2.57)

where M is given by (2.47).

We finally compute
∫∞
d1

v1(x)dx as follows.

Lemma 2.7 From Lemma 2.3 and the stability condition (2.4), we have∫ ∞

d1

v1(x)dx = ũ
(
−(λr−1

2 1τ + T )
)−1

1, (2.58)

where ũ is given by (2.48).

Proof. We first show that λr−1
2 1τ + T is invertible, i.e., (λr−1

2 1τ + T )−1 exists. To this end,
we consider the following equation

x(λr−1
2 1τ + T ) = 0, (2.59)

where x is a (1×N) row vector. By post-multiplying the lefthand side of (2.59) by r2(−T )−11,
we have

x1{λτ (−T )−11− r2} = 0, (2.60)
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and from the stability condition (2.4), we have

x1 = 0. (2.61)

By applying (2.61) to (2.59) and noting the existence of (−T )−1, we obtain x = 0, which
implies that (λr−1

2 1τ + T )−1 exists.
We next show (2.58). From Lemma 2.3 and the existence of (λr−1

2 1τ + T )−1 we have∫ ∞

d1

v1(x)dx = ũ

{
lim
y→∞

∫ y

0

exp((λr−1
2 1τ + T )x)dx

}
1 (2.62)

= ũ
(
−(λr−1

2 1τ + T )
)−1
{
IN − lim

y→∞
exp((λr−1

2 1τ + T )y)

}
1.

It remains to show that

lim
y→∞

exp((λr−1
2 1τ + T )y) = O. (2.63)

Noting that π is the stationary distribution of T + tτ , i.e., π1 = 1 and πT = −πtτ , we have

π(λr−1
2 1τ + T ) = (λr−1

2 − πt)τ

=

(
λr−1

2 − 1

τ (−T )−11

)
τ , (2.64)

where the last equation follows from πT = −πtτ , i.e., 1 = π1 = πtτ (−T )−11. Since τ is a
nonnegative and nonzero vector, (2.64) and the stability condition (2.4) imply that π(λr−1

2 1τ +

T ) ≤ 0 and π(λr−1
2 1τ + T ) ̸= 0. From Theorem 1.6 (b) in [31], the Perron-Frobenius

eigenvalue of λr−1
2 1τ + T is negative, which implies (2.63). 2

From Lemmas 2.5–2.7, the mean active period is given as follows.

Theorem 2.1 The mean active period for the case of two processing speeds is given by

m1 = r−1
1 τ

(IN ⊗ τ )

[
exp

((
O IN2+N

O M

)
d1

)](N2,N)

+

[
exp

((
O IN
O λr−1

1 1τ + T

)
d1

)](N,N)
1

+ r−1
2 τ

{
(IN ⊗ τ )

[
exp

(
Md1

)](N2,N)
+ exp((λr−1

1 1τ + T )d1)
}(

−(λr−1
2 1τ + T )

)−1
1.

(2.65)

3 Extension to the case of multiple processing speeds

In this section, we consider an extension of the model of the previous section to the case of an
arbitrary number of different (constant) processing speeds. Subsection 3.1 provides a detailed
model description. In Subsection 3.2 we consider the stationarity workload density when the
server is inactive (briefly, as this is very similar to the result in Subsection 2.2). Subsections 3.3
and 3.4 are successively devoted to the stationary workload density when the server is active
and the workload is above, respectively below, the threshold level dK .
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3.1 Model description

In this section we extend the assumptions (i), (ii), and the service processing speed si(x) (i =
0, 1 and x ≥ 0) in Section 2 as follows. Let {dk; k = 0, 1, 2, . . . , K0} be an increasing sequence
such that d0 := 0.

(i)’ When the workload Zt hits d0(= 0) at time t, the server enters mode 0, i.e., St = 0. After
that, the server remains in mode 0 until the workload exceeds a threshold dK > 0, where
K ≤ K0 is a positive integer, i.e., Su = 0 as long as Zu < dK for u > t.

(ii)’ When the workload Zt exceeds dK at time t, the server changes its mode from 0 to 1, i.e.,
St = 1. The server remains in that mode until the workload hits 0 again, i.e., Su = 1 as
long as Zu > 0 for u > t.

The processing speed of the server depends on both the server’s mode and workload in the
following way. Let si(x), where i = 0, 1 and x ≥ 0, denote the processing speed of the server
when (Zt, St) = (x, i); it is defined as follows:

s0(x) = 0, 0 ≤ x ≤ dK , (3.1)

s1(x) = rk, x ∈ Jk := (dk−1, dk], k = 1, 2, 3, . . . , K0, (3.2)

where {rk; k = 1, 2, . . . , K0} is a positive valued sequence and dK0 = ∞. Note that {s0(x);x >

dK} and s1(0) need not be specified in view of the definition of modes 0 and 1. Also note that
dK coincides with one of the switching levels dk of mode 1. However, this is no restriction, as
one could take rK = rK+1. A sample path of the workload is presented in Figure 2.

��������

�	
�

���
���	���������

�
�	������	�� ���
�	������	��

Figure 2: The workload process for the case of two processing speeds.

We assume that the Markov process (Zt, St) is positive-recurrent, and denote its replica in
steady state by (Z, S). Similar to (2.4), the stability condition of this Markov process is given
by

λτ (−T )−11

rK0

< 1. (3.3)

In the subsequent subsections, we present a computational procedure for the stationary den-
sity of the workload.
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3.2 Stationary density in mode 0

Similar to Lemma 2.2, the stationary density in mode 0, and the marginal probability that there
is no customer in the system, are given as follows.

Lemma 3.1 The stationary density of the workload when the server is in mode 0 is given by

v0(x) =

{
m′(x)

1+m(dK)+λm1
, 0 < x ≤ dK ,

0, x > dK ,
(3.4)

where m(x) is given by (2.19) and m′(x) by (2.20), and m1 is the mean active period which
will be determined later (see (3.48)). The marginal probability that there is no customer in the
system is given by

V (0) =
1

1 +m(dK) + λm1

. (3.5)

In the next two subsections we determine the stationary density in mode 1, distinguishing
between the cases that the workload is above dK (Subsection 3.3) and below dK (Subsection
3.4).

3.3 Stationary density in mode 1 when the workload is above dK

Similar to (2.30) and (2.31), the stationary density of the workload satisfies the following rela-
tions.

rk(v(x)− v0(x)) = λV (0)B(x) + λ

∫ x

0

B(x− y)v(y)dy, x ∈ Jk, 1 ≤ k ≤ K, (3.6)

rkv(x) = λV (0)B(x) + λ

∫ x

0

B(x− y)v(y)dy, x ∈ Jk, K + 1 ≤ k ≤ K0.

(3.7)

To find a solution of (3.7), we consider the following equation:

rkv(x) = λV (0)τ exp(Tx) + λ

∫ x

0

v(y)1τ exp(T (x− y))dy, x ∈ Jk, K + 1 ≤ k ≤ K0.

(3.8)

We note that v1(x) = v(x) = v(x)1 for x > dK by (3.7) and (3.8). Similar to (2.34), by taking
the derivative of (3.8) with respect to x, and applying (3.8) to the derivative, we have

v′(x) = v(x)(λr−1
k 1τ + T ), x ∈ Jk, K + 1 ≤ k ≤ K0. (3.9)

The solution of (3.9) is given by the following matrix exponential form:

v(x) = ũkUk(x), x ∈ Jk, K + 1 ≤ k ≤ K0, (3.10)
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where {ũk;K + 1 ≤ k ≤ K0} is a set of (1 ×N) row vectors, which will be determined later
(see (3.16)), and

Uk(x) := exp((λr−1
k 1τ + T )(x− dk−1)), x ∈ Jk, 1 ≤ k ≤ K0. (3.11)

We note that

lim
x↓dk−1

Uk(x) = IN , 1 ≤ k ≤ K0. (3.12)

The sequence {ũk;K + 1 ≤ k ≤ K0} is recursively determined as follows. By taking the
two limits x ↑ dk and x ↓ dk of (3.8), we have

rkv(dk−) = rk+1v(dk+), K + 1 ≤ k ≤ K0 − 1. (3.13)

From (3.10) and (3.12), we have, for K + 1 ≤ k ≤ K0 − 1,

v(dk−) = ũkUk(dk), v(dk+) = ũk+1. (3.14)

From (3.13) and (3.14), we have

ũk+1 =
rk
rk+1

ũkUk(dk), K + 1 ≤ k ≤ K0 − 1, (3.15)

which yields

ũk =
rK+1

rk
ũK+1

{
Πk−1

i=K+1Ui(di)
}
, K + 1 ≤ k ≤ K0, (3.16)

where ũK+1 will be determined later (see (3.39)).
In what follows, we summarize the results in this subsection. To this end, we introduce the

following notation:

Ûk,l := Πl
i=kUi(di), 1 ≤ k, l ≤ K0, (3.17)

where the empty product is an identity matrix, i.e., Ûk,l = IN for k > l.

Lemma 3.2 For x > dK , the stationary density of the workload when the server is in mode 1,
is given by v1(x) = v(x)1, where

v(x) =
rK+1

rk
ũK+1ÛK+1,k−1Uk(x), (3.18)

Uk(x) = exp((λr−1
k 1τ + T )(x− dk−1)), (3.19)

for x ∈ Jk and K + 1 ≤ k ≤ K0, and ũK+1 is given by (3.39).
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3.4 Stationary density in mode 1 when the workload is below dK

To solve (3.6), we consider (1 × N) row vectors v0(x) and v1(x) satisfying the following
equation: for x ∈ Jk, 1 ≤ k ≤ K,

rkv1(x) = λV (0)τ exp(Tx) + λ

∫ x

0

(v0(y) + v1(y))1τ exp(T (x− y))dy. (3.20)

We note that v1(x) = v1(x)1 for 0 < x ≤ dK . Similar to (2.38), by taking the derivative of
(3.20) with respect to x, we have

v′
1(x) = v1(x)(λr

−1
k 1τ + T ) + λr−1

k v0(x)τ , x ∈ Jk, 1 ≤ k ≤ K. (3.21)

Suppose that the solution of (3.21) is given by the following form:

v1(x) = wk(x)Uk(x), x ∈ Jk, 1 ≤ k ≤ K, (3.22)

where Uk(x) is given by (3.11), and {wk(x); 1 ≤ k ≤ K} is a set of (1×N) row vectors. By
taking the derivative in (3.22) and comparing with (3.21), we have

w′
k(x) = λr−1

k v0(x)τ exp(−(λr−1
k 1τ + T )(x− dk−1)), x ∈ Jk, 1 ≤ k ≤ K. (3.23)

From (3.23), we have for x ∈ Jk, 1 ≤ k ≤ K,

wk(x) = gk(x) + ck, (3.24)

with gk(x) :=

∫ x

dk−1

λr−1
k v0(u)τ exp(−(λr−1

k 1τ + T )(u− dk−1))du, (3.25)

where {ck; 1 ≤ k ≤ K} is a set of (1 × N) row vectors, which will be determined below (see
(3.30) and (3.31)). We note that

gk(dk−1) = 0, 1 ≤ k ≤ K. (3.26)

In what follows, we summarize the results in this subsection. For simplicity of the exposi-
tion, let

Wk(x) := (IN ⊗ τk)
[
exp

(
M k(x− dk−1)

)](N2,N)
, x ∈ Jk, 1 ≤ k ≤ K, (3.27)

where

τk := τ exp(Ddk−1), M k :=

(
IN ⊗D IN ⊗ t

O λr−1
k 1τ + T

)
. (3.28)

Lemma 3.3 For 0 < x ≤ dK , the stationary density v1(x) when the server is in mode 1 is given
by v1(x) = v1(x)1, where for x ∈ Jk, 1 ≤ k ≤ K,

v1(x) =
λr−1

k τ

1 +m(dK) + λm1

Wk(x) + ckUk(x), (3.29)
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where {ck; 1 ≤ k ≤ K} is given by

ck =
λr−1

k τ

1 +m(dK) + λm1


min{k−1,K}∑

i=1

Wi(di)Ûi+1,k−1 + Û1,k−1

 . (3.30)

In particular, c1 is given by

c1 =
λr−1

1 τ

1 +m(dK) + λm1

. (3.31)

Proof. From (3.22) and (3.24), we have

v1(x) = gk(x)Uk(x) + ckUk(x), x ∈ Jk, 1 ≤ k ≤ K. (3.32)

From (3.4), (3.11), and (3.25), the first term in the righthand side of (3.32) is calculated as
follows:

gk(x)Uk(x) =
λr−1

k τ

1 +m(dK) + λm1

∫ x−dk−1

0

τ exp(Ddk−1) exp(Du)t

× exp((λr−1
k 1τ + T )(x− dk−1 − u))du

=
λr−1

k τ

1 +m(dK) + λm1

Wk(x), (3.33)

where the last equation follows from Lemma 2.1, and then (3.29) is obtained.
It remains to show that {ck; 1 ≤ k ≤ K} is given by (3.30). By taking the limit x ↓ 0 of

(3.20) and applying (3.5) to it, we have

v1(0+) =
λr−1

1 τ

1 +m(dK) + λm1

. (3.34)

From (3.11) and (3.27), we have U1(0+) = IN and W1(0+) = O, respectively, which imply
v1(0+) = c1 from (3.34). Then we have (3.31).

Similar to (3.13), by taking the two limits x ↑ dk and x ↓ dk of (3.20) for 1 ≤ k ≤ K − 1,
we have

rkv1(dk−) = rk+1v1(dk+), 1 ≤ k ≤ K − 1. (3.35)

For 1 ≤ k ≤ K − 1, by taking limits x ↑ dk and x ↓ dk of (3.29), we then have

v1(dk−) = (gk(dk) + ck)Uk(dk), (3.36)

v1(dk+) = (gk+1(dk) + ck+1)Uk+1(dk)

= ck+1, (3.37)

where the last equality follows from (3.12) and (3.26). From (3.35), (3.36), and (3.37), we have

ck+1 = r−1
k+1 {rkgk(dk)Uk(dk) + rkckUk(dk)}

=
λr−1

k+1τ

1 +m(dK) + λm1

Wk(dk) + r−1
k+1rkckÛk,k, (3.38)
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for 1 ≤ k ≤ K − 1, where the second equality sign follows from (3.33) and (3.17). By
recursively applying (3.38) to itself, we obtain (3.30). 2

We now show that ũK+1 in (3.18) is equal to cK+1 (here we extend the definition of ck in
(3.30) to the case k = K + 1).

Lemma 3.4 We have ũK+1 = cK+1, i.e.,

ũK+1 =
λr−1

K+1τ

1 +m(dK) + λm1

{
K∑
i=1

Wi(di)Ûi+1,K + Û1,K

}
. (3.39)

Proof. Similar to (3.13), from (3.8) and (3.20), we have

rKv1(dK−) = rK+1v1(dK+). (3.40)

From (3.29) and (3.18) (see also (3.12)), we have

v1(dK−) =
λr−1

K τ

1 +m(dK) + λm1

WK(dK) + cKUK(dK), (3.41)

v1(dK+) = ũK+1. (3.42)

The preceding three equations and (3.30) imply that ũK+1 = cK+1. 2

3.5 Computation of the mean active period

We compute the mean active period m1 by the normalizing condition, i.e.,

V (0) +

∫ dK

0

(v0(x) + v1(x)1)dx+

∫ ∞

dK

v(x)1dx = 1. (3.43)

From Lemma 3.1, we have

V (0) +

∫ dK

0

v0(x)dx =
1 +m(dK)

1 +m(dK) + λm1

. (3.44)

Note that from Lemma 3.2 and (3.39), for x ∈ Jk and K + 1 ≤ k ≤ K0, we have

v(x) =
rK+1

rk

λr−1
K+1τ

1 +m(dK) + λm1

{
K∑
i=1

Wi(di)Ûi+1,K + Û1,K

}
ÛK+1,k−1Uk(x)

=
λr−1

k τ

1 +m(dK) + λm1

{
K∑
i=1

Wi(di)Ûi+1,k−1 + Û1,k−1

}
Uk(x)

= ckUk(x), (3.45)
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where the second and third equations follow from (3.17) and (3.30), respectively. From Lem-
mas 3.2 and 3.3, and (3.45), we have∫ dK

0

v1(x)1dx+

∫ ∞

dK

v(x)1dx

=
λτ

1 +m(dK) + λm1

{
K∑
k=1

r−1
k

∫ dk

dk−1

Wk(x)dx+

K0∑
k=1

r−1
k Ck

∫ dk

dk−1

Uk(x)dx

}
1, (3.46)

where

Ck :=

min{k−1,K}∑
i=1

Wi(di)Ûi+1,k−1 + Û1,k−1, 1 ≤ k ≤ K0. (3.47)

Therefore, the mean active period is given as follows.

Theorem 3.1 From (3.43), (3.44), and (3.46), the mean active period is given by

m1 = τ

{
K∑
k=1

r−1
k

∫ dk

dk−1

Wk(x)dx+

K0∑
k=1

r−1
k Ck

∫ dk

dk−1

Uk(x)dx

}
1, (3.48)

where the integrals are calculated in the same way as (2.55) and (2.56), i.e.,∫ dk

dk−1

Wk(x)dx = (IN ⊗ τk)

[
exp

((
O IN2+N

O M k

)
(dk − dk−1)

)](N2,N)

, 1 ≤ k ≤ K,

(3.49)∫ dk

dk−1

Uk(x)dx =

[
exp

((
O IN
O λr−1

k 1τ + T

)
(dk − dk−1)

)](N,N)

, 1 ≤ k ≤ K0.

(3.50)

For k = K0, the last integral is given by
(
−(λr−1

K0
1τ + T )

)−1.

3.6 Moments of the workload

In what follows, we show a computational procedure for the n-th moment of the workload,
where n is a positive integer. To this end, we introduce some new notations. Let M be the set
of all square matrices. For X ∈ M , let σ(X) denote the order of X . For a positive integer n,
let On and In denote the n× n zero and identity matrices, respectively. Let Ψ : M → M be a
mapping defined as follows:

Ψ(X) :=

(
Oσ(X) Iσ(X)

Oσ(X) X

)
, X ∈ M . (3.51)

From Corollary 2.1, we have for 0 ≤ x ≤ y,∫ y

x

exp(Xu)du = [exp(Ψ(X)y)− exp(Ψ(X)x)](σ(X),σ(X)). (3.52)
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Lemma 3.5 For a positive integer n, X ∈ M and d ≥ 0, we have∫ d

0

un exp(Xu)du =
n∑

i=0

(−1)i
n!

(n− i)!
dn−i[exp(Ψi+1(X)d)](σ(X),σ(X)), (3.53)

where Ψi+1 is the (i+ 1)-th iterate of Ψ.

Proof. Noting that un =
∫ u

0
nyn−1dy, we have

∫ d

0

un exp(Xu)du =

∫ d

0

{∫ d

y

exp(Xu)du

}
nyn−1dy (3.54)

=

∫ d

0

nyn−1dy × [exp(Ψ(X)d)](σ(X),σ(X))

− n

[∫ d

0

yn−1 exp(Ψ(X)y)dy

](σ(X),σ(X))

,

where the last equality follows from (3.52). We then obtain the following recurrence formula:

∫ d

0

un exp(Xu)du = dn[exp(Ψ(X)d)](σ(X),σ(X)) − n

[∫ d

0

un−1 exp(Ψ(X)u)du

](σ(X),σ(X))

,

(3.55)

which implies (3.53). 2

From Lemmas 3.1–3.3, we have

E[Zn] =
τ

1 +m(dK) + λm1

D̃K(n)t+
∑

1≤k≤K

λr−1
k τ

1 +m(dK) + λm1

W̃k(n)1+
∑

1≤k≤K0

ckŨk(n)1,

(3.56)

where

D̃K(n) :=

∫ dK

0

xn exp(Dx)dx, (3.57)

W̃k(n) :=

∫
x∈Jk

xnWk(x)dx, 1 ≤ k ≤ K, (3.58)

Ũk(n) :=

∫
x∈Jk

xnUk(x)dx, 1 ≤ k ≤ K0. (3.59)

By applying Lemma 3.5 to (3.56), a computable formula for the n-th moment of the workload
is given as follows.
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Theorem 3.2 For a positive integer n, the n-th moment of the workload is given by (3.56),
where

D̃K(n) =
n∑

i=0

(−1)i
n!

(n− i)!
(dK)

n−i[exp(Ψi+1(D)dK)]
(N,N), (3.60)

W̃k(n) = (IN ⊗ τk)
n∑

j=0

(
n

j

)
(dk−1)

n−j

j∑
i=0

(−1)i
j!

(j − i)!
(dk − dk−1)

j−i

× [exp(Ψi+1(M k)(dk − dk−1))]
(N2,N), 1 ≤ k ≤ K, (3.61)

Ũk(n) =
n∑

j=0

(
n

j

)
(dk−1)

n−j

j∑
i=0

(−1)i
j!

(j − i)!
(dk − dk−1)

j−i

× [exp(Ψi+1(λr−1
k 1τ + T )(dk − dk−1))]

(N,N), 1 ≤ k ≤ K0 − 1, (3.62)

ŨK0(n) =
n∑

i=0

n!

(n− i)!
(dK0−1)

n−i(−λr−1
K0
1τ − T )−1−i. (3.63)

Proof. Equation (3.60) is obtained by applying Lemma 3.5 to (3.57). Since (−λr−1
K0
1τ −

T )−1 exists, Equation (3.63) is obtained by partially integrating Equation (3.59) with k := K0.
Because the computation for Equation (3.62) is similar to that of Equation (3.61), we only show
the derivation of the latter one. From Equations (3.58) and (3.27), we have

W̃k(n) = (IN ⊗ τk)

∫ dk−dk−1

0

(x+ dk−1)
n[exp(M kx)]

(N2,N)dx

= (IN ⊗ τk)
n∑

j=0

(
n

j

)
(dk−1)

n−j

[∫ dk−dk−1

0

xj exp(M kx)dx

](N2,N)

, (3.64)

where the last equality follows from the binomial theorem. We then obtain Equation (3.61) by
applying Lemma 3.5 to Equation (3.64). 2

4 Example: The active period of an M/M/1 queue with two
processing speeds and vacations

In previous sections, we have obtained a computable form for the mean active period. In this
section, we further study the Laplace-Stieltjes transform (LST) of the active period for the
special case with exponential service demand and multiple thresholds. From the LST, we derive
the mean active period for an M/M/1 queue with two processing speeds and vacations. We also
simplify the mean active period obtained in Theorem 2.1 and confirm that it is identical to the
one obtained via the LST.
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4.1 LST of the active period for M/M/1 with multiple service speeds and
vacations

In this subsection, we study the LST of the active period, denoted by A, of the queueing model
in Section 3, where the service requirements are assumed to be exponentially distributed with
mean µ−1. For s ≥ 0, let φ(s) := E[e−sA] denote the LST of the active period, and φ(s, x) :=

E[e−sA|initial workload is x] (x > 0) denote the LST of the active period when it starts with a
workload at level x.

For x ∈ Jk, where 1 ≤ k ≤ K0, and for ∆ ↓ 0, distinguishing the two possibilities of
having no arrival or one arrival in the next ∆ gives

φ(s, x+ rk∆) = (1− λ∆)e−s∆φ(s, x) + λ∆e−s∆

∫ ∞

y=0

µe−µyφ(s, x+ y)dy + o(∆),

which readily leads to the integro-differential equation

φx(s, x) = −λ+ s

rk
φ(s, x) +

λ

rk
eµx
∫ ∞

z=x

µe−µzφ(s, z)dz, x ∈ Jk, 1 ≤ k ≤ K0. (4.1)

The solution of this differential equation is given by the following lemma.

Lemma 4.1 For x ∈ Jk and 1 ≤ k ≤ K0, the LST of the active period starting at level x is
given by

φ(s, x) = Ak(s)e
αk(s)x +Bk(s)e

βk(s)x, (4.2)

where

αk(s) =
1

2

−
(
λ+ s

rk
− µ

)
+

√(
λ+ s

rk
− µ

)2

+ 4
µs

rk

 > 0, (4.3)

βk(s) =
1

2

−
(
λ+ s

rk
− µ

)
−

√(
λ+ s

rk
− µ

)2

+ 4
µs

rk

 < 0, (4.4)

and {Ak(s), Bk(s); 1 ≤ k ≤ K0} are constants which are determined by the following 2K0

equations:

AK0(s) = 0, A1(s) +B1(s) = 1, (4.5)

and for 1 ≤ k ≤ K0 − 1,

Ak(s)e
αk(s)dk +Bk(s)e

βk(s)dk = Ak+1(s)e
αk+1(s)dk +Bk+1(s)e

βk+1(s)dk , (4.6)

and

rk
{
Ak(s)αk(s)e

αk(s)dk +Bk(s)βk(s)e
βk(s)dk

}
=

rk+1

{
Ak+1(s)αk+1(s)e

αk+1(s)dk +Bk+1(s)βk+1(s)e
βk+1(s)dk

}
. (4.7)
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Proof. By differentiating the terms of equation (4.1) w.r.t. x and eliminating the integral, we
obtain the following second-order differential equation:

φxx(s, x) +

(
λ+ s

rk
− µ

)
φx(s, x)−

µs

rk
φ(s, x) = 0, x ∈ Jk, 1 ≤ k ≤ K0. (4.8)

The general solution of (4.8) is given by (4.2). We next find 2K0 equations to determine
{Ak(s), Bk(s); 1 ≤ k ≤ K0}. From the definition of the LST, we have

lim
x→∞

φ(s, x) = 0, lim
x→0

φ(s, x) = 1, (4.9)

and

φ(s, dk−) = φ(s, dk+), 1 ≤ k ≤ K0 − 1. (4.10)

Equations (4.2) and (4.9) imply (4.5), and equations (4.2) and (4.10) imply (4.6). For 1 ≤ k ≤
K0 − 1, by taking x ↑ dk and x ↓ dk of (4.1), respectively, and noting (4.10), we have

rkφx(s, dk−) = rk+1φx(s, dk+), 1 ≤ k ≤ K0 − 1. (4.11)

By differentiating (4.2) w.r.t. x, and substituting the result into (4.11), we have (4.7). 2

We next calculate {Ak(s), Bk(s); 1 ≤ k ≤ K0} by (4.5), (4.6), and (4.7). For ease of
notation, for 1 ≤ k ≤ K0 − 1 and i = 0, 1, let

ak+i,k := eαk+i(s)dk , bk+i,k := eβk+i(s)dk , (4.12)

a′k+i,k := αk+i(s)e
αk+i(s)dk , b′k+i,k := βk+i(s)e

βk+i(s)dk . (4.13)

For 1 ≤ k ≤ K0 − 1, by eliminating Bk(s) from equations (4.6) and (4.7), we have

Ak(s) = c
(k)
00 Ak+1(s) + c

(k)
01 Bk+1(s), (4.14)

where

c
(k)
00 :=

a′k+1,kbk,krk+1 − ak+1,kb
′
k,krk

(a′k,kbk,k − ak,kb′k,k)rk
, c

(k)
01 :=

bk,kb
′
k+1,krk+1 − bk+1,kb

′
k,krk

(a′k,kbk,k − ak,kb′k,k)rk
. (4.15)

Similarly, we have for 1 ≤ k ≤ K0 − 1,

Bk(s) = c
(k)
10 Ak+1(s) + c

(k)
11 Bk+1(s), (4.16)

where

c
(k)
10 :=

ak,ka
′
k+1,krk+1 − ak+1,ka

′
k,krk

(ak,kb′k,k − a′k,kbk,k)rk
, c

(k)
11 :=

b′k+1,kak,krk+1 − bk+1,ka
′
k,krk

(ak,kb′k,k − a′k,kbk,k)rk
. (4.17)

From (4.14) and (4.16), we have for 1 ≤ k ≤ K0 − 1,(
Ak(s)

Bk(s)

)
= Ck

(
Ak+1(s)

Bk+1(s)

)
= Ck

(
AK0(s)

BK0(s)

)
= Ck

(
0

BK0(s)

)
, (4.18)
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where

Ck :=

(
c
(k)
00 c

(k)
01

c
(k)
10 c

(k)
11

)
, Ck :=

(
c
(k)
00 c

(k)
01

c
(k)
10 c

(k)
11

)
= CkCk+1 · · ·CK0−1, (4.19)

and the last equation in (4.18) follows from (4.5). From (4.5) and (4.18), {Ak(s), Bk(s); 1 ≤
k ≤ K0} are given as follows.

Lemma 4.2 For 1 ≤ k ≤ K0 − 1,

Ak(s) =
c
(k)
01

c
(1)
01 + c

(1)
11

, Bk(s) =
c
(k)
11

c
(1)
01 + c

(1)
11

, (4.20)

and

AK0(s) = 0, BK0(s) =
1

c
(1)
01 + c

(1)
11

. (4.21)

4.2 Mean active period in case of two service speeds, Approach 1: LST

In this section, we apply Lemma 4.1 to the case of two service speeds, i.e., K0 := 2, and derive
the mean active period for the M/M/1 queue with two processing speeds and vacations. To
this end, we introduce some new notations. For x ∈ R, let ⟨x⟩−1 = min(0, x) and ⟨x⟩+1 =

max(0, x). We denote the traffic intensities when the workload is in [0, d1) and [d1,∞) by
ρ1 := λ/(r1µ) and ρ2 := λ/(r2µ), respectively. The stability condition (see also (2.4)) is
rewritten by

ρ2 < 1. (4.22)

By conditioning on the initial fluid level when the active period starts, and from the memo-
ryless property of the exponential distribution, the LST of the active period is given as follows:
for s ≥ 0, we have

φ(s) =

∫ ∞

0

φ(s, d1 + x)µe−µxdx

=

∫ ∞

0

B2(s)e
β2(s)(d1+x)µe−µxdx

=
µeβ2(s)d1

µ− β2(s)
B2(s), (4.23)

where the second equation follows from Lemma 4.1, and the coefficients β2(s) and B2(s) are
given as follows (see also (4.4) and (4.21)):

β2(s) =
1

2

−
(
λ+ s

r2
− µ

)
−

√(
λ+ s

r2
− µ

)2

+ 4
µs

r2

 , (4.24)

B2(s) =
1

c
(1)
01 + c

(1)
11

. (4.25)



26 Sakuma et al.

Note that from Equations (4.23) and (4.24), we have

β2(0) = 0, φ(0) = B2(0) = 1. (4.26)

From (4.23) and (4.26), the mean active period m1 is calculated as follows.

m1 = −φ′(0) = −B′
2(0)−

1 + µd1
µ

β′
2(0), (4.27)

where

β′
2(0) =

−1

r2(1− ρ2)
. (4.28)

It remains to show the computation of B′
2(0). From (4.25) and (4.26), we have

B2(s)
−1ξ(s) = ζ(s), (4.29)

where

ξ(s) := r1(α1(s)− β1(s))e
(α1(s)+β1(s))d1 , (4.30)

ζ(s) := r2(e
β1(s)d1 − eα1(s)d1)β2(s)e

β2(s)d1 − r1(β1(s)e
β1(s)d1 − α1(s)e

α1(s)d1)eβ2(s)d1 . (4.31)

By differentiating (4.29) w.r.t. s and then taking s → 0, we obtain

B′
2(0)ξ(0) = ξ′(0)− ζ ′(0), (4.32)

where

ξ(0) = µr1e
(1−ρ1)µd1|1− ρ1|, (4.33)

ξ′(0) =

(
−µd1|1− ρ1|+

1 + ρ1
|1− ρ1|

)
e(1−ρ1)µd1 . (4.34)

From (4.26) and (4.28), and noting that

α1(0) = µ⟨1− ρ1⟩+, α′
1(0) =

1 + ρ1 − |1− ρ1|
2r1|1− ρ1|

, (4.35)

β1(0) = µ⟨1− ρ1⟩−, β′
1(0) = −1 + ρ1 + |1− ρ1|

2r1|1− ρ1|
, (4.36)

then we obtain the derivative ζ ′(0) in (4.32) as follows:

ζ ′(0) =
∑
k=±1

e⟨1−ρ1⟩kµd1
{

k

r2(1− ρ2)
(r2 − ⟨1− ρ1⟩kµr1d1)

+
1 + ρ1 − k|1− ρ1|

2|1− ρ1|
(1 + ⟨1− ρ1⟩kµd1)

}
. (4.37)

From Equations (4.32) – (4.34) and (4.37), we have for ρ1 ̸= 1,

B′
2(0) =

1

1− ρ1

{
−d1
r1

+
1− e−(1−ρ1)µd1

(1− ρ1)µr1

}
+

1

1− ρ2

{
d1
r2

− 1− e−(1−ρ1)µd1

(1− ρ1)µr1

}
. (4.38)

From (4.27), (4.28), and (4.38), the mean active period is given as follows.
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Corollary 4.1 For ρ1 ̸= 1, we have

m1 =
ρ1
λ

(1− ρ1)µd1 − (1− e−(1−ρ1)µd1)ρ1
(1− ρ1)2

+
1− ρ1e

−(1−ρ1)µd1

λ(1− ρ1)

ρ2
1− ρ2

. (4.39)

On the other hand, for ρ1 = 1, we have

m1 =
µd1(2 + µd1)

2λ
+

1 + µd1
λ

ρ2
1− ρ2

. (4.40)

Proof. By substituting (4.28) and (4.38) into (4.27), we have for ρ1 ̸= 1,

m1 =
1

1− ρ1

{
d1
r1

− 1− e−(1−ρ1)µd1

(1− ρ1)µr1

}
+

1

1− ρ2

{
−d1
r2

+
1− e−(1−ρ1)µd1

(1− ρ1)µr1

}
+

1 + µd1
µr2

1

1− ρ2

=
1

λ(1− ρ1)

{
ρ1(1− ρ1)µd1 − ρ1(1− e−(1−ρ1)µd1)

1− ρ1

+
(1− ρ1e

−(1−ρ1)µd1)ρ2 + (1− e−(1−ρ1)µd1)ρ1(1− ρ2)

1− ρ2

}
, (4.41)

which implies (4.40). Since the mean active period is a monotonic function of ρ1, we obtain
(4.40) by letting ρ1 → 1 in (4.39). 2

4.3 Mean active period in case of two service speeds, Approach 2: Appli-
cation of Theorem 2.1

We apply Theorem 2.1 to the M/M/1 queue with two processing speeds and vacations. Since
the service time is assumed to be exponentially distributed with mean µ−1, we put

N := 1, τ := 1, T := −µ, t := µ, D := 0, (4.42)

and apply

IN ⊗ τ := 1, IN2+N := I2, λr−1
1 1τ + T := −(1− ρ1)µ, M :=

(
0 µ

0 −(1− ρ1)µ

)
(4.43)

to Theorem 2.1. We then obtain the same formulas given in Corollary 4.1 for the mean active
period.

Corollary 4.2 For ρ1 ̸= 1 and ρ1 = 1, the mean active period is given by (4.39) and (4.40),
respectively.
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Proof. It is sufficient to consider the first case, i.e., we consider the case of ρ1 ̸= 1. Under
(4.42) and (4.43), we have

exp

((
O IN2+N

O M

)
d1

)
=

(
I2

∑∞
k=1

M
k−1

dk1
k!

O I2 +
∑∞

k=1
M

k
dk1

k!

)
, (4.44)

which implies that[
exp

((
O IN2+N

O M

)
d1

)](N2,N)

=

[
∞∑
k=1

M
k−1

dk1
k!

](1,1)
(4.45)

=
∞∑
k=2

µ(−(1− ρ1)µ)
k−2dk1

k!
,

where the last equation follows from
∞∑
k=1

M
k−1

dk1
k!

=

(
d1

∑∞
k=2

µ(−(1−ρ1)µ)k−2dk1
k!

0 d1 +
∑∞

k=2
(−(1−ρ1)µ)k−1dk1

k!

)
. (4.46)

Since ρ1 ̸= 1, we have[
exp

((
O IN2+N

O M

)
d1

)](N2,N)

=
(1− ρ1)µd1 − (1− e−(1−ρ1)µd1)

µ(1− ρ1)2
. (4.47)

Similar to (4.47), we have

exp

((
O IN
O λr−1

1 1τ + T

)
d1

)
=

(
1

∑∞
k=1

(−(1−ρ1)µ)k−1dk1
k!

0 1 +
∑∞

k=1
(−(1−ρ1)µ)kdk1

k!

)
, (4.48)

which implies that since ρ1 ̸= 1,[
exp

((
O IN
O λr−1

1 1τ + T

)
d1

)](N,N)

=
1− e−(1−ρ1)µd1

µ(1− ρ1)
. (4.49)

Furthermore, we have

exp(Md1) =

(
1
∑∞

k=1
µ(−(1−ρ1)µ)k−1dk1

k!

0 1 +
∑∞

k=1
(−(1−ρ1)µ)kdk1

k!

)
, (4.50)

which implies that since ρ1 ̸= 1,

[exp(Md1)]
(N2,N) =

1− e−(1−ρ1)µd1

1− ρ1
. (4.51)

Under the stability condition (4.22), we have

(−(λr−1
2 1τ + T ))−1 =

1

(1− ρ2)µ
. (4.52)

By substituting (4.47), (4.49), (4.51), and (4.52) into (2.65) of Theorem 2.1, we obtain (4.39).
2
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5 Optimization problem

In this section we formulate a cost minimization problem. That problem is numerically studied
in the next section.

We consider the following three types of costs per unit of time:

• cp,k (1 ≤ k ≤ K0) : A cost related to the power consumption when the server is in mode
1 and processes the workload with rate rk.

• cp,0 : A cost related to the power consumption when the server is in mode 0.

• cs : A cost when the server switches from mode 0 to 1.

For 1 ≤ k ≤ K0, let m1,k denote the mean active period when the workload is in Jk. The mean
power consumption cost (energy consumption cost per time unit) is given by

K0∑
k=1

cp,k
m1,k

m0 +m1

+ cp,0
m0

m0 +m1

+ cs
1

m0 +m1

, (5.1)

where m0 = λ−1(1 +m(dK)) (see Lemma 3.1) and m1 is given by (3.48). From Theorem 3.1,
m1,k (1 ≤ k ≤ K0) is given as follows.

m1,k = τ

{(
r−1
k

∫ dk

dk−1

Wk(x)dx

)
1l(k ≤ K) + r−1

k Ck

∫ dk

dk−1

Uk(x)dx

}
1. (5.2)

We note that each of m0, m1, and m1,k (1 ≤ k ≤ K0) is given by a matrix exponential form (see
Lemma 3.1 and Theorem 3.1), therefore it is easy to implement (5.1) in a numerical calculation.

In the cost function above, the cost cp,k will be set to cp,k = cpr
2
k. There is evidence that

power consumption is a convex function of the processing speed and it is reasonable to set it as
a quadratic function of the speed [23].

Also taking into account the performance, we consider the following cost function for our
system.

Cost = chE[Z] + cp

(
K0∑
k=1

r2k
m1,k

m0 +m1

)
+ cp,0

m0

m0 +m1

+ cs
1

m0 +m1

. (5.3)

In equation (5.3), the first term is related to the performance, i.e., the smaller the mean
workload, the smaller the response time for jobs is. The second term (the summation) is related
to the power consumption of the server in the active period. The smaller the processing speed
rk, the smaller the power consumption is; but it leads to a bigger E[Z]. The third term is the
holding cost (power consumption when the server is inactive). It should be noted that it is
reasonable to set cp,0 = 0.6cp as the server in inactive mode can consume about 60% power,
compared to when it is busy processing a job. The last term is related to the switching cost.
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It should be noted that a CPU instantaneously consumes a large amount of energy once it is
switched on.

We will consider the optimization problem for minimizing the cost function. In particu-
lar, we will find the threshold dK which minimizes the cost function. Furthermore, we also
investigate the service curve r(x) which minimizes the cost function.

6 Numerical results

In this section, we consider the effect of the service rate function and the threshold on the cost
function. To this end, we fix the arrival rate and the job size distribution. In particular, λ = 1

and the job sizes follow a two-stage Erlang distribution with mean 2. The coefficients in the cost
function are set as follows: ch = 0.1, cs = 30, cp = 1, cp,0 = 0.6× cp. We consider the service
rate function in the form r(x) = r1x

α + r0, where we restrict the parameters as follows: r0 = 1

and r1 = 0.1, 1, 10, 100. The service rate function is approximated by the step function with
step size 0.1 and dK0−1 = 20 and for x ≥ 20 the service rate is approximated by r(20). We first
consider the cost function against dK for some special service rate functions: r(x) = r1x+ r0,
r(x) = r1

√
x+ r0 and r(x) = r1x

2+ r0, where we fix r0 = 1 and consider r1 = 0.1, 1, 10, 100.
Figure 3 shows the cost function against the threshold dK for r(x) = r1

√
x + r0. In the

case r1 = 0.1, the stability condition is violated. We observe that the curves for r1 = 1 and 10
are convex, implying the existence of a threshold that minimizes the cost function. In the third
curve with r1 = 100, the cost function monotonically increases implying that dK = 0 is the
optimal threshold. These results suggest that when the service rate is large enough, it is optimal
to switch the server on as soon as a job is available.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
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1e16 Cost function, where r1 = 0.1

Cost is infinite
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Figure 3: Cost function against threshold (r(x) = r1
√
x+ r0).

Figure 4 shows the cost function against the threshold dK for r(x) = r1x + r0. This figure
shows that the cost function is minimized at positive values of dK for r1 = 0.1, 1 and 10 while
it is minimized at dK = 0 for r1 = 100.

Figure 5 shows the cost function against the threshold dK for r(x) = r1x
2+ r0. We observe

that the cost function is minimized at a positive value of dK for r1 = 0.1 and 1 while it is
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Figure 4: Cost function against threshold (r(x) = r1x+ r0).

minimized at dK = 0 for r1 = 10 and 100.
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Figure 5: Cost function against threshold (r(x) = r1x
2 + r0).

Observing all the graphs above, there exists a threshold dK which minimizes the cost func-
tion. Some time, the cost function is minimized at dK = 0 and in some other cases, it is
minimized at a non-trivial dK > 0. The common trend is that for a fast service rate (larger r1
and/or α), the cost function is likely minimized at dK = 0 whereas if the service rate is rela-
tively small, the cost function is likely minimized at some positive value of the threshold dK .
For the case r1 = 100, all the curves show that the cost function is minimized at dK = 0.

This motivates us to have a closer look at the minimal cost for each fixed α ∈ [0.1, 3], where
the service curve is given by r(x) = r1x

α + r0. Figures 6–8 show the optimal threshold dK (on
the right y-axis) and the corresponding cost (on the left y-axis) against α. We also find that the
optimized cost function is minimized at some positive α for r1 = 0.1 while it monotonically
increases with α for r1 = 1, 10. This implies that for relatively large r1, the value of α should
be small so that the service rate is not too large to balance the power consumption.

From Figures 6–8, we observe a general rule that in most of the cases (α ≥ 0.2), the optimal
threshold dK decreases with increasing α. This suggests that for a fast service rate, it is better
to set a low threshold.
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Figure 6: Case of r1 = 0.1.
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Figure 7: Case of r1 = 1.0.
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Figure 8: Case of r1 = 10.0.
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