Data-Driven Stochastic Network Control via Reinforcement Learning

Qiaomin Xie, Cornell ORIE
YEQT, June 9th 2021

 Longer talks for 1 & 2: In SIGMETRICS workshop “Reinforcement Learning in Networks and Queues”, June 14, 2021
Example I: Multi-Class Single Server

- A discrete-time system with two infinite-buffer queues
 - Unbounded state space: \(q = (q_1, q_2) \in \mathbb{N} \times \mathbb{N} \)

- Scheduling decision/action
 - \(A = \{1, 2\} \), i.e., which queue to serve

- Goal: minimize average total queue length (i.e., delay)
Example II: Multi-Class Parallel-Servers

Parallel server scheduling

Input 1
- $\lambda_{1,1} = 0.4$
- $\lambda_{1,2} = 0.4$

Input 2
- $\lambda_{2,1} = 0.2$
- $\lambda_{2,2} = 0.1$

Matching

Switch scheduling

Routing/load balancing
Challenges

"Model-driven" approach
1. Accurate stochastic modeling of system
2. Rely on intuition or a flash of genius to guess a good algorithm
3. Test/tune the algorithm
4. Prove performance guarantees

Challenge 1: Lack of accurate models
- Unknown system parameters
- Time-varying dynamics

Challenge 2: Optimal policies difficult to find
- Even for simple, known models
- More so for: jobs with multiple dependent tasks, heterogeneity of servers/jobs, general service time, etc.
Data-Driven Approach

- Opportunity: availability of fine-grained data or system-level simulators
- A data-driven framework: **Reinforcement Learning** (RL)

![Diagram]

- Challenge 1: Lack of accurate models
 - **Learn system dynamics from data**

- Challenge 2: Optimal policies difficult to find
 - **Discover new policies**
RL for Learning to Schedule

- Learn to schedule purely from data
 - System model unknown

- Optimize a given criterion
 - e.g., minimize average/discounted queue lengths

- Key characteristic: unbounded state space
 - e.g., \(q = (q_1, q_2) \in \mathbb{N} \times \mathbb{N} \)
Challenges of Unbounded State Space

- Insufficiency of *offline*-training-then-deploy
 - Using finite samples
 - Reach a previously *unobserved state*
 - Might have undesirable behavior
 - e.g., serving an empty queue while the other queue is large; assign slow server to busy queue

- Require *online training*: decide action when encountering new states

![Diagram of an unobserved state](image)
Summary of Our Results

- A notion of *stability* to quantify “goodness” of RL algorithm
 - Applies to general systems with unbounded state space
 - Stability provides a first-order optimality

- An *online* RL algorithm that achieves stability
 - Sample complexity bounds

- From stability to optimality
Markov Decision Process (MDP)

- Infinite horizon discounted MDP: \((S, A, p, R, \gamma)\)
 - \(S\): **unbounded** state space
 - \(A\): **finite** action space
 - \(p(s'|s, a)\): transition kernel
 - \(R(s, a)\): one-stage reward
 - \(\gamma \in (0,1)\): discount factor

- (Stochastic) Policy \(\pi\): \(S \rightarrow \Delta(A)\)
- State-action value function (Q-function)

\[
Q^\pi(s, a) = E_\pi \left[\sum_{t=0}^{\infty} \gamma^t R(s_t, a_t) \mid s_0 = s, a_0 = a \right]
\]

- Optimal Q-function

\[
Q^*(s, a) = \max_\pi Q^\pi(s, a)
\]
Minimizing queue length requires keeping queue length finite. **Stability** is a necessary first step towards optimality.

Definition (Stability)

We call a policy \(\{\pi_t\} \) stable, if \(\forall \theta \in (0,1) \), there exists a bounded set \(S(\theta) \subset S \) s.t.

1. **Boundedness:**
 \[
 \liminf_{t \to \infty} \mathbb{P}(s_t \in S(\theta) | s_0 = s) \geq 1 - \theta, \forall s \in S.
 \]

2. **Recurrence:**
 Let \(T(s, t, \theta) = \min\{k \geq 0: s_{t+k} \in S(\theta) | s_t = s\} \),
 \[
 \sup_t \mathbb{E}[T(s, t, \theta) | s_t = s] < \infty, \forall s \in S.
 \]
Question: For unbounded state space, how to learn a stable policy in a data-driven manner?

We use a Monte-Carlo simulation and search method.
A Monte Carlo Approach

- At each time step t
 - Query a Monte Carlo (MC) oracle
 - Input: state s_t
 - Output: a probability distribution over actions μ_t
 - Take action $a_t \sim \mu_t$ and reach state s_{t+1}
A Monte Carlo Approach

- At each time step t
 - Query a Monte Carlo (MC) oracle
 - Input: state s_t
 - Output: a probability distribution over actions μ_t
 - Take action $a_t \sim \mu_t$ and reach state s_{t+1}

Using finite samples

\[a_0 \sim \mu_0 \rightarrow s_0 \]
\[a_1 \sim \mu_1 \rightarrow s_1 \]
\[\vdots \]
\[a_t \sim \mu_t \rightarrow s_t \]
Monte Carlo Oracles

- Sparse-Sampling Oracle [Kearns-Mansour-Ng, ‘02]
- Monte Carlo Tree Search [Kocsis-Szepesvari, ‘06] [Shah-X-Xu, ’20]
- Oracle Approximation Guarantees for MCTS

Theorem [Shah-X-Xu ‘20]

With appropriate parameters, with probability at least $1 - \delta$,

$$|\hat{Q}(s, a) - Q^*(s, a)| \leq \varepsilon, \forall a.$$

Corollary

With softmax policy $\mu(s, a) \propto e^{\hat{Q}(s,a)/\tau}$, we have

$$||\mu(s,:) - \pi^*(s)||_{TV} \leq c_1 \frac{e^{\varepsilon/\tau} - 1}{e^{\varepsilon/\tau} + 1} + c_2 e^{-\frac{c_3}{\tau}},$$

where $c_1, c_2, c_3 > 0$ are constants.

Can be small with small ε and τ
From Approximation to Stability

Questions:
- When is the policy $\{\mu_t\}$ stable?
- What is the sample complexity of each oracle query?

When is stability possible
- The Markov chain M^* under the optimal policy π^* is positive recurrent
- A necessary and sufficient condition for positive recurrence of a Markov chain is the existence of a Lyapunov function\(^1\)
- We assume that M^* satisfies a Lyapunov Drift Condition

Assumption: Lyapunov Function

Assumption

There exists a function $L: S \rightarrow \mathbb{R}^+$ such that the Markov chain under π^* satisfies that

1. change of L for any transition is bounded,
2. has a negative drift $-\alpha$ when $L(s) > B$.

Example: single-server two-queue system

- Optimal policy π^*: $c\mu$ rule
- $L(q_1, q_2) = \frac{q_1}{\mu_1} + \frac{q_2}{\mu_2}$ satisfies the assumption

Remark: Algorithm *not* need to know the Lyapunov function
Main Results

Theorem (Stability)

Under the Lyapunov assumption, with proper parameters, the resulting policy \(\{\mu_t\} \) sequence is stable.

Theorem (Sample complexity)

Sample complexity per time step for small \(\alpha \) scales as

\[
O \left(\left(\frac{1}{\alpha^4} \log \frac{1}{\alpha} \right)^{\log \frac{1}{\alpha}} \right)
\]
Refinements

- **Adaptive version**
 - Automatically discover the appropriate tuning parameters ε, τ
 - Using a statistical hypothesis test for growing queue length

- **Sample-efficient version**
 - Small α: high load regime in queueing
 - From super-polynomial to polynomial

$$O \left(\left(\frac{1}{\alpha^4 \log \frac{1}{\alpha}} \right)^{\log \frac{1}{\alpha}} \right) \rightarrow O \left(\frac{1}{\alpha^{2d+4}} \right)$$
From Stability to Optimality

- Given a **stable** policy, can we learn the **optimal** policy? *Yes!*

Our Approach:

For the **outside** states
- Apply default **stable** policy π^{stable}
 - e.g. policy we already know
 - Or, use stable RL
- Cost for other states can be controlled

For the **truncated state space**
- Apply model-based RL policy π^{RL}
- Converge to optimal policy $\tilde{\pi}^*$

20
Theoretical Guarantee

Theorem [Liu-X-Modiano, ‘19]

Under Lyapunov assumption, with state space truncated at U, the average queue length of our algorithm approaches the optimal queue length exponentially fast.

\[
\lim_{T \to \infty} \frac{\mathbb{E} \left[\sum_{t=1}^{T} \sum_i Q_i(t) \right]}{T} = \rho^* + \mathcal{O} \left(\frac{1}{\exp(U)} \right)
\]
Simulation: Scheduling with Connectivity

- π_0: Serve-Longest-Connected Queue
- $U=5$: converge to 3.93
- $U=10$: converge to 3.75

RL as Performance Benchmarks

- RL methods can achieve state-of-art performance for complex stochastic network control problems
- Switch Scheduling:
RL as Performance Benchmarks

- OR-Suites: OR version of OpenAI gym
 - Ongoing with S. Sinclair, C. Lee Yu and S. Banerjee
 - RL Benchmarks for operations research applications
 - Rideshare matching
 - Ambulance routing
 - Revenue management
 - Foodbank allocation
 - ...

- Demo at RLNQ Workshop
Summary

- RL for stochastic network control with unbounded state space
 - A notion of stability suitable for RL setting
 - Achieve stability by Monte Carlo planning
 - From stability to optimality

- Future work
 - Combined with function approximation and policy optimization
 - Complex stochastic networks: synthesizing model-driven & data-driven approaches
Thank you!