A General "Power-of-d" Dispatching Framework for Heterogeneous Systems

Kristy Gardner Amherst College

Based on joint work with Jazeem Abdul Jaleel, Sherwin Doroudi, and Alexander Wickeham University of Minnesota

> YEQT Conference June 7, 2021

How to dispatch in multi-server systems?

Join the Shortest Queue (JSQ)

Leveraging Server Heterogeneity

There are **two** points at which the dispatcher can use server speed information

System Model

 k_2 class-2 servers

Modeling Assumptions k servers, s server speed classes $k_i = kq_i$ servers in class iIndependent service times, distribution G_i with mean $1/\mu_i$ $\mu_1 > \mu_2 > \cdots > \mu_s$ Poisson arrival process with rate $k\lambda$ Dispatcher decides immediately to which server to send a job Scheduling: any work-conserving policy

Goal: design dispatching policies to achieve low mean response time

Key idea: Dispatching policy = Querying rule + Assignment rule

Querying Rules

Notation $d: # of servers queried (constant, \ll k)$ $d_i: # of class-i servers queried$ $\vec{d} = (d_1, ..., d_s):$ query mix $\mathcal{D} = \{\vec{d}: d_1 + \dots + d_s = d\}:$ set of possible query mixes

Two important properties:

- Symmetric: servers of the same class are treated *ex ante* identically
- **Static**: dispatcher doesn't maintain any history

Querying rule: $p(\cdot): \mathcal{D} \rightarrow [0,1]$

Querying Rules

GEN: any distribution over \mathcal{D}

IND: each of the d queried server classes is chosen independently

IID: each of the *d* queried server classes is chosen independently *from the same distribution*

DET: the same query mix is always used (\vec{d} is deterministic)

SRC: probabilistically chooses one server class, then queries *d* servers from that class

SFC: always queries *d* class-*i* servers for some fixed class *i*

Assignment Rules

$\underline{Notation}$ $\vec{d} = (d_1, ..., d_s): \text{query mix}$ $\mathcal{D} = \{\vec{d}: d_1 + \cdots + d_s = d\}: \text{set of possible query mixes}$ $\vec{x}(\vec{d}): \text{ information obtained about the } d \text{ queried servers}$ $\mathcal{X} = \{\vec{x}(\vec{d}): \vec{d} \in \mathcal{D}\}: \text{ set of possible query results}$

Two important properties:

- **Symmetric**: servers with the same state are treated identically
- **Static**: dispatcher doesn't maintain any history

Assignment rule: $\alpha(\cdot, \cdot): \mathcal{D} \times \mathcal{X} \rightarrow [0, 1]$

Assignment Rules

Analyzing (GEN, CID): Approach

Goal: Find *E*[*T*] given querying and assignment rules

Assumptions:

- $k \rightarrow \infty$, with q_i fixed
- States of all servers of the same class evolve stochastically identically
- All server states are independent

Main analytic technique: tag a class-*i* server and examine what happens whenever a new job arrives in steady-state, via mean-field analysis:

- Is the tagged server queried?
- If so, does it get the job?

Analyzing **(GEN, CID)**: Preliminaries

Observation: tagged class-*i* server has different arrival rates when **idle** vs **busy**

- When **idle**: Poisson (λ_i^I)
- When **busy**: Poisson (λ_i^B)

Observation: once busy, server behaves like an $M/G_i/1$ with arrival rate λ_i^B

Mean busy period duration:

$$E[B_i] = \frac{1}{\mu_i - \lambda_i^B}$$

Fraction of time a server is busy:

$$\rho_i = \frac{E[B_i]}{1/\lambda_i^I + E[B_i]} = \frac{\lambda_i^I}{\mu_i - \lambda_i^B + \lambda_i^I}$$

Analyzing $\langle GEN, CID \rangle$: E[T]

Condition on the server's class:

$$E[T] = \sum_{i=1}^{s} \left(\frac{k_i (1 - \rho_i) \lambda_i^I + k_i \rho_i \lambda_i^B}{k\lambda} \right) E[T_i] \qquad \text{at a class-} i M/G_i/1$$

with arrival rate λ_i^B
Any work-conserving
scheduling policy!

Mean response time

$$= \sum_{i=1}^{s} q_i \left(\frac{(1-\rho_i)\lambda_i^I + \rho_i \lambda_i^B}{\lambda} \right) E[T_i]$$

All that remains: finding λ_i^I and λ_i^B

Analyzing $\langle GEN, CID \rangle$: λ_i^I and λ_i^B

Given \vec{d} , probability that the tagged server is in the query: $\frac{d_i}{k_i}$ \vec{d} =

 $\vec{d} = (d_1, \dots, d_s)$: query mix

Rate at which the tagged server is queried:
$$\lambda k \sum_{\vec{d} \in D} p(\vec{d}) \frac{d_i}{k_i} = \frac{\lambda}{q_i} \sum_{\vec{d} \in D} p(\vec{d}) d_i$$

Define $r_i^I(\vec{d})$: prob. job is sent to the tagged server, given \vec{d} and tagged server is **idle** $r_i^B(\vec{d})$: analogous, tagged server is **busy**

$$\lambda_{i}^{I} = \frac{\lambda}{q_{i}} \sum_{\vec{d} \in \mathcal{D}} p(\vec{d}) d_{i} r_{i}^{I}(\vec{d})$$

$$\lambda_i^B = \frac{\lambda}{q_i} \sum_{\vec{d} \in D} p(\vec{d}) d_i r_i^B(\vec{d})$$

All that remains: finding $r_i^I(\vec{d})$ and $r_i^B(\vec{d})$

Analyzing $\langle \mathbf{GEN}, \mathbf{CID} \rangle$: $r_i^I(\vec{d})$

 $r_i^I(\vec{d})$: prob. job is sent to the tagged server, given \vec{d} and tagged server is **idle**

Define $b_i(\vec{d})$: probability that all faster queried servers are busy

$$b_i(\vec{d}) = \prod_{j=1}^{i-1} \rho_j^{d_j}$$

Job is then assigned to a class-*i* server w.p. $\alpha_i(i, \overline{d})$

$$r_i^I(\vec{\boldsymbol{d}}) = b_i(\vec{\boldsymbol{d}})\alpha_i(i,\vec{\boldsymbol{d}})\sum_{a_i=1}^{d_i} \binom{d_i-1}{a_i-1} \frac{(1-\rho_i)^{a_i-1}\rho_i^{d_i-a_i}}{a_i}$$

Analyzing (GEN, CID): Putting it all together

Solve the system of equations:

$$E[T] = \sum_{i=1}^{s} q_i \left(\frac{(1 - \rho_i)\lambda_i^I + \rho_i \lambda_i^B}{\lambda} \right) E[T_i]$$

Numerical Results: (·, CID)

Conclusion

Two Quick Advertisements...

• Amherst College Computer Science is hiring!

• I'll be visiting the Netherlands for (some part of) the upcoming academic year!

kgardner@amherst.edu