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Abstract
We consider a system of interacting Moran models with seed-banks. Individuals live in

colonies and are subject to resampling and migration as long as they are active. Each colony has
a seed-bank into which individuals can retreat to become dormant, suspending their resampling
and migration until they become active again. The colonies are labelled by Zd, d ≥ 1, playing
the role of a geographic space. The sizes of the active and the dormant population are finite and
depend on the location of the colony. Migration is driven by a random walk transition kernel.
Our goal is to study the equilibrium behaviour of the system as a function of the underlying
model parameters.

In the present paper we show that, under mild condition on the sizes of the active population,
the system is well-defined and has a dual. The dual consists of a system of interacting coalescing
random walks in an inhomogeneous environment that switch between active and dormant. We
analyse the dichotomy of coexistence (= multi-type equilibria) versus clustering (= mono-type
equilibria), and show that clustering occurs if and only if two random walks in the dual starting
from arbitrary states eventually coalesce with probability one. The presence of the seed-bank
enhances genetic diversity. In the dual this is reflected by the presence of time lapses during
which the random walks are dormant and do not move.

Keywords: Moran model, resampling, seed-bank, migration, duality, coexistence versus cluster-
ing.
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1 Background, motivation and outline
In [1] and [2], the Fisher-Wright model with seed-bank was introduced and analysed. Individuals
live in a colony, are subject to resampling where they adopt each others type, and move in and out
of the seed-bank where they suspend resampling. The seed-bank acts as a repository for the genetic
information of the population. Individuals that reside inside the seed-bank are called dormant,
those that reside outside are called active. Both the long-time behaviour and the genealogy of the
population were analysed for the continuum model obtained by letting the size of the colony tend
to infinity, called the Fisher-Wright diffusion.

Seed-banks are observed in plants, bacteria and other micro-organisms. Typically, they arise
as a response to unfavourable environmental conditions. The dormant state of an individual is
characterised by low metabolic activity and interruption of phenotypic development [3]. After a
varying and possibly large number of generations, dormant individuals can be resuscitated under
more favourable conditions and reprise reproduction after having become active. This strategy
is known to have important implications for genetic variability, since it acts as a buffer against
evolutionary forces such as genetic drift, selection and environmental variability. The importance
of this evolutionary trait has led to several attempts to model seed-banks from a mathematical
perspective.

In [4], [5], [6] a spatial version of the continuum model was introduced and analysed, in which
individuals live in multiple colonies, labelled by a countable Abelian group playing the role of a
geographic space, each with their own seed-bank, and individuals are allowed to migrate between
colonies. The goal was to understand the change in behaviour compared to the spatial model
without seed-bank. Most papers on seed-banks deal with the large-colony-size limit, for which the
evolution is described by a system of coupled SDE’s. The present paper deals with colonies that
are finite in size, which raises extra challenges.

It has been recognised that qualitatively different behaviour may occur when the wake-up time
from the seed-bank can become large. In the present paper we model this phenomenon by allowing
the seed-banks to be inhomogeneous in size. Our main goals are the following:

(1) Introduce a model with seed-banks whose size is finite and depends on the geographic location
of the colony. Prove existence and uniqueness of the process via well-posedness of an associated
martingale problem and duality with a system of interacting coalescing random walks.

(2) Identify a criterion for coexistence (= convergence towards multi-type equilibria) and clustering
(= convergence towards mono-type equilibria). Show that there is a one-parameter family of
equilibria controlled by the density of types.

(3) Identify the domain of attraction of the equilibria.

(4) Identify the parameter regime under which the criterion for clustering is met. In case of
clustering, find out how fast the mono-type clusters grow in space-time. In case of coexistence,
establish mixing properties of the equilibria.

In the present paper we settle (1) and (2). In [7] we will address (3) and (4). We focus on the
situation where the individuals can be of two types. The extension to infinitely many types, called
the Fleming-Viot measure-valued diffusion, only requires standard adaptations and will not be
considered here.

The paper is organised as follows. In Section 2 we give a quick definition of the model and
state our main theorems about the well-posedness, duality and clustering criterion. In Section 3 we
give a more detailed definition of the model, show that the martingale problem associated with
its generator is well-posed, establish duality with an interacting seed-bank coalescent, show that
the system exhibits a dichotomy between clustering and coexistence, and formulate a necessary
and sufficient condition for clustering to prevail in terms of the dual, called the clustering criterion.
Sections 4–6 are devoted to the proof of our main theorems.

2 Main theorems
In Section 2.1 we give a quick definition of the system. In Section 2.2 we argue that, under mild
conditions on the sizes of the active population, the system is well-defined and has a dual that
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consists of finitely many interacting coalescing random walks.

2.1 Quick definition of the multi-colony system
Individuals live in colonies labelled by Zd, d ≥ 1, which plays the role of a geographic space. (In
what follows, the geographic space can be any countable Abelian group.) Each colony has an
active population and a dormant population. Each individual carries one of two types: ♥ and ♠.
Individuals are subject to:

(1) Active individuals in any colony resample with active individuals in any colony,

(2) Active individuals in any colony exchange with dormant individuals in the same colony.

For (1) we assume that each active individual at colony i at rate a(i, j) uniformly draws an active
individual at colony j and adopts its type. For (2) we assume that each active individual at colony
i at rate λ uniformly draws a dormant individual at colony i and the two individuals trade places
while keeping their type (i.e., the active individual becomes dormant and the dormant individual
becomes active). Note that dormant individuals do not resample.

At each colony i we register the pair (Xi(t), Yi(t)), representing the number of active, respectively,
dormant individuals of type ♥ at time t at colony i. We write (Ni,Mi) to denote the size of the
active, respectively, dormant population at colony i. The resulting Markov process is denoted by

(2.1) (Z(t))t≥0, Z(t) = ((Xi(t), Yi(t))i∈Zd ,

and lives on the state space

(2.2) X =
∏
i∈Zd

[Ni]× [Mi],

where [n] = {0, 1, . . . , n}, n ∈ N. In Section 3.2 we will show that, under mild assumptions on the
model parameters, the Markov process in (2.1) is well defined and has a dual (Z∗(t))t≥0. The latter
consists of finite collections of particles that perform interacting coalescing random walks, with
rates that are controlled by the model parameters.

Let P be the set of probability distributions on X defined by

(2.3) P =
{
Pθ : θ ∈ [0, 1]

}
, Pθ = θ

∏
i∈Zd

δ(0,0) + (1− θ)
∏
i∈Zd

δ(Ni,Mi).

We say that (2.1) exhibits clustering if the distribution of Z(t) converges to a limiting distribution
µ ∈ P as t→∞. Otherwise, we say that it exhibits coexistence. In Section 3.2 we will show that
clustering is equivalent to coalescence occurring eventually with probability 1 in the dual consisting
of two particles. This will be the main route to the dichotomy.

For simplicity we let the exchange rate λ ∈ (0,∞) be the same for every colony, and let the
migration kernel be translation invariant and irreducible.

Assumption 2.1. [Homogeneous migration] The migration kernel a(·, ·) satisfies:

• a(·, ·) is irreducible in Zd.

• a(i, j) = a(0, j − i) for all i, j ∈ Ω.

• c :=
∑
i∈Zd

a(0, i) <∞ and a(0, 0) = 1
2 . 2

The former of the last two assumptions ensures that the way genetic information moves between
colonies is homogeneous in space. The latter ensures that the total rate of resampling is finite and
that resampling is possible also at the same colony. Since it is crucial for our analysis that the
population sizes remain constant, we view migration as a change of types without the individuals
actually moving themselves. In this way, genetic information moves between colonies while the
individuals themselves stay put.
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We write â(·, ·) to denote the symmetrised migration kernel defined by

(2.4) â(i, j) = 1
2 [a(i, j) + a(j, i)], i, j ∈ Zd,

and put

(2.5) Ki = Ni
Mi

, i ∈ Zd,

for the ratios of the size of the active and the dormant population in each colony.

2.2 Well-posedness and duality
Theorem 2.2. [Well-posedness and duality] Suppose that Assumption 2.1 is in force. Then the
Markov process (Z(t))t≥0 in (2.1) has a factorial moment dual (Z∗(t))t≥0 living in the state space
X ∗ ⊂ X consisting of all configurations with finite mass, and the martingale problem associated
with (2.1) is well-posed under either of the two following conditions:

(a) lim‖i‖→∞ ‖i‖−1 logNi = 0 and
∑
i∈Zd eδ‖i‖a(0, i) <∞ for some δ > 0,

(b) supi∈Zd\{0} ‖i‖−γNi <∞ and
∑
i∈Zd ‖i‖d+γ+δa(0, i) <∞ for γ > 0 and some δ > 0.

Theorem 2.2 provides us with two sufficient conditions under which the system is well-defined and
has a dual that can be worked with. It shows a trade-off : the more we restrict the tails of the
migration kernel, the less we need to restrict the sizes of the active population. The sizes of the
dormant population play no role. Theorem 3.9, Corollary 3.10 and Theorem 3.12 in Section 3.2
contain the fine details.

2.3 Equilibrium: coexistence versus clustering
Theorem 2.3. [Equilibrium] If the initial distribution of the system is such that each active and
each dormant individual adopts a type with the same probability independently of other individuals,
then the system admits a one-parameter family of equilibria.

• The family of equilibria is parameterised by the probability to have one of the two types.

• The system converges to a mono-type equilibrium if and only if two random walks in the dual
starting from arbitrary states eventually coalesce with probability one.

Theorem 2.3 tells us that the system converges to an equilibrium when it is started from a specific
class of initial distributions, namely, products of binomials. It also provides a criterion in terms of
the dual for when the equilibrium is mono-type or multi-type. Theorem 3.13, Corollary 3.14 and
Theorem 3.16 in Section 3.2 contain the fine details.

3 Basic theorems: duality, well-posedness and clustering cri-
terion

In Section 3.1 we define and analyse the single-colony model. In Section 3.2 we do the same for the
multi-colony model. Our focus is on well-posedness, duality and convergence to equilibrium.

3.1 Single-colony model
3.1.1 Definition: resampling and exchange

Consider two populations, called active and dormant, consisting of N and M haploid individuals,
respectively. Individuals in the population carry one of two genetic types: ♥ and ♠. Dormant
individuals reside inside the seed-bank, active individuals reside outside. The dynamics of the
single-colony Moran model with seed-bank is as follows:

– Each individual in the active population carries a resampling clock that rings at rate 1. When
the clock rings, the individual randomly chooses an active individual and adopts its type.
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– Each individual in the active population also carries an exchange clock that rings at rate λ.
When the clock rings, the individual randomly chooses a dormant individual and exchanges
state, i.e., becomes dormant and forces the chosen dormant individual to become active.
During the exchange the two individuals retain their type.

Since the sizes of the two populations remain constant, we only need two variables to describe the
dynamics of the population, namely, the number of a type-♥ individuals in both populations (see
Table 1).

Initial state Event Final state Transition rate

(x, y)
Resampling (x− 1, y) x(N−x)/N

(x+ 1, y) x(N−x)/N

Exchange (x− 1, y + 1) λx(M−y)/M

(x+ 1, y − 1) λ(N−x)y/M

Table 1: Scheme of transitions in the single-colony model.

Let x and y denote the number of individuals of type ♥ in the active and the dormant population,
respectively. After a resampling event, (x, y) can change to (x− 1, y) or (x+ 1, y), while after an
exchange event (x, y) can change to (x− 1, y + 1) or (x+ 1, y − 1). Both changes in the resampling
event occur at a rate xN−xN . In the exchange event, however, to see (x, y) change to (x− 1, y + 1),
an exchange clock of a type-♥ individual in the active population has to ring (which happens at
rate λx), and that individual has to choose a type-♠ individual in the dormant population (which
happens with probability M−y

M ). Hence the total rate at which (x, y) changes to (x− 1, y + 1) is
λxM−yM . By the same argument, the total rate at which (x, y) changes to (x+1, y−1) is λ(N−x) yM .

For convenience we multiply the rate of resampling by a factor 1
2 , in order to make it compatible

with the Fisher-Wright model. Thus, the generator G of the process is given by

(3.1) G = GMor +GExc,

where

(3.2) (GMorf)(x, y) = x(N − x)
2N [f(x− 1, y) + f(x+ 1, y)− 2f(x, y)]

describes the Moran resampling of active individuals at rate 1
2 and

(3.3)

(GExcf)(x, y) = λ

M
x(M−y) [f(x− 1, y + 1)− f(x, y)]+ λ

M
y(N−x) [f(x+ 1, y − 1)− f(x, y)]

describes the exchange between active and dormant individuals at rate λ. From here onward we
denote the Markov process associated with the generator G by

(3.4) Z = (Z(t))t≥0, Z(t) = (X(t), Y (t)),

where X(t) and Y (t) are the number of type-♥ active and dormant individuals at time t, respectively.
The process Z has state space [N ]× [M ], where [N ] = {0, 1, . . . , N} and [M ] = {0, 1, . . . ,M}. Note
that Z is well-defined because it is a continuous-time Markov chain with finitely many states.

3.1.2 Duality and equilibrium

The classical Moran model is known to be dual to the block-counting process of the Kingman
coalescent. In this section we show that the single-colony Moran model with seed-bank also has a
coalescent dual.

Definition 3.1. [Block-counting process] The block-counting process of the interacting seed-
bank coalescent (defined in Definition 3.5 below) is the continuous-time Markov chain

(3.5) Z∗ = (Z∗(t))t≥0, Z∗(t) = (nt,mt),
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taking values in the state space [N ]× [M ] with transition rates

(3.6) (n,m) 7→
(n− 1,m+ 1) at rate λn

(
1− m

M

)
,

(n+ 1,m− 1) at rate λKm
(
1− n

N

)
,

(n− 1,m) at rate 1
N

(
n
2
)
1{n≥2},

where K = N
M is the ratio of the sizes of the active and the dormant population. 2

The first two transitions in (3.6) correspond to exchange, the third transition to resampling. Later
in this section we describe the associated interacting seed-bank coalescent process, which gives the
genealogy of Z.

The following result gives the duality between Z and Z∗.

Theorem 3.2. [Duality] The process Z is dual to the process Z∗ via the duality relation

(3.7) E(X,Y )

[(
X(t)
n

)(
N
n

) (Y (t)
m

)(
M
m

) 1{n≤X(t),m≤Y (t)}

]
= E(n,m)

[(
X
n(t)
)(

N
n(t)
) ( Y

m(t)
)(

M
m(t)

)1{n(t)≤X,m(t)≤Y }

]
, t ≥ 0,

where E stands for generic expectation. On the left the expectation is taken over Z with initial
state Z(0) = (X,Y ) ∈ [N ]× [M ], on the right the expectation is taken over Z∗ with initial state
Z∗(0) = (n,m) ∈ [N ]× [M ].

Note that the duality relation fixes the factorial moments and thereby the mixed moments of
the random vector (X(t), Y (t)). This enables us to determine the equilibrium distribution of Z.

Proposition 3.3. [Convergence of moments] For any (X,Y ), (n,m) ∈ [N ]× [M ] with (n,m) 6=
(0, 0),

(3.8) lim
t→∞

E(X,Y ) [X(t)nY (t)m] = NnMm X + Y

N +M
.

Since the vector (X(t), Y (t)) takes values in [N ]× [M ], which has (N + 1)(M + 1) points, the
above proposition determines the limiting distribution of (X(t), Y (t)).

Corollary 3.4. [Equilibrium] Suppose that Z starts from initial state (X,Y ) ∈ [N ]× [M ]. Then
(X(t), Y (t)) converges in law as t→∞ to a random vector (X∞, Y∞) whose distribution is given
by

(3.9) L(X,Y )(X∞, Y∞) = X + Y

N +M
δ(N,M) +

(
1− X + Y

N +M

)
δ(0,0).

Note that the equilibrium behaviour of Z is the same as for the classical Moran model without
seed-bank. The fixation probability of type ♥ is X+Y

N+M , which is nothing but the initial frequency
of type-♥ individuals in the entire population. Even though the presence of the seed-bank delays
the time of fixation, due to its finite size the seed-bank has no significant effect on the overall
qualitative behaviour of the process. We will see in Section 3.2 that the situation is different in the
multi-colony model.

3.1.3 Interacting seed-bank coalescent

In our model, the genealogy of a sample taken from the finite population of N + M individuals
is governed by a partition-valued coalescent process similarly as for the genealogy of the classical
Moran model. However, due the presence of the seed-bank, blocks of a partition are marked as A
(active) and D (dormant). Unlike in the genealogy of the classical Moran model, the blocks interact
with each other. This interaction is present because of the restriction to finite size of the active and
the dormant population. For this reason, we name the stochastic process an interacting seed-bank
coalescent. For convenience, we will use the word lineage to refer to a block in a partition.

Let Pk be the set of partitions of [k]. For ξ ∈ Pk, denote the number of lineages in ξ by |ξ|.
Furthermore, for j, k, l ∈ N, define

(3.10) Mj,k,l =
{
~u ∈ {A,D}j : number of A and D in ~u are at most k and l, respectively

}
.
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The state space of the process is PN,M = {(ξ, ~u) : ξ ∈ PN+M , ~u ∈ M|ξ|,N,M}. Note that PN,M
contains only those marked partitions of [N + M ] that have at most N active lineages and M
dormant lineages. This is because we can only sample at most N active and M dormant individuals
from the population.

Before we give the formal definition, let us adopt some notation. For π, π′ ∈ PN,M , we say that
π � π′ if π′ can be obtained from π by merging two active lineages. Similarly, we say that π 1 π′ if
π′ can be obtained from π by altering the state of a single lineage (A→ D or D → A). We write
|π|A and |π|D to denote the number of active and dormant lineages present in π, respectively.

Definition 3.5. [Interacting seed-bank coalescent] The interacting seed-bank coalescent is
the continuous-time Markov chain with state space PM,N characterised by the following transition
rates:

(3.11)

π 7→ π′ at rate
1
N if π � π′,
λ
(
1− |π|DM

)
if π 1 π′ by change of state of one lineage in π from A to D,

λK
(
1− |π|AN

)
if π 1 π′ by change of state of one lineage in π from D to A.

2

The factor 1− |π|DM in the transition rate of a single active lineage when π becomes dormant reflects
the fact that, as the seed-bank gets full, it becomes more difficult for an active lineage to enter the
seed-bank. Similarly, as the number of active lineages decreases due to the coalescence, it becomes
easier for a dormant lineage to leave the seed-bank and become active. This also tells us that there
is a repulsive interaction between the lineages of the same state (A or D). Due to this interaction,
it is somewhat tricky to study the coalescent. As N,M get large, the interaction becomes weak. As
N,M →∞, after proper space-time scaling, the coalescent converges weakly to a limit coalescent
where the interaction is no longer present. In fact, it can be shown that when both the time and
the parameters are scaled properly, this coalescent converges weakly as N,M →∞ to the seed-bank
coalescent described in [2].

We can also describe the coalescent in terms of an interacting particle system with the help of a
graphical representation (see Figure 1). The interacting particle system consists of two reservoirs,
called active reservoir and dormant reservoir, having N and M labeled sites, respectively, each of
which can be occupied by at most one particle. The particles in the active and dormant reservoir
are called active and dormant particles, respectively. The active particles can coalesce with each
other, in the sense that if an active particle occupies a labeled site where an active particle is present
already, then the two particles are glued together to form a single particle at that site. Active
particles can become dormant by moving to an empty site in the dormant reservoir, while dormant
particles can become active by moving to an empty site in the active reservoir. The transition rates
are as follows (see Figure 1):

• An active particle tries to coalesce with another active particle at rate 1
2 by choosing uniformly

at random a labeled site in the active reservoir. If the chosen site is empty, then it ignores
the transition, otherwise it coalesces with the active particle present at the new site.

• An active particle becomes dormant at rate λ by moving to a random labeled site in the
dormant reservoir when the chosen site is empty, otherwise it remains in the active reservoir.

• A dormant particle becomes active at rate λK by moving to a random labeled site in the
active reservoir when the chosen site is empty, otherwise it remains in the dormant reservoir.

Clearly, the particles interact with each other due to the finite capacity of the two reservoirs. If
N,M → ∞, then the probability to obtain an empty site in a reservoir tends to 1, and so the
system converges (after proper scaling) to an interacting particle system where the particles move
independently between the two reservoirs.

Note that if we define nt = number of active particles at time t and mt = number of dormant
particles at time t, then Z∗ = (nt,mt)t≥0 is the block-counting process defined in Definition 3.1.
Also, if we remove the labels of the sites in the two reservoirs and represents the particle configuration
by an element of PN,M , then we obtain the interacting seed-bank coalescent described earlier. Even
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t

Active reservoir (N = 6) Dormant reservoir (M = 2)

rate λ(M−mM ) = λ
2

rate λK(N−nN ) = 2λ

rate λ(M−mM ) = λ

Dormant reservoir is full.
X

Figure 1: Scheme of transitions for an interacting particle system with an active reservoir of size N = 6
and a dormant reservoir of size M = 2, so that K = N

M
= 6

2 = 3. The effective rate for each of n active
particles to become dormant is λM−m

M
when the dormant reservoir has m particles. Similarly, the effective

rate for each of m dormant particles to become active is λK N−n
N

when the active reservoir has n particles.

though it is natural to describe the genealogical process via a partition-valued stochastic process,
we will stick with the interacting particle system description of the dual, since this will be more
convenient for the multi-colony model.

3.2 Multi-colony model
In this section we consider multiple colonies, each with their own seed-bank. Each colony has
an active population and a dormant population. We take Zd as the underlying geographic space
where the colonies are located (any countable Abelian group will do). With each colony i ∈ Zd we
associate a variable (Xi, Yi), with Xi and Yi the number of type-♥ active and dormant individuals,
respectively, at colony i. Let (Ni,Mi) denote the size of the active and the dormant population at
colony i. In each colony active individuals are subject to resampling and migration, and to exchange
with dormant individuals that are in the same colony. Dormant individuals are not subject to
resampling and migration.

Since it is crucial for our duality to keep the population sizes constant, we consider migration
of types without the individuals actually moving themselves. To be precise, by a migration from
colony j to colony i we mean that an active individual from colony i randomly chooses an active
individual from colony j and adopts its type. In this way, the genetic information moves from
colony j to colony i, while the individuals themselves stay put.

3.2.1 Definition: resampling, exchange and migration

We assume that each active individual at colony i resamples from colony j at rate a(i, j), adopting
the type of a uniformly chosen active individual at colony j. Here, the migration kernel a(·, ·) is
assumed to satisfy Assumption 2.1. After a migration to colony i, the only variable that is affected
is Xi, the number of type-♥ active individuals at colony i. The final state can be either Xi − 1
or Xi + 1 depending on whether a type-♥ active individual from colony i chooses a type-♠ active
individual from another colony or a type-♠ active individual from colony i chooses some type-♥
active individual from another colony. The rate at which Xi changes to Xi − 1 due to a migration
from colony j is

a(i, j)Xi
Nj−Xj
Nj

,

while the rate at which Xi changes to Xi + 1 is

a(i, j)(Ni −Xi)XjNj .

Note that for i = j the migration rate is

a(i, i)Xi
Ni−Xi
Ni

= Xi(Ni−Xi)
2Ni ,
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which is the same as the effective birth and death rate in the single-colony Moran model. Thus, the
resampling within each colony is already taken care of via the migration.

It remains to define the associated exchange mechanism between the active and the dormant
individuals in a colony. The exchange mechanism is the same as in the single-colony model, i.e.,
in each colony each active individual at rate λ performs an exchange with a dormant individual
chosen uniformly from the seed-bank of that colony. For simplicity, we take the exchange rate λ to
be same in each colony.

The state space X of the process is

(3.12) X =
∏
i∈Zd
{0, 1, . . . , Ni} × {0, 1, . . . ,Mi} =

∏
i∈Zd

[Ni]× [Mi].

A configuration η ∈ X is denoted by η = (Xi, Yi)i∈Zd , with Xi ∈ [Ni] and Yi ∈ [Mi].

Initial state Event Final state Transition rate

(Xi, Yi)i∈Zd

Migration from
colony j to i

(· · · , (Xi − 1, Yi), · · · ) a(i,j)Xi(Nj−Xj)/Nj

(· · · , (Xi + 1, Yi), · · · ) a(i,j)(Ni−Xi)Xj/Nj

Exchange at colony i
(· · · , (Xi − 1, Yi + 1), · · · ) λXi(Mi−Yi)/Mi

(· · · , (Xi + 1, Yi − 1), · · · ) λ(Ni−Xi)Yi/Mi

Table 2: Scheme of transitions in the multi-colony model.

Abbreviate

(3.13)

δi,A = ((0, 0) . . . , (1, 0)︸ ︷︷ ︸
colony i

, . . . , (0, 0)),

δi,D = ((0, 0) . . . , (0, 1)︸ ︷︷ ︸
colony i

, . . . , (0, 0)).

The generator L for the process, acting on functions in

(3.14) D =
{
f ∈ C(X ) : f depends on finitely many coordinates

}
,

is given by

(3.15) L = LMig + LRes + LExc,

where

(3.16)
(LMigf)(η) =

∑
i∈Zd

∑
j∈Zd,
j 6=i

a(i, j)
Nj

{
Xi(Nj −Xj)[f(η − δi,A)− f(η)]

+Xj(Ni −Xi)[f(η + δi,A)− f(η)]
}

describes the resampling of active individuals in different colonies (= migration),

(3.17) (LResf)(η) =
∑
i∈Zd

Xi(Ni −Xi)
2Ni

[f(η − δi,A) + f(η + δi,A)− 2f(η)]

describes the resampling of active individuals in the same colony, and

(3.18)

(LExcf)(η) =
∑
i∈Zd

λ

Mi

{
Xi(Mi−Yi)[f(η−δi,A+δi,D)−f(η)]+Yi(Ni−Xi)[f(η+δi,A−δi,D)−f(η)]

}
describes the exchange of active and dormant individuals in the same colony.

10



From now on, we denote the process associated with the generator L by

(3.19) Z = (Z(t))t≥0, Z(t) = (Xi(t), Yi(t))i∈Zd ,

with Xi(t) and Yi(t) representing the number of type-♥ active and dormant individuals at colony i
at time t, respectively. Since Z is an interacting particle system, in order to show existence and
uniqueness of the process, we can in principle follow the approach described in [8]. However, for L
to be a Markov generator we require a uniform bound on the sizes (Ni,Mi)i∈Zd , which we want to
avoid. On the other hand, if L is a Markov pregenerator (see [8, Definition 2.1]), then we can use a
martingale problem for L to construct the process.

Proposition 3.6. [Pregenerator] The generator L defined in (3.15), acting on functions in D
defined in (3.14) is a Markov pregenerator.

The existence of solutions to the martingale problem will be shown by using the techniques described
in [8]. In order to establish uniqueness of the solution, we will need to exploit the dual process.

3.2.2 Duality

The dual process is a block-counting process associated to a spatial version of the interacting
seed-bank coalescent described in Section 3.1.3. We briefly describe the spatial coalescent process
in terms of an interacting particle system. At each site i ∈ Zd there are two reservoirs, an active
reservoir and a dormant reservoir, with Ni ∈ N and Mi ∈ N labeled locations, respectively. Each
location in a reservoir can accommodate at most one particle. As before, we refer to the particles
in an active and dormant reservoir as active particles and dormant particles, respectively. The
dynamics of the particle system is as follows (see Figure 2).

t

N = 4,M = 3 N = 2,M = 2 N = 2,M = 1

Figure 2: Scheme of transitions in the interacting particle system. Each block depicts the reservoirs located
at sites of Zd. The blue lines represent the evolution of active particles, the red lines represent the evolution
of dormant particles.

• An active particle at site i ∈ Zd becomes dormant at rate λ by moving to a random labeled
location (out of Mi many) in the dormant reservoir at site i when the chosen labeled location
is empty, otherwise it remains in the active reservoir.

• A dormant particle at site i ∈ Zd becomes active at rate λKi with Ki = Ni
Mi

by moving to a
random labeled location (out of Ni many) in the active reservoir at site i when the chosen
labeled location is empty, otherwise it remains in the dormant reservoir.

• Each active particle at site i chooses a random labeled location (out of Nj many) from the
active reservoir at site j at rate a(i, j) and does the following:

– If the chosen location in the active reservoir at site j is empty, then the particle moves
to site j and thereby migrates from the active reservoir at site i to the active reservoir
at site j.

11



– If the chosen location in the active reservoir at site j is occupied by a particle, then it
coalesces with that particle.

Note that an active particle can migrate between different sites in Zd and can coalesce with
another active particle even when they are at different sites in Zd. For simplicity, we will impose
the same assumptions on the migration kernel a(·, ·) as stated in Assumption 2.1. A configuration
(ηi)i∈Zd of the particle system is an element of

∏
i∈Zd{0, 1}Ni × {0, 1}Mi . For i ∈ Zd, ηi gives the

state of the labeled locations in the active and the dormant reservoir at site i (1 means occupied by
a particle, 0 means empty).

Even though it is an interesting problem to construct the process starting from a configuration
with infinitely many particles, we will restrict ourselves to configurations with finitely many particles
only, because this makes the state space countable. Thus, the process is a continuous-time Markov
chain on a countable state space and hence is well-defined. Furthermore, it can be shown with the
help of a Lyapunov function that the process is non-explosive.

Definition 3.7. [Dual] The dual process

(3.20) Z∗ = (Z∗(t))t≥0, Z∗(t) = (ni(t),m(t))i∈Zd ,

is a continuous-time Markov chain with state space

(3.21) X ∗ =
{

(ni,mi)∈Zd ∈
∏
i∈Zd

[Ni]× [Mi] :
∑
i∈Zd

(ni +mi) <∞
}

and with transition rates

(3.22)

(nk,mk)k∈Zd →

(nk,mk)k∈Zd − δi,A at rate 2a(i,i)
Ni

(
ni
2

)
1{ni≥2} +

∑
j∈Zd,
j 6=i

nia(i,j)nj
Nj

for i ∈ Zd,

(nk,mk)k∈Zd − δi,A + δi,D at rate λni(Mi−mi)
Mi

for i ∈ Zd,
(nk,mk)k∈Zd + δi,A − δi,D at rate λ(Ni−ni)mi

Mi
for i ∈ Zd,

(nk,mk)k∈Zd − δi,A + δj,A at rate nia(i,j)(Nj−nj)
Nj

for i 6= j ∈ Zd.

2

Here, ni(t) and mi(t) are the number of active and dormant particles at site i ∈ Zd at time t. The
first transition describes the coalescence of an active particle at site i with other active particles
at various sites. The second and third transition describe the movement of particles between the
active and the dormant reservoir at site i. The fourth transition describes the migration of an
active particle from site i to site j. Before we state our duality relation, we recall the definition of
the martingale problem.

Definition 3.8. [Martingale problem] Suppose that (L,D) is a Markov pregenerator, and let
η ∈ X . A probability measure Pη (or, equivalently, a process with law Pη) on D([0,∞),X ) is said
to solve the martingale problem for L with initial point η if

• Pη[ξ(·) ∈ D([0,∞),X ) : ξ0 = η] = 1,

• f(ηt) −
∫ t

0 (Lf)(ηs) ds is a martingale relative to Pη for all f ∈ D, where (ηt)t≥0 is the
coordinate process on D([0,∞),X ). 2

The following theorem gives the duality relation between the dual process and any solution
to the martingale problem for (L,D). This type of duality is sometimes referred to as martingale
duality.

Theorem 3.9. [Duality relation] Let the process Z with law Pη be a solution to the martingale
problem for (L,D) starting from initial state η = (Xi, Yi)i∈Zd ∈ X . Let Z∗ be the dual process with
law Pξ starting from initial state ξ = (ni,mi)i∈Zd ∈ X ∗. For t ≥ 0, let Γ(t) be the random variable
defined by,

(3.23) Γ(t) = max
{
‖i‖ : i ∈ Zd, ni(s) +mi(s) > 0 for some 0 ≤ s ≤ t

}
.
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Suppose that the sizes (Ni)i∈Zd of the active populations are such that, for any T > 0,

(3.24)
∑
i∈Zd

Ni Pξ
(
Γ(T ) ≥ ‖i‖

)
<∞.

Then, for any t ≥ 0,

(3.25) Eη

∏
i∈Zd

(
Xi(t)
ni

)(
Ni
ni

) (Yi(t)mi

)(
Mi

mi

) 1{ni≤Xi(t),mi≤Yi(t)}

 = Eξ
∏
i∈Zd

(
Xi
ni(t)

)(
Ni
ni(t)

) ( Yi
mi(t)

)(
Mi

mi(t)
)1{ni(t)≤Xi,mi(t)≤Yi}

 ,
where the expectations are taken with respect to Pη and Pξ, respectively.

Note that the duality function is a product over all colonies of the duality function that appeared
in the single-colony model. The infinite products are is well-defined: all but finitely many factors
are 1, because of our assumption that there are only finitely many particles in the dual process.

Note that there is no restriction on the sizes of the dormant reservoirs. This is because dormant
individuals do not migrate and therefore do not feel the spatial extent of the system. At first glance
it may seem that (3.24) places a severe restriction on the sizes of the active reservoirs. However,
this is not the case. The following corollary provides us with a large class of active reservoir sizes
for which Theorem 3.9 is true under mild assumptions on the migration kernel a(·, ·).

Corollary 3.10. [Duality criterion] Suppose that Assumption 2.1 is in force. Then the duality
relation in (3.25) holds for every (Ni)i∈Zd ∈ N , where

(a) either

(3.26) N =
{

(Ni)i∈Zd ∈ NZd : lim
‖i‖→∞

1
‖i‖

logNi = 0
}

when
∑
i∈Zd eδ‖i‖a(0, i) <∞ for some δ > 0,

(b) or

(3.27) N =
{

(Ni)i∈Zd ∈ NZd : sup
i∈Zd\{0}

Ni
‖i‖δ

<∞

}

when
∑
i∈Zd ‖i‖γa(0, i) <∞ for some δ > 0 and γ > d+ δ.

Corollary 3.10 shows a trade-off : the more we restrict the tails of the migration kernel, the less we
need to restrict the sizes of the active reservoirs.

3.2.3 Well-posedness

We use a martingale problem for the generator L defined in (3.15), in the sense of [9, p.173], to
construct Z. The following proposition gives existence of solutions for any choice of the reservoir
sizes.

Proposition 3.11. [Existence] Let L be the generator defined in (3.15) acting on the set of local
functions D defined in (3.14). Then for all η ∈ X there exists a solution Pη (a probability measure
on D([0,∞),X )) to the martingale problem of (L,D) with initial state η.

The following theorem gives the well-posedness of the martingale problem for (L,D), and thus
proves the existence of a unique Feller Markov process describing our multi-colony model.

Theorem 3.12. [Well-posedness] Let (Ni)i∈Zd ∈ N and (Mi)i∈Zd ∈ NZd , and let L be the
generator defined in (3.15) acting on the set of local functions D defined in (3.14). Then the
following hold:

• For all η ∈
∏
i∈Zd [Ni]× [Mi] there exists a unique solution Z in D([0,∞),X ) of the martingale

problem for (L,D) with initial state η.

• Z is Feller and strong Markov, and its generator is an extension of (L,D).
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3.2.4 Equilibrium

Let us set Zi(t) := (Xi(t), Yi(t)) for i ∈ Zd and denote by µ(t) the distribution of Z(t). Further,
for each θ ∈ [0, 1] and i ∈ Zd, let νiθ be the probability measure on [Ni]× [Mi] defined as,

(3.28) νiθ := Binomial(Ni, θ)⊗Binomial(Mi, θ).

For θ ∈ [0, 1], let νθ be the distribution on X defined by νθ :=
⊗
i∈Zd

νiθ and set

(3.29) J := {νθ | θ ∈ [0, 1]}.

Let D : X × X ∗ → [0, 1] be the function defined by,

(3.30) D((Xk, Yk)k∈Zd ; (nk,mk)k∈Zd) =
∏
i∈Zd

(
Xi
ni

)(
Ni
ni

) (Yimi)(
Mi

mi

)1{ni≤Xi,mi≤Yi}.

Theorem 3.13. [Convergence to equilibrium] Assume µ(0) = νθ ∈ J for some θ ∈ [0, 1].
Then there exists a probability measure ν determined by the parameter θ such that,
• lim
t→∞

µ(t) = ν,

• ν is an equilibrium for the process Z,

• Eν [D(Z(0); η)] = lim
t→∞

Eη[θ|Z∗(t)|], where D(·, ·) is as in (3.30), the right side expectation is
taken w.r.t the dual process Z∗ started at configuration η = (ni,mi)i∈Zd ∈ X ∗ and |Z∗(t)| :=∑

i∈Zd ni(t) +mi(t) is the number of total dual particles present at time t.
Corollary 3.14. Let ν be the equilibrium measure of Z as in Theorem 3.13 corresponding to
θ ∈ [0, 1]. Then

(3.31) Eν
[
Xi(0)
Ni

]
= Eν

[
Yi(0)
Mi

]
= θ.

3.2.5 Clustering criterion

We next analyse the long-time behaviour of the multi-colony Moran model with seed-banks. Our
interest is on the nature of the equilibrium. To be precise, we investigate whether coexistence of
different types is possible in the equilibrium. The two measures

∏
i∈Zd δ(0,0) and

∏
i∈Zd δ(Ni,Mi)

are the trivial equilibrium where the whole system concentrates only on one of the two types. If
the system converges to an equilibrium which is not a mixture of these two trivial equilibrium, we
say coexistence happens. For i ∈ Zd, let us denote the frequency of type-♥ active and dormant
individuals at colony i and time t by, xi(t) := Xi(t)

Ni
and yi(t) := Yi(t)

Mi
respectively.

Definition 3.15. The system is said to exhibit clustering if the following holds,
• lim
t→∞

Pη(xi(t) ∈ {0, 1}) = 1, lim
t→∞

Pη(yi(t) ∈ {0, 1}) = 1

• lim
t→∞

Pη(xi(t) 6= xj(t)) = 0, lim
t→∞

Pη(yi(t) 6= yj(t)) = 0

• lim
t→∞

Pη(xi(t) 6= yj(t)) = 0

for all i, j ∈ Zd and any initial configuration η ∈ X . Otherwise, it is said to exhibit coexistence. 2
The above conditions make sure that if an equilibrium exists then it is a mixture of the two trivial
equilibrium. In Section 2 we identify conditions under which either clustering prevails or coexistence
prevails.

The following criterion, which follows from Theorem 3.10, gives an equivalent condition for
clustering.
Theorem 3.16. [Clustering criterion] The system clusters if and only if in the dual process
defined in Definition 3.7 two particles, starting from any locations in Zd and any states (active or
dormant), coalesce with probability 1.
Note that the system clusters if and only if the genetic variability at time t between any two colonies
converges to 0 as t→∞. From the duality relation in Theorem 3.10 it follows that this quantity is
determined by the state of the dual process starting from two particles.
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4 Proofs: duality and equilibrium for single-colony model
In this section we prove Theorem 3.2, Proposition 3.3 and Corollary 3.4. Section 4.1 contains the
proof of Theorem 3.2, which follows the algebraic approach to duality described in [10]. Section 4.2
contains the proof of Proposition 3.3 and Corollary 3.4, which uses the duality in the single-colony
model.

4.1 Duality and change of representation
Definition 4.1. [Operator duality] Let A and B be two operators acting on functions f : Ω→ R
and g : Ω̂ → R respectively. We say that A is dual to B with respect to the duality function
D : Ω× Ω̂→ R, denoted by A D−→ B, if (AD(·, y))(x) = (BD(x, ·))(y) for all (x, y) ∈ Ω× Ω̂.

For α ∈ N, we define the operators Jα,±, Jα,0, Aα,±, Aα,0 acting on f : [α]→ R as follows:

Jα,+f(n) = (α− n)f(n+ 1), Jα,−f(n) = nf(n− 1), Jα,0f(n) = (n− α
2 )f(n),

Aα,+ = Jα,− − Jα,+ − 2Jα,0, Aα,− = Jα,+, Aα,0 = Jα,+ + Jα,0.

(4.1)

The su(2)-algebra is defined by the generators J+, J−, J0, which satisfy the commutation relations

(4.2) [J0, J+] = J+, [J0, J−] = −J−, [J−, J+] = −2J0.

The operators Aα,±, Aα,0 form a representation of the su(2)-algebra and Jα,±, Jα,0 form a repre-
sentation of the conjugate su(2) algebra (defined by the above commutation relations, but with
opposite sign). The following lemma intertwines these two algebra with a duality function.

Lemma 4.2. [Single-colony intertwiner] For α ∈ N, let dα : [α]× [α]→ [0, 1] be the function
defined by

(4.3) dα(x, n) =
(
x
n

)(
α
n

)1{n≤x}.

Then the following duality relations hold:

(4.4) Jα,+ dα−→ Aα,+, Jα,−
dα−→ Aα,−, Jα,0

dα−→ Aα,0.

Proof. By straightforward calculations, it can be shown that dα(x, n) satisfies the relations

(4.5)
(α− x) dα(x+ 1, n) = n [dα(x, n− 1)− dα(x, n)] + (α− n) [dα(x, n)− dα(x, n+ 1)],

x dα(x− 1, n) = (α− n) dα(x, n),
x dα(x, n) = (α− n) dα(x, n+ 1) + ndα(x, n),

from which the above dualities in (4.4) follow immediately.

Lemma 4.2 plays a key role in the proof of the duality of the single-colony model as well as the
multi-colony model.

Proof of Theorem 3.2. Recall that both Z = (X(t), Y (t))t≥0 and Z∗ = (nt,mt)t≥0 live on the state
space Ω = [N ]× [M ]. Let D : Ω× Ω→ [0, 1] be the function defined by

(4.6) D
(
(X,Y ); (n,m)

)
=
(
X
n

)(
N
n

) (Ym)(
M
m

)1{n≤X,m≤Y } = dN (X,n)dM (Y,m), (X,Y ), (n,m) ∈ Ω.

Let G = GMor +GExc be the generator of the process Z, where GMor, GExc are as in (3.2)–(3.3).
Also note from (3.7) that the generator Ĝ of the dual process is given by Ĝ = GKing +GExc where
GKing : C(Ω)→ C(Ω) is defined as

(4.7) GKingf(n,m) = n(n− 1)
2N [f(n− 1,m)− f(n,m)], (n,m) ∈ Ω.
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Since Ω is finite and hence compact, it is enough to show the generator criterion for duality, i.e.,

(4.8)
(
GD( · ; (n,m))

)
(X,Y ) =

(
ĜD((X,Y ); · )

)
(n,m), (X,Y ), (n,m) ∈ Ω.

In our notation, (4.8) translates into G D−→ Ĝ. It is tedious to verify (4.8) by direct computation.
Rather, we will write down a proof with the help of the elementary operators defined in (4.1). This
approach will also reveal the underlying change of representation of the two operators G, Ĝ that is
embedded in the duality.

Note that

(4.9)

GKing = 1
2N

[
(AN,+1 −AN,−1 + 2AN,01 )AN,01 + N

2 (AN,+1 +AN,−1 −N)
]
,

GMor = 1
2N

[
JN,01 (JN,+1 − JN,−1 + 2JN,01 ) + N

2 (JN,+1 + JN,−1 −N)
]
,

GExc = λ
M

[
JN,+1 JM,−

2 + JN,−1 JM,+
2 + 2JN,01 JM,0

2 − NM
2

]
= λ

M

[
AN,+1 AM,−

2 +AN,−1 AM,+
2 + 2AN,01 AM,0

2 − NM
2

]
,

where the subscripts indicate which variable of the associated function the operators act on. For
example, JN,+1 and JM,+

2 act on the first and second variable, respectively. So, for a function f : [N ]×
[M ] → R, we have (JN,+1 f)(n,m) = (JN,+f( · ; m))(n) and (JM,+

2 f)(n,m) = (JM,+f(n ; · ))(m).
The equivalent version of Lemma 4.2 holds for these operators with subscript as well, except that
the duality function is D. In other words, JN,+1

D−→ AN,+1 , JM,+
2

D−→ AM,+
2 , and so on. Using these

duality relations and the representations in (4.9), we have GMor
D−→ GKing and GExc

D−→ GExc,
where we use:

• Two operators acting on different sites commute with each other.

• For some duality function d and operators A,B, Â, B̂, if A d−→ Â, B
d−→ B̂, then for any

constants c1, c2, AB
d−→ B̂Â and c1A+ c2B

d−→ c1Â+ c2B̂.

Since G = GMor +GExc and Ĝ = GKing +GExc, we have G D−→ Ĝ, which proves the claim.

4.2 Equilibrium
Proof of Proposition 3.3. For x ∈ R and r ∈ N, let (x)r be the falling factorial defined as

(4.10) (x)r = x(x− 1) · · · (x− r + 1),

where we assume (x)r = 1 if r = 0. For any n ∈ N0, we can write xn as

(4.11) xn =
n∑
j=0

cn,j (x)j ,

where the constants cn,j (known as the Stirling numbers of the second kind) are unique and depend
only on n and j ∈ [n]. Let (n,m) ∈ Ω = [N ]× [M ] be such that (n,m) 6= (0, 0), and let (nt,mt)t≥0
be the dual process defined as in Definition 3.7. It follows from (4.11) and Theorem 3.2 that

(4.12)

lim
t→∞

E(X,Y )[X(t)nY (t)m]

=
n∑
i=0

m∑
j=0

cn,icm,j lim
t→∞

E(X,Y )[(X(t))i(Y (t))j ]

=
n∑
i=0

m∑
j=0

cn,icm,j(N)i(M)j lim
t→∞

E(X,Y )[D((X(t), Y (t)); (i, j))]

=
n∑
i=0

m∑
j=0

cn,icm,j(N)i(M)j lim
t→∞

E(i,j)[D((X,Y ); (nt,mt))],
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where D : Ω× Ω→ [0, 1] is the duality function in Theorem 3.2, defined by

(4.13) D((X,Y ); (n,m)) = (Xn)
(Nn)

(Ym)
(Mm)1{n≤X,m≤Y } ≡ (X)n(Y )m

(N)n(M)m ,

and the expectation in the last line is with respect to the dual process. Let T be the first time at
which there is only one particle left in the dual, i.e., T = inf{t > 0: nt+mt = 1}. Note that, for any
initial state (i, j) ∈ Ω\{(0, 0)}, T <∞ with probability 1 and the distribution of (nt,mt) converges
as t→∞ to the invariant distribution N

N+M δ(1,0) + M
N+M δ(0,1). So, for any (i, j) ∈ Ω\{(0, 0)},

(4.14)

lim
t→∞

E(i,j)[D((X,Y ); (nt,mt))]

= lim
t→∞

E(i,j)[D((X,Y ); (nt,mt)) | T ≤ t]P(i,j)(T ≤ t)

+ lim
t→∞

E(i,j)[D((X,Y ); (nt,mt)) | T > t]︸ ︷︷ ︸
≤1

P(i,j)(T > t)

= lim
t→∞

[
X
N P(i,j)(nt = 1,mt = 0) + Y

M P(i,j)(nt = 0,mt = 1)
]

= X

N

N

N +M
+ Y

M

M

N +M
= X + Y

N +M
,

where we use that the second term after the first equality converges to 0 because T < ∞ with
probability 1. Combining (4.14) with (4.12), we get

(4.15)

lim
t→∞

E(X,Y )[X(t)nY (t)m]

=
n∑
i=0

m∑
j=0

cn,icm,j(N)i(M)j lim
t→∞

E(i,j)[D((X,Y ); (nt,mt))]

= X + Y

N +M

(
n∑
i=0

cn,i(N)i

) m∑
j=0

cm,j(M)j

+
(

1− X+Y
N+M

)
cn,0cm,0

= NnMm X + Y

N +M
,

where the last equality follows from (4.11) and the fact that cn,0cm,0 = 0 when (n,m) 6= (0, 0).

Proof of Corollary 3.4. Note that the distribution of a two-dimensional random vector (Z1, Z2)
taking values in [N ] × [M ] is determined by the mixed moments E[Zi1Z

j
2 ], i, j ∈ [N ] × [M ]. For

i ∈ I = [NM ], let pi = P((Z1, Z2) = f−1(i)), where f : [N ]× [M ]→ I is a bijection. For i ∈ I, let
ci = E[Zx1Z

y
2 ], where (x, y) = f−1(i). We can write ~c = A~p, where ~p = (pi)i∈I ,~c = (ci)i∈I and A is

an invertible (N + 1)(M + 1)× (N + 1)(M + 1) matrix. Hence, ~p = A−1~c is uniquely determined by
the mixed moments, and convergence of the mixed moments of (X(t), Y (t)) as shown in Proposition
3.3 is enough to conclude that (X(t), Y (t)) converges in distribution as t→∞ to a random vector
(X∞, Y∞) taking values in [N ]× [M ]. The distribution of (X∞, Y∞) is also uniquely determined,
and is given by X+Y

N+M δ(N,M) + (1− X+Y
N+M )δ(0,0).

5 Proofs: duality and well-posedness for multi-colony model
In Section 5.1 we introduce equivalent versions for the multi-colony setting of the operators defined
in (4.1) for the single-colony setting, and use these to prove Theorem 3.9 and Corollary 3.10. In
Section 5.2 we prove Proposition 3.6, Proposition 3.11 and Theorem 3.12.

5.1 Duality
5.1.1 Generators and intertwiners

Let f ∈ C(X ) and η = (Xi, Yi)i∈Zd ∈ X , and let δi,A, δi,D be as in (3.13). Define the action of the
multi-colony operators as in Table 3.
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Operators acting on variable Xi, i ∈ Zd Operators acting on variable Yi, i ∈ Zd

JNi,+i,A f(η) = (Ni −Xi)f(η + δi,A) JMi,+
i,D f(η) = (Mi − Yi)f(η + δi,D)

JNi,−i,A f(η) = Xif(η − δi,A) JMi,−
i,D f(η) = Yif(η − δi,D)

JNi,0i,A f(η) = (Xi − Ni
2 )f(η) JMi,0

i,D f(η) = (Yi − Mi

2 )f(η)

ANi,+i,A = JNi,−i,A − JNi,+i,A − 2JNi,0i,A AMi,+
i,D = JMi,−

i,D − JMi,+
i,D − 2JMi,0

i,D

ANi,−i,A = JNi,+i,A AMi,−
i,D = JMi,+

i,D

ANi,0i,A = JNi,+i,A + JNi,0i,A AMi,0
i,D = JMi,+

i,D + JMi,0
i,D

Table 3: Action of operators on f ∈ C(X ).

The same duality relations as in Lemma 4.2 hold for these operators as well. The only difference
is that the duality function is the site-wise product of the duality functions in the single-colony
model .

Lemma 5.1. [Multi-colony intertwiner] Let D : X × X ∗ → [0, 1] be the function defined by

(5.1) D((Xk, Yk)k∈Zd ; (nk,mk)k∈Zd) =
∏
i∈Zd

(
Xi
ni

)(
Ni
ni

) (Yimi)(
Mi

mi

)1{ni≤Xi,mi≤Yi},

where (Xk, Yk)k∈Zd ∈ X and (nk,mk)k∈Zd ∈ X ∗. Then for every i ∈ Zd and s ∈ {0,+,−} the
following relations hold:

(5.2) JNi,si,A
D−→ ANi,si,A , JMi,s

i,D
D−→ AMi,s

i,D .

Proof. The proof is exactly same as the proof of Lemma 4.2.

Proposition 5.2. [Generator criterion] Let L be the generator defined in (3.15), and L̂ the
generator of the dual process defined in Definition 3.7. Furthermore, let D : X × X ∗ → [0, 1] be the
function defined in Lemma 5.1. Then L D−→ L̂.

Proof. Recall that L = LMig + LRes + LExc, where LMig, LRes, LEx are defined in (3.16)–(3.18). In
terms of the operators defined earlier, these have the following representations:

(5.3)

LMig =
∑
i∈Zd

∑
j∈Zd
j 6=i

a(i, j)
Nj

[(
JNi,+i,A − JNi,−i,A + 2JNi,0i,A

)
J
Nj ,0
j,A + Nj

2

(
JNi,+i,A + JNi,−i,A −Ni

)]
,

LRes =
∑
i∈Zd

1
2Ni

[
JNi,0i,A

(
JNi,+i,A − JNi,−i,A + 2JNi,0i,A

)
+ Ni

2

(
JNi,+i,A + JNi,−i,A −Ni

)]
,

LExc =
∑
i∈Zd

λ

Mi

[
JNi,+i,A JMi,−

i,D + JNi,−i,A JMi,+
i,D + 2JNi,0i,A JMi,0

i,D − NiMi

2

]
=
∑
i∈Zd

λ

Mi

[
ANi,+i,A AMi,−

i,D +ANi,−i,A AMi,+
i,D + 2ANi,0i,A AMi,0

i,D − NiMi

2

]
.

Similarly, the generator L̂ of the dual process defined in Definition 3.7 acting on f ∈ C(X ∗) is given
by L̂ = L̂Mig + LExc + LKing, where

(5.4)

L̂Migf(ξ) =
∑
i∈Zd

∑
j∈Zd
j 6=i

a(i, j)
Nj

{
ni(Nj − nj)[f(ξ − δi,A + δj,A)− f(ξ)] + ninj [f(ξ − δi,A)− f(ξ)]

}
,

LKingf(ξ) =
∑
i∈Zd

ni(ni − 1)
2Ni

[f(ξ − δi,A) + f(ξ + δi,A)− 2f(ξ)],
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for ξ = (ni,mi)i∈Zd ∈ X ∗. The representations of these operators are

L̂Mig =
∑
i∈Zd

∑
j∈Zd
j 6=i

a(i, j)
Nj

[
A
Nj ,0
j,A

(
ANi,+i,A −ANi,−i,A + 2ANi,0i,A

)
+ Nj

2

(
ANi,+i,A +ANi,−i,A −Ni

)]
,

LKing =
∑
i∈Zd

1
2Ni

[(
ANi,+i,A −ANi,−i,A + 2ANi,0i,A

)
ANi,0i,A + Ni

2

(
ANi,+i,A +ANi,−i,A −Ni

)]
.

(5.5)

From Lemma 5.1 and the representations in (5.3)–(5.5), we see that LMig
D−→ L̂Mig, LRes

D−→ LKing

and LEx
D−→ LEx, which yields L D−→ L̂.

As shown in [11, Proposition 1.2], the generator criterion is enough to get the required duality
relation of Theorem 3.9 when both L and L̂ are Markov generators of Feller processes. Since it is
not yet clear whether L (or its extension) is a Markov generator, we use [9, Theorem 4.11, Corollary
4.13].

5.1.2 Proof of duality relation

Proof of Theorem 3.9. We combine [9, Theorem 4.11 and Corollary 4.13] and reinterpret these in
our context:

• Let (ηt)t≥0 and (ξt)t≥0 be two independent processes on E1 and E2 that are solutions to the
martingale problem for (L1,D1) and (L2,D2) with initial states x ∈ E1 and y ∈ E2. Assume
that D : E1 × E2 → R is such that D( · ; ξ) ∈ D1 for any ξ ∈ E2 and D(η ; ·) ∈ D2 for any
η ∈ E1. Also assume that for each T > 0 there exists an integrable random variable ΓT such
that

(5.6)
sup

0≤s,t≤T
|D(ηt; ξs)| ≤ ΓT , sup

0≤s,t≤T
|(L1D( · ; ξs))(ηt)| ≤ ΓT , sup

0≤s,t≤T
|(L2D(ηt; · ))(ξs)| ≤ ΓT .

If (L1D( · ; y))(x) = (L2D(x ; · ))(y), then Ex[D(ηt; y)] = Ey[D(x, ξt)] for all t ≥ 0.

To apply the above, pick E1 = X , E2 = X ∗, L1 = L, L2 = Ldual, D1 = D, D2 = C(X ∗), and set
D to be function defined in Lemma 5.1. Note that, since D contain local functions only, D( · ; ξ) ∈ D
for any ξ ∈ X ∗ and, since X ∗ is countable, D(η ; · ) ∈ C(X ∗) for any η ∈ X . Fix x = (Xi, Yi)i∈Zd ∈ X
and y = (ni,mi)i∈Zd ∈ X ∗. Note that, by Proposition 5.2, (L1D( · ; y))(x) = (L2D(x ; · ))(y). Pick
(ξt)t≥0 to be the process Z∗ with initial stae y. Note that (ξt)t≥0 is the unique solution to the
martingale problem for (Ldual, C(X ∗)) with initial state y. Let (ηt)t≥0 denote any solution Z to
the martingale problem for (L,D) with initial state x. Fix T > 0 and note that, for 0 ≤ s, t < T ,

(5.7)

(L1D( · ; ξs))(ηt) =
∑
i∈Zd

Xi(t)

∑
j∈Zd

a(i, j)Nj−Xj(t)Nj

 [D(ηt − δi,A; ξs)−D(ηt; ξs)
]

+
∑
i∈Zd

(Ni −Xi(t))

∑
j∈Zd

a(i, j)Xj(t)Nj

 [D(ηt + δi,A; ξs)−D(ηt; ξs)
]

+
∑
i∈Zd

λXi(t)Mi−Yi(t)
Mi

[
D(ηt − δi,A + δi,D; ξs)−D(ηt; ξs)

]
+
∑
i∈Zd

λ(Ni −Xi(t))Yi(t)Mi

[
D(ηt + δi,A − δi,D; ξs)−D(ηt; ξs)

]
and

(5.8)

19



(L2D(ηt ; · ))(ξs) =
∑
i∈Zd

ni(s)(ni(s)−1)
2Ni + ni(s)

∑
j∈Zd,
j 6=i

a(i, j)nj(s)Nj

 [D(ηt; ξs − δi,A)−D(ηt; ξs)
]

+
∑
i∈Zd

λni(s) (Mi−mi(s))
Mi

[
D(ηt; ξs − δi,A + δi,D)−D(ηt; ξs)

]
+
∑
i∈Zd

λ(Ni − ni(s)) mi(s)Mi

[
D(ηt; ξs + δi,A − δi,D)−D(ηt; ξs)

]
+
∑
i∈Zd

∑
j∈Zd
j 6=i

a(i, j)ni(s)Nj−nj(s)Nj

[
D(ηt; ξs − δi,A + δj,A)−D(ηt; ξs)

]
.

The random variable defined in Theorem 3.9 is increasing in time, and if we change the configuration
ηt outside the box [0,Γ(s)]d ∩ Zd, then the value of D(ηt; ξs) does not change. Consequently, all
the summands in (5.7) for ‖i‖ > Γ(s), i ∈ Zd, are 0, and since Γ(s) ≤ Γ(T ) we have the estimate

(5.9) |(L1D( · ; ξs))(ηt)| ≤ 2(c+ λ)
∑
i∈Zd

‖i‖≤Γ(s)

Ni ≤ 2(c+ λ)
∑
i∈Zd

‖i‖≤Γ(T )

Ni,

where c =
∑
i∈Zd a(0, i). Now, by Definition 3.7, the process (ξt)t≥0 is the interacting particle

system with coalescence in which the total number of particles can only decrease in time, and so∑
i∈Zd(ni(s) +mi(s)) ≤ N , where N =

∑
i∈Zd(ni +mi). Also, since s ≤ T , for ‖i‖ > Γ(T ), i ∈ Zd

we have ni(s) = mi(s) = 0. Hence, from (5.8) we have

(5.10) |(L2D(ηt ; · ))(ξs)| ≤ 2(c+ λ)N + 2λ
∑
i∈Zd

‖i‖≤Γ(T )

Ni.

Define the random variable ΓT by

(5.11) ΓT = 1 + 2(c+ λ)N + 2(c+ λ)
∑
i∈Zd

‖i‖≤Γ(T )

Ni.

Then, combining (5.9)–(5.10) with the fact that the function D takes values in [0, 1], we see that ΓT
satisfies all the conditions in (5.6), while assumption (3.24) in Theorem 3.9 ensures the integrability
of ΓT .

5.1.3 Proof of duality criterion

Proof of Corollary 3.10. Let ξ = (ni,mi)i∈Zd ∈ X ∗ and T > 0 be fixed. By Theorem 3.9, it suffices
to show that for any (Ni)i∈Zd ∈ N ,

(5.12)
∑
i∈Zd

Ni Pξ(Γ(T ) ≥ ‖i‖) <∞,

where Pξ is the law of the dual process Z∗ started from initial state ξ. Let n =
∑
i∈Zd(ni +mi) be

the initial number of particles and let N(t) be the total number of migration event within time
interval [0, t]. We will construct a Poisson process N∗ via coupling such that N(t) ≤ N∗(t) for all
t ≥ 0 with probability 1. For this purpose, let us consider n independent particles performing a
random walk on Zd according to the migration kernel a(·, ·). For each k = 1, . . . , n, let ξk(t) and
ξ∗k(t) denote the position of the k-th dependent and independent particle at time t, respectively.
We take ξk(0) = ξ∗k(0) and couple each k-th interacting particle with the k-th independent particle
as below:
• If the independent particle makes a jump from site ξ∗k(t) to j∗ ∈ Zd, then the dependent
particle jumps from ξk(t) to j = ξk(t) + (j∗ − ξ∗k(t)) with probability pk(t) given by

(5.13) pk(t) =
{

1− nj(t)
Nj

if the dependent particle is in active and non-coalesced state,
0 otherwise,

where nj(t) is the number of active particles at site j.
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• The dependent particle does the other transitions (waking up, becoming dormant and
coalescence), independently of the previous migration events, with the prescribed rates defined
in Definition 3.7.

Note that, since the migration kernel is translation invariant, under the above coupling the
effective rate at which a dependent particle migrates from site i to j is nia(i, j)(1 − nj

Nj
) when

there are ni and nj active particles at site i and j, respectively. Also, if Nk(t) and N∗k (t) are
the number of migration steps made within the time interval [0, t] by the k-th dependent and
independent particle, respectively, then under this coupling Nk(t) ≤ N∗k (t) with probability 1. Let
us set N∗(·) =

∑n
k=1N

∗
k (·). Then, clearly,

(5.14) N(·) =
n∑
k=1

Nk(·) ≤ N∗(·) with probability 1.

Also, N∗ is a Poisson process with intensity cn, since each independent particle migrates at a total
rate c.

Let Yl, Xl ∈ Zd denote the step at l-th migration event in the dependent and independent
particle systems respectively. Notice that (Xl)l∈N are i.i.d. with distribution (a(0, i))i∈Zd . Since,
under the above coupling, a dependent particle copies the step of an independent particle with a
certain probability (possibly 0), and Γ(0) is the minimum length of the box within which all n
dependent particles at time 0 are located, we have, for any t ≥ 0,

(5.15) Γ(t) ≤ Γ(0) +
N(t)∑
l=1
|Yl| ≤ Γ(0) +

N∗(t)∑
l=1
|Xl|.

Thus using the above, we get

(5.16) Pξ(Γ(T ) ≥ k) ≤ P
(
SN∗(T ) ≥ k − Γ(0)

)
∀ k ≥ 0,

where SN∗(T ) =
∑N∗(T )
l=1 |Xl|.

To prove part (a), note that E[eδSN∗(T ) ] < ∞ and so, by Chebyshev’s inequality, P(SN∗(T ) ≥
x) = P(eδSN∗(T ) ≥ eδx) ≤ E[eδSN∗(T ) ] e−δx. Thus, the above inequality reduces to

(5.17) Pξ(Γ(T ) ≥ k) ≤ V e−δk ∀ k ≥ 0,

where

(5.18) V = E
[
exp{δΓ(0) + δSN∗(T )}

]
<∞.

For k ∈ N, let αk = #{i ∈ Zd : ‖i‖∞ = k}. Then, αk = (2k + 1)d − (2k − 1)d ≤ 4dkd−1. Thus

(5.19)
∑

i∈Zd\{0}

Ni Pξ(Γ(T ) ≥ ‖i‖) ≤
∑
k∈N

ckαk Pξ(Γ(T ) ≥ k) ≤
∑
k∈N

ck4dkd−1 Pξ(Γ(T ) ≥ k),

where ck = sup{Ni : ‖i‖∞ = k, i ∈ Zd}. Since, under the assumption of part (a), limk→∞
1
k log ck =

0, there exists K ∈ N such that ck ≤ eδk/2 for all k ≥ K. Hence, using (5.17), we find

(5.20)
∑
i∈Zd

Ni Pξ(Γ(T ) ≥ ‖i‖) ≤ N0 +
K−1∑
k=1

ckαk + 4dV
∞∑
k=K

kd−1 e−δk/2 <∞,

which settles part (a).
To prove part (b), note that, under the assumption

∑
i∈Zd ‖i‖γa(0, i) <∞ for some γ > d+ δ,

we have E[SγN∗(T )] <∞, and since SN∗(T ) is a positive random variable, we get

(5.21) P(SN∗(T ) ≥ x) ≤ E[SγN∗(T )]x
−γ .

From (5.16) we get

(5.22) Pξ(Γ(T ) ≥ k) ≤ V

(k − Γ(0))γ ∀ k > Γ(0),
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where V = E[SγN∗(T )]. By the assumption of part (b), there exists C > 0 such that ck =
sup{Ni : ‖i‖∞ = k, i ∈ Zd} ≤ Ckδ and so, using the above in (5.19), we obtain

(5.23)
∑
i∈Zd

Ni Pξ(Γ(T ) ≥ ‖i‖) ≤ N0 +
∑

k≤Γ(0)

ckαk + 4dCV
∑

k>Γ(0)

kd+δ−1

(k − Γ(0))γ <∞,

which settles part (b).

5.2 Well-posedness
In this section we prove Proposition 3.6, Proposition 3.11 and Theorem 3.12.

5.2.1 Existence

Since the state space X is compact, the theory described in [8, Chapter I, Section 3] is applicable
in our setting without any significant changes. The interacting particle systems in [8] have state
space WS , where W is a compact phase space and S is a countable site space. In our setting, the
site space is S = Zd, but the phase space differs at each site, i.e., [Ni]× [Mi] at site i. The general
form of the generator of an interacting particle system in [8] is

(5.24) Ωf(η) =
∑
T

∫
WT

cT (η,dξ)[f(ηξ)− f(η)], η ∈ X ,

where the sum is taken over all finite subsets T of S, and ηξ is the configuration

(5.25) ηξi =
{
ξi if i ∈ T,
ηi else.

For finite T b X , cT (η, dξ) is a finite positive measure onWT = WT . To make the latter compatible
with our setting, we define WT =

∏
i∈T [Ni] × [Mi]. The interpretation is that η is the current

configuration of the system, cT (η,WT ) is the total rate at which a transition occurs involving all
the coordinates in T , and cT (η, dξ)/cT (η,WT ) is the distribution of the restriction to T of the new
configuration after that transition has taken place. Fix η = (Xi, Yi)i∈Zd ∈ X . Comparing (5.24)
with the formal generator L defined in (3.15), we see that the form of cT (·, ·) is as follows:

• cT (η, dξ) = 0 if |T | ≥ 2.

• For |T | = 1, let T = {i} for some i ∈ Zd. Then cT (η, ·) is the measure on [Ni]× [Mi] given by

(5.26)

cT (η, ·) = Xi

∑
j∈Zd

a(i, j)Nj−XjNj

 δ(Xi−1,Yi)(·) + (Ni −Xi)

∑
j∈Zd

a(i, j)XjNj

 δ(Xi+1,Yi)(·)

+ λXi
Mi−Yi
Mi

δ(Xi−1,Yi+1)(·) + λ(Ni −Xi) YiMi
δ(Xi+1,Yi−1)(·).

Note that the total mass is

(5.27)
cT (η,WT ) = Xi

∑
j∈Zd

a(i, j)Nj−XjNj

+ (Ni −Xi)

∑
j∈Zd

a(i, j)XjNj


+ λXi

Mi − Yi
Mi

+ λ(Ni −Xi) YiMi
.

Lemma 5.3. [Bound on rates] Let c =
∑
i∈Zd a(0, i) < ∞. For a finite set T b Zd, let

cT = supη∈X cT (η,WT ). Then cT ≤ (c+ λ)1{|T |=1} supi∈T Ni with c =
∑
i∈Zd a(0, i).

Proof. Clearly, cT = 0 if |T | ≥ 2. So let T = {i} for some i ∈ Zd. We see that, for η = (Xk, Yk)k∈Zd ,
cT (η,WT ) ≤ cXi + c(Ni −Xi) + λXi + λ(Ni −Xi) = (c+ λ)Ni = (c+ λ) supi∈T Ni.
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Proof of Proposition 3.6. By [8, Proposition 6.1 of Chapter I], it suffices to show

(5.28)
∑
T3 i

cT <∞ ∀ i ∈ S,

where the sum is taken over all finite subsets T b S containing i ∈ S. Since in our case S = Zd, we
let i ∈ Zd be fixed. By Lemma 5.3, the sum reduces to c{i}, and clearly c{i} ≤ (c+ λ)Ni <∞.

Proof of Proposition 3.11. By [8, Proposition 6.1 and Theorem 6.7 of Chapter I], to show existence
of solutions to the martingale problem for (L,D), it is enough to prove that (5.28) is satisfied. But
we already showed this in the proof of Proposition 3.6.

5.2.2 Uniqueness

Before we turn to the proof of Theorem 3.12, we state and prove the following proposition, which
along with the duality established in Corollary 3.10, will play a key role in the proof of the uniqueness
of solutions to the martingale problem.

Proposition 5.4. [Separation] Let D : X ×X ∗ → [0, 1] be the duality function defined in Lemma
5.1. Define the set of functions M = {D( · ; ξ) : ξ ∈ X ∗}. Then M is separating on the set of
probability measures on X .

Proof. Let P be a probability measure on X =
∏
i∈Zd [Ni] × [Mi]. It suffices to show that the

finite-dimensional distributions of P are determined by {
∫
f dP : f ∈M}. Note that it is enough

to show the following:

• Let X = (X1, X2, . . . , Xn) ∈
∏n
i=1[Ni] be an n-dimensional random vector with some distri-

bution PX on
∏n
i=1[Ni]. Then PX is determined by

(5.29) F =
{
E

[
n∏
i=1

(Xiαi)
(Niαi)

]
: (αi)1≤i≤n ∈

n∏
i=1

[Ni]
}
.

By (4.11), the family F is equivalent to the set

(5.30) F∗ =
{
E

[
n∏
i=1

Xαi
i

]
: (αi)1≤i≤n ∈

n∏
i=1

[Ni]
}

containing the mixed moments of (X1, · · · , Xn). Since X takes a total of N =
∏n
i=1(Ni + 1) many

values, we can write the distribution PX as the N -dimensional vector ~p = (p1, p2, . . . , pN ), where
pi = PX(X = f−1(i)) and f :

∏n
i=1[Ni]→ {1, 2, . . . , N} is the bijection defined by

(5.31) f(x1, x2, . . . , xn) =
n−1∑
i=1

 n∏
j=i+1

(Nj + 1)

xi + xn + 1, (x1, . . . , xn) ∈
n∏
i=1

[Ni].

Note that F∗ also contains N elements, and so we can write F∗ as the N -dimensional vector
~e = (e1, . . . , eN ), where ei = E[

∏n
k=1X

αk
k ], (α1, . . . , αn) = f−1(i). We show that there exists an

invertible linear operator that maps ~p to ~e. Indeed, for i = 1, . . . , n, define the (Ni + 1)× (Ni + 1)
Vandermonde matrix Ai,

(5.32) Ai =


1 1 1 . . . 1
α1 α2 α3 . . . αNi+1
α2

1 α2
2 α2

3 . . . α2
Ni+1

...
...

...
. . .

...
αNi1 αNi2 αNi3 . . . αNiNi+1,

 (α1, α2 . . . , αNi+1) = (0, 1, . . . , Ni).

Being Vandermonde matrices, all Ai are invertible. Finally, define the N × N matrix A by
A = A1⊗A2⊗ · · · ⊗An, where ⊗ denotes the Kronecker product for matrices. Then A is invertible
because all Ai are. Also, we can check that A~p = ~e, and hence the distribution of X given by
~p = A−1~e is uniquely determined by ~e, i.e., the family F∗.
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Proof of Theorem 3.12. We use [9, Proposition 4.7], which states, reinterpreted in our setting:

• Let S1 be compact and S2 be separable. Let x ∈ S1, y ∈ S2 be arbitrary and D : S1×S2 → R
be such that the set {D( · ; z) : z ∈ S2} is separating on the set of probability measures on S1.
Assume that, for any two solutions (ηt)t≥0 and (ξt)t≥0 of the martingale problem for (L1,D1)
and (L2,D2) with initial states x and y, the duality relation holds: Ex[D(ηt, y)] = Ey[D(x, ξt)]
for all t ≥ 0. If for every z ∈ S2 there exists a solution to the martingale problem for (L2,D2)
with initial state z, then for every η ∈ S1 uniqueness holds for the martingale problem for
(L1,D1) with initial state η.

Pick S1 = X , S2 = X ∗, (L1,D1) = (L,D) and (L2,D2) = (Ldual, C(X ∗)). Note that in our setting
the martingale problem for (Ldual, C(X ∗)) is already well-posed (the unique solution is the dual
process defined in Definition 3.7). Hence, combining the above observations with Proposition 5.4
and Corollary 3.10, we get uniqueness of the solutions to the martingale problem for (L,D) for
every initial state η ∈ X .

The second claim follows from [8, Theorem 6.8 of Chapter I].

6 Proofs: equilibrium and clustering criterion
In Section 6.1 we prove Theorem 3.13 and Corollary 3.14. In Section 6.2 we derive expressions
for the single-site genetic variability in terms of the dual process. In Section 6.3 we use one dual
particle to write down expressions for first moments. In Section 6.4 we use two dual particles
to write down expressions for second moments. In Section 6.5 we use these expressions to prove
Theorem 3.16.

6.1 Convergence to equilibrium
Proof of Theorem 3.13. Since the state space X is compact and thus the set of all probability
measures on X is compact as well, by Prokhorov’s theorem, it suffices only to prove convergence of the
finite dimensional distributions of Z(t) = (Xi(t), Yi(t))i∈Zd . Now recall from the proof of Proposition
5.4, the distribution of an n-dimensional random vector X(t) := (X1(t), X2(t), . . . , Xn(t)) taking
values in

∏n
l=1[Nl] is determined by

(6.1) Ft =
{
E

[
n∏
l=1

(Xl(t)αl
)

(Nlαl)

]
: (αl)1≤l≤n ∈

n∏
l=1

[Nl]
}
.

In fact, the distribution of X(t) converges if and only if E
[∏n

l=1 (Xl(t)αl
)/(Nlαl)

]
converges for all

(αl)1≤l≤n ∈
∏n
l=1[Nl] as t→∞. Since our duality function is given by,

(6.2) D((Xk, Yk)k∈Zd ; (nk,mk)k∈Zd) =
∏
i∈Zd

(
Xi
ni

)(
Ni
ni

) (Yimi)(
Mi

mi

)1{ni≤Xi,mi≤Yi},

it reduces to showing that lim
t→∞

Eνθ [D(Z(t); η)] exists for all η ∈ X ∗. Let η ∈ X ∗ be fixed. By
duality, we have

(6.3)
Eνθ [D(Z(t); η)] =

∫
X
Eξ[D(Z(t); η)] dνθ(ξ)

=
∫
X
Eη[D(ξ;Z∗(t))] dνθ(ξ) = Eη

[∫
X
D(ξ;Z∗(t)) dνθ(ξ)

]
,

where Eξ denotes expectation w.r.t the law of Z(t) stated at configuration ξ ∈ X , Z∗(t) =
(ni(t),mi(t))i∈Zd is the dual process stated at configuration η and Eη denotes expectation w.r.t the
law of the dual process. A simple calculation shows that if V is a random variable with distribution
Binom(N, p), then E

[(Vn)/(Nn)
]

= pn for 0 ≤ n ≤ N . Since (Xi(0), Yi(0))i∈Zd are all independent
under νθ with Binomial as marginal distributions,

(6.4) Eνθ [D(Z(t); η)] = Eη
∏
i∈Zd

θni(t) θmi(t)

 = Eη[θ|Z
∗(t)|],
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where |Z∗(t)| :=
∑
i∈Zd ni(t) + mi(t) is total number of particles in the dual process at time t.

Now as the dual process is coalescing, |Z∗(t)| is decreasing in time and as θ ∈ [0, 1], we see that
Eνθ [D(Z(t); η)] is increasing in time. Thus lim

t→∞
Eνθ [D(Z(t); η)] exists which proves the existence

of an equilibrium measure ν such that the distribution of Z(t) weakly converges to ν. Also by
definition, Eν [D(Z(0); η)] = lim

t→∞
Eνθ [D(Z(t); η)] = lim

t→∞
Eη[θ|Z∗(t)|].

Proof of Corollary 3.14. This follows by choosing η = δi,A and η = δi,D in the last part of Theorem
3.13 and noting that when |η| = 1, one has Eη[θ|Z∗(t)|] = θ.

6.2 Genetic variability
For i, j ∈ Zd and t ≥ 0, define

(6.5) ∆i,j(t) = ∆(i,A),(j,A)(t) + ∆(i,A),(j,D)(t),

where

(6.6) ∆(i,A),(j,A)(t) =


Xi(t)(Nj−Xj(t))

NiNj
+ Xj(t)(Ni−Xi(t))

NjNi
if i 6= j,

2Xi(t)(Ni−Xi(t))
Ni(Ni−1) if i = j and Ni 6= 1,

0 otherwise.

is the genetic variability at time t between the active populations of colony i and j, i.e., the
probability that two individuals drawn randomly from the two populations are of different type,
and

(6.7) ∆(i,A),(j,D)(t) = Xi(t)(Mj−Yj(t))
NiMj

+ (Ni−Xi(t))Yj(t)
NiMj

is the genetic variability at time t between the active population of colony i and the dormant
population of colony j.

Notice that the conditions in Definition 3.15 are equivalent to

(6.8) lim
t→∞

E(∆i,j(t)) = 0 ∀ i, j ∈ Zd,

where the expectation is taken conditional on an arbitrary initial condition (Xi(0), Yi(0))i∈Zd , which
we suppress from the notation.

We use the dual process to compute E(∆(i,A),(j,A)(t)) and E(∆(i,A),(j,D)(t)), namely,

(6.9) E(∆(i,A),(j,A)(t)) =

E
(
Xi(t)
Ni

)
+ E

(
Xj(t)
Nj

)
− 2E

(
Xi(t)Xj(t)
NiNj

)
if i 6= j,

2
[
E
(
Xi(t)
Ni

)
− E

(
Xi(t)(Xi(t)−1)
Ni(Ni−1)

)]
otherwise.

and

(6.10) E(∆(i,A),(j,D)(t)) = E
(
Xi(t)
Ni

)
+ E

(
Yj(t)
Mj

)
− 2E

(
Xi(t)Yj(t)
NiMj

)
.

Thus, in terms of the duality function D defined in Lemma 5.1,

(6.11) E(∆(i,A),(j,A)(t)) = E
(
D(Z(t); δi,A)

)
+ E

(
D(Z(t); δj,A)

)
− 2E

(
D(Z(t); δi,A + δj,A)

)
,

where δi,A, δj,A are defined in (3.13). Similarly,

(6.12) E(∆(i,A),(j,D)(t)) = E
(
D(Z(t); δi,A)

)
+ E

(
D(Z(t); δj,D)

)
− 2E

(
D(Z(t); δi,A + δj,D)

)
.

Since, by the duality relation in (3.25),

(6.13) E
(
D(Z(t);Z∗(0))

)
= E

(
D(Z(0);Z∗(t))

)
,
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we have

(6.14)

Eδi,A
(
D(η0; ξt)

)
= E

(
Xi(t)
Ni

)
, Eδi,D

(
D(η0; ξt)

)
= E

(
Yi(t)
Mi

)
,

Eδi,A+δj,A
(
D(η0; ξt)

)
=

E
(
Xi(t)(Xi(t)−1)
Ni(Ni−1)

)
if i = j,

E
(
Xi(t)Xj(t)
NiNj

)
otherwise,

Eδi,A+δj,D
(
D(η0; ξt)

)
= E

(
Xi(t)Yj(t)
NiMj

)
,

where η0 = Z∗(0) and the expectation in the left side is taken with respect to the dual process
(ξt)t≥0 = Z∗ defined in Definition 3.7. Combining the above with (6.11)–(6.12), we get

(6.15)
E(∆(i,A),(j,A)(t)) =

[
Eδi,A

(
D(η0; ξt)

)
− Eδi,A+δj,A

(
D(η0; ξt)

)]
+
[
Eδj,A

(
D(η0; ξt)

)
− Eδi,A+δj,A

(
D(η0; ξt)

)]
and

(6.16)
E(∆(i,A),(j,D)(t)) =

[
Eδi,A

(
D(η0; ξt)

)
− Eδi,A+δj,D

(
D(η0; ξt)

)]
+
[
Eδj,D

(
D(η0; ξt)

)
− Eδi,A+δj,D

(
D(η0; ξt)

)]
,

In Sections 6.3–6.4 we will derive expression for the terms appearing in (6.15)–(6.16).

6.3 Dual: single particle
We saw earlier that, in order to compute the first moment of Xi(t) and Yi(t), we need to put a
single particle at site i in the active and the dormant state as initial configurations, respectively.
This motivates us to analyse the dual process when it starts with a single particle. The generator
Ldual of the dual process can be written as

(6.17) Ldual = LCoal + LAD + LDA + LMig,

where

(LCoalf)(ξ) =
∑
i∈Zd

ni(ni − 1)
2Ni

[f(ξ − δi,A)− f(ξ)] +
∑
i∈Zd

∑
j∈Zd
j 6=i

a(i, j)
Nj

ninj [f(ξ − δi,A)− f(ξ)],

(6.18)

(LADf)(ξ) =
∑
i∈Zd

λni(Mi −mi)
Mi

[f(ξ − δi,A + δi,D)− f(ξ)],

(6.19)

(LDAf)(ξ) =
∑
i∈Zd

λmi(Ni − ni)
Mi

[f(ξ + δi,A − δi,D)− f(ξ)],

(6.20)

(LMigf)(ξ) =
∑
i∈Zd

∑
j∈Zd
j 6=i

a(i, j)
Nj

ni(Nj − nj)[f(ξ − δi,A + δj,A)− f(ξ)],

(6.21)

for f ∈ C(X ∗) and ξ = (ni,mi)i∈Zd ∈ X ∗.
When there is a single particle in the system at time 0, and consequently at any later time,

the only parts of the generator that are non-zero are LAD, LDA and LMig. Here, LAD turns an
active particle at site i into a dormant particle at site i at rate λ, LDA turn a dormant particle
at site i into an active particle at site i at rate λKi, where Ki = Ni

Mi
, while LMig moves an active

particle at site i to site j 6= i at rate a(i, j). Let us denote the state of the particle at time t by
ξ(t) ∈ Zd × {A,D}, where the first coordinate of ξ(t) is the location of the particle and the second
coordinate indicates whether the particle is active (A) or dormant (D). Let Pξ be the law of the
process (ξ(t))t≥0 with initial state ξ.
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Lemma 6.1. [First moments]

(6.22)

E
(
Xi(t)
Ni

)
=
∑
k∈Zd

Xk(0)
Nk

P(i,A)(ξ(t) = (k,A)) + Yk(0)
Mk

P(i,A)(ξ(t) = (k,D)),

E
(
Yi(t)
Mi

)
=
∑
k∈Zd

Xk(0)
Nk

P(i,D)(ξ(t) = (k,A)) + Yk(0)
Mk

P(i,D)(ξ(t) = (k,D)).

Proof. Recall that, via duality relation,

(6.23) E
(
Xi(t)
Ni

)
= Eδi,A

 ∏
k∈Zd

(
Xk(0)
nk(t)

)(
Nk
nk(t)

) (Yk(0)
mk(t)

)(
Mk

mk(t)
)1{nk(t)≤Xk(0),mk(t)≤Yk(0)}

 ,
where the expectation in the right-hand side is taken with respect to the dual process with initial
state a single active particle at site i, which has law P(i,A). Since the term inside the expectation
is equal to Xk(0)

Nk
or Yk(0)

Mk
, depending on whether ξ(t) = (k,A) or ξ(t) = (k,D), the claim follows

immediately. The same argument holds for E(Yi(t)Mi
) with initial condition (i,D) in the dual

process.

6.4 Dual: two particles
We need to find expressions for the second moments appearing in (6.9)–(6.10) in order to fully
specify E(∆(i,A),(j,A)(t)) and E(∆(i,A),(j,D)(t)). This requires us to analyse the dual process starting
from two particles. Unlike for the single-particle system, now all parts of the generator Ldual (see
(6.17)) are non-zero, until the two particles coalesce into a single particle. The two particles repel
each other: one particle discourages the other particle to come to the same location. The rates in
the two-particles system are:

• (Migration) An active particle at site i migrates to site j at rate a(i, j) if there is no active
particle at site j, otherwise at rate a(i, j)(1− 1

Nj
).

• (A→ D) An active particle at site i becomes dormant at site i at rate λ if there is no dormant
particle at site i, otherwise at rate λ(1− 1

Mi
).

• (D→ A) A dormant particle at site i becomes active at site i at rate λKi if there is no active
particle at site i, otherwise at rate λ(Ki − 1

Mi
).

• (Coalescence) An active particle at site i coalesces with another active particle at site j at
rate 1

Ni
if j = i, otherwise at rate a(i,j)

Nj
.

Note that after coalescence has taken place, there is only one particle left in the system, which
evolves as the single-particle system.

Let (ξ1(t), ξ2(t), c(t)) ∈ S = S∗ × S∗ × {0, 1} be the configuration of the two-particle system at
time t, where S∗ = Zd × {A,D}. Here ξ1(t) and ξ2(t) represent the location and state of the two
particles. The variable c(t) takes value 1 if the two particles have coalesced into a single particle
by time t, and 0 otherwise. It is necessary to add the extra variable c(t) to the configuration in
order to make the process Markovian (the rates depend on whether there are one or two particles
in the system). To avoid triviality we assume that c(0) = 0 with probability 1, i.e., two particles at
time 0 are always in a non-coalesced state. We denote the law of the process (ξ1(t), ξ2(t), c(t))t≥0
by Pξ, where the initial condition is ξ ∈ S∗ × S∗. It is to be noted that since the number of
active and dormant particles at a site i at any time are limited by Ni and Mi respectively, the
two-particle system is not defined whenever started from an initial configuration violating the
maximal occupancy of the associated sites. Let τ be the first time at which the coalescence event
has occurred, i.e.,

(6.24) τ = inf{t ≥ 0: c(t) = 1}.
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Note that, conditional on τ < t, ξ1(s) = ξ2(s) for all s ≥ t with probability 1. Define,

(6.25) M(i,α),(j,β)(t) =



Xi(t)(Xi(t)−1)
Ni(Ni−1) if i = j and α = β = A,

Xi(t)Xj(t)
NiNj

if i 6= j and α = β = A,
Yi(t)(Yi(t)−1)
Mi(Mi−1) if i = j and α = β = D,

Yi(t)Yj(t)
MiMj

if i 6= j and α = β = D,
Xi(t)Yj(t)
NiMj

if α = A and β = D,
Yi(t)Xj(t)
MiNj

otherwise,

where i, j ∈ Zd and α, β ∈ {A,D}. To avoid any ambiguity, we set M(i,α),(j,β)(·) = 0 when
((i, α), (j, β)) is not a valid initial condition for the two-particle system.

Lemma 6.2. [Second moments] For every valid initial condition ((i, α), (j, β)) ∈ (Zd×{A,D})2

of the two-particle system,

(6.26)

E
(
M(i,α),(j,β)(t)

)
= Q((i, α), (j, β), t) +

∑
k∈Zd

Xk(0)
Nk

P((i,α),(j,β))(ξ1(t) = (k,A), τ < t
)

+
∑
k∈Zd

Yk(0)
Mk

P((i,α),(j,β))(ξ1(t) = (k,D), τ < t
)
,

where

(6.27)

Q((i, α), (j, β), t)

=
∑
k∈Zd

Xk(0)(Xk(0)− 1)
Nk(Nk − 1) P((i,α),(j,β))(ξ1(t) = ξ2(t) = (k,A), τ ≥ t)

+
∑
k,l∈Zd
k 6=l

Xk(0)Xl(0)
NkNl

P((i,α),(j,β))(ξ1(t) = (k,A), ξ2(t) = (l, A), τ ≥ t)

+
∑
k,l∈Zd

Xk(0)Yl(0)
NkMl

P((i,α),(j,β))(ξ1(t) = (k,A), ξ2(t) = (l,D), τ ≥ t)

+
∑
k∈Zd

Yk(0)(Yk(0)− 1)
Mk(Mk − 1) P((i,α),(j,β))(ξ1(t) = ξ2(t) = (k,D), τ ≥ t)

+
∑
k,l∈Zd
k 6=l

Yk(0)Yl(0)
MkMl

P((i,α),(j,β))(ξ1(t) = (k,D), ξ2(t) = (l,D), τ ≥ t).

Proof. Note that M(i,α),(j,β)(t) = D(Z(t); δi,α + δj,β), where D is the duality function. So via the
duality relation, we have

(6.28) E
(
M(i,α),(j,β)(t)

)
= Eδi,α+δj,β

 ∏
k∈Zd

(
Xk(0)
nk(t)

)(
Nk
nk(t)

) (Yk(0)
mk(t)

)(
Mk

mk(t)
)1{nk(t)≤Xk(0),mk(t)≤Yk(0)}

 ,
where the expectation in the right-hand side is taken with respect to the dual process when the
initial condition has one particle at site i with state α and one particle at site j with state β, which
has law P((i,α),(j,β)). Depending on the configuration of the process at time t, the right-hand side
of (6.28) equals the desired expression.

The following lemma provides a nice comparison between the one- and two-particles system.

Lemma 6.3. [Correlation inequality] Let (ξ(t))t≥0 and (ξ1(t), ξ2(t), c(t))t≥0 be the processes
defined in Section 6.3 and 6.4, respectively, and τ the first time of coalescence defined in (6.24).
Then, for any valid initial condition ((i, α), (j, β)) ∈ (Zd × {A,D})2 of the two-particle system and
any (k, γ) ∈ Zd × {A,D},

(6.29) P(i,α)(ξ(t) = (k, γ)) ≥ P((i,α),(j,β))(ξ1(t) = (k, γ), τ < t).
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Proof. Let α = A and i, j, k ∈ Zd be fixed. Let η = Z(0) be the initial configuration defined as,

(6.30) (Xn(0), Yn(0)) =


(Nk, 0) if n = k and γ = A,

(0,Mk) if n = k and γ = D,

(0, 0) otherwise.
∀n ∈ Zd.

Now combining Lemma 6.1 and Lemma 6.2, we get

(6.31)

Eη
[
Xi(t)
Ni
−M(i,A),(j,β)(t)

]
=
∑
n∈Zd

Xn(0)
Nn

[
P(i,A)(ξ(t) = (n,A))− P((i,A),(j,β))(ξ1(t) = (n,A), τ < t)

]
+
∑
n∈Zd

Yn(0)
Mn

[
P(i,A)(ξ(t) = (n,D))− P((i,A),(j,β))(ξ1(t) = (n,D), τ < t)

]
−Q((i, A), (j, β), t)

=
[
P(i,A)(ξ(t) = (k, γ))− P((i,A),(j,β))(ξ1(t) = (k, γ), τ < t)

]
−Q((i, A), (j, β), t).

Since Q((i, A), (j, β), t) ≥ 0 and the left-hand quantity is positive, we get

(6.32) P(i,A)(ξ(t) = (k, γ)) ≥ P((i,A),(j,β))(ξ1(t) = (k, γ), τ < t).

Replacing the left-quantity in (6.31) with Eη[Yi(t)Mi
−M(i,D),(j,β)(t)] and using the same arguments,

we see that the inequality for α = D follows.

6.5 Proof of clustering criterion
Proof of Theorem 3.16. “⇐=” First we show that, if ((i, A), (j, β)) ∈ (Zd × {A,D})2 is a valid
initial condition for the two-particle system, then

(6.33) lim
t→∞

E
[
Xi(t)
Ni

−M(i,A),(j,β)(t)
]

= 0, lim
t→∞

E
[
Yj(t)
Mj

−M(i,A),(j,β)(t)
]

= 0.

Combining Lemma 6.1 and Lemma 6.2, we have

(6.34)

E
[
Xi(t)
Ni
−M(i,A),(j,β)(t)

]
=
∑
k∈Zd

Xk(0)
Nk

[
P(i,A)(ξ(t) = (k,A))− P((i,A),(j,β))(ξ1(t) = (k,A), τ < t)

]
+
∑
k∈Zd

Yk(0)
Mk

[
P(i,A)(ξ(t) = (k,D))− P((i,A),(j,β))(ξ1(t) = (k,D), τ < t)

]
−Q((i, A), (j, β), t).

Using Lemma 6.3 and the fact that Q((i, A), (j, β), t) ≥ 0, we have the following:

(6.35)

E
[
Xi(t)
Ni

−M(i,A),(j,α)(t)
]
≤

∑
S∈{A,D}
k∈Zd

∣∣P(i,A)(ξ(t) = (k, S))− P((i,A),(j,β))(ξ1(t) = (k, S), τ < t)
∣∣

=
∑

S∈{A,D}
k∈Zd

[
P(i,A)(ξ(t) = (k, S))− P((i,A),(j,β))(ξ1(t) = (k, S), τ < t)

]
= 1− P((i,A),(j,β))(τ < t)
= P((i,A),(j,β))(τ ≥ t).

Since by our assumption, τ <∞ with probability 1 irrespective of the initial configuration of the
two-particle system and as the left-hand quantity is positive, we have E

[Xi(t)
Ni
−M(i,A),(j,β)(t)

]
→ 0

as t→∞. By similar argument the other part of (6.33) is proved as well.
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If ((i, A), (j, A)) is a valid initial condition for the two-particle system, using (6.15)–(6.16) along
with (6.33), we have

(6.36)

lim
t→∞

E
(

∆(i,A),(j,A)(t)
)

= lim
t→∞

E
[
Xi(t)
Ni
−M(i,A),(j,A)(t)

]
+ lim
t→∞

E
[
Xj(t)
Nj
−M(j,A),(i,A)(t)

]
= 0.

If ((i, A), (j, A)) is not a valid initial condition, then we must have that i = j and Ni = 1 and thus
∆(i,A),(j,A)(t) = 0 by definition. So for any i, j ∈ Zd,

(6.37) lim
t→∞

E
(

∆(i,A),(j,A)(t)
)

= 0

Since ((i, A), (j,D)) is always a valid initial condition for the two-particle system, we also have

(6.38)

lim
t→∞

E
(

∆(i,A),(j,D)(t)
)

= lim
t→∞

E
[
Xi(t)
Ni
−M(i,A),(j,D)(t)

]
+ lim
t→∞

E
[
Yj(t)
Mj
−M(i,A),(j,D)(t)

]
= 0,

and thus from (6.5) we have that for any i, j ∈ Zd, E(∆i,j(t)) → 0 as t → ∞, which proves the
claim.
“=⇒” Suppose that the system clusters for any initial condition Z(0) ∈ X . We will prove via
contradiction that in the dual two particles with arbitrary initial states coalesce with probability 1,
i.e., τ < ∞ with probability 1. Suppose that this is not true, i.e., for some initial configuration
ξ1, ξ2 ∈ Zd × {A,D} of the two particles we have P(ξ1,ξ2)(τ =∞) > 0. Since the dual process with
two particles is irreducible (any valid state is accessible), we have Pξ(τ = ∞) > 0 for any valid
initial condition ξ ∈ (Zd × {A,D})2. Let θ = P((i,A),(i,D))(τ =∞) > 0, where i ∈ Zd is fixed. Note
that ((i, A), (i,D)) is always a valid initial condition for the two-particle system, since Ni,Mi ≥ 1.
Let P(i,A) be the law of the single-particle process (ξ(t))t≥0 started with initial condition (i, A). We
first show that for any (k, γ) ∈ Zd × {A,D},

(6.39) lim
t→∞

[
P(i,A)(ξ(t) = (k, γ))− P((i,A),(i,D))(ξ1(t) = (k, γ), τ < t)

]
= 0.

Let (k, γ) ∈ Zd × {A,D} be fixed and η = Z(0) be the initial configuration defined as

(6.40) (Xn(0), Yn(0)) =


(1, 0) if n = k and γ = A,

(0, 1) if n = k and γ = D,

(0, 0) otherwise.
∀n ∈ Zd.

Since by our assumption the system clusters for any initial configuration, we must have

(6.41) lim
t→∞

Eη
[
Xi(t)(Mi−Yi(t))

NiMi

]
= 0.

As ((i, A), (i,D)) is a valid initial condition for the two-particle system, using (6.34) with η as
initial configuration, we get

(6.42)

Eη
[
Xi(t)(Mi−Yi(t))

NiMi

]
= Eη

[
Xi(t)
Ni
−M(i,A),(i,D)(t)

]
=
∑
n∈Zd

Xn(0)
Nn

[
P(i,A)(ξ(t) = (n,A))− P((i,A),(i,D))(ξ1(t) = (n,A), τ < t)

]
+
∑
n∈Zd

Yn(0)
Mn

[
P(i,A)(ξ(t) = (n,D))− P((i,A),(i,D))(ξ1(t) = (n,D), τ < t)

]
−Q((i, A), (i,D), t).

Also note from Lemma 6.2 that Q((i, A), (i,D), t) = 0. Hence the above reduces to

(6.43) Eη
[
Xi(t)(Mi−Yi(t))

NiMi

]
= 1
N

[
P(i,A)(ξ(t) = (k, γ))− P((i,A),(i,D))(ξ1(t) = (k, γ), τ < t)

]
,
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where N = Nk1γ=A +Mk1γ=D. From (6.41), the left-hand side tends to 0 as t→∞, and, because
N > 0, we have

(6.44) lim
t→∞

[
P(i,A)(ξ(t) = (k, γ))− P((i,A),(i,D))(ξ1(t) = (k, γ), τ < t)

]
= 0.

But now

(6.45)

θ = lim
t→∞

[
1− P((i,A),(i,D))(τ < t)

]
= lim
t→∞

∑
γ∈{A,D}
k∈Zd

[
P(i,A)(ξ(t) = (k, γ))− P((i,A),(i,D))(ξ1(t) = (k, γ), τ < t)

]

=
∑

γ∈{A,D}
k∈Zd

lim
t→∞

[
P(i,A)(ξ(t) = (k, γ))− P((i,A),(i,D))(ξ1(t) = (k, γ), τ < t)

]
= 0,

which is a contradiction.
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