The Drift Method
Switch Scheduling and Load Balancing

R. Srikant
c3.ai DTI / ECE / CSL
University of Illinois at Urbana-Champaign
Design Algorithms/Characterize Delay
Performance

Data Center: large number of servers, large network, massive amounts of data
Outline

• Drift Method: An Introduction

• Scheduling in Switches (heavy traffic $\rho \rightarrow 1$)

• Load Balancing in Cloud Computing Systems ($\rho < 1$)

• Conclusions
Part I: Introduction
Stochastic Dynamical Systems

\[W_{k+1} = f_\theta(W_k, \text{noise}) \]

- Communication Networks, Queueing Systems: \(W_k \) is a vector of queue lengths
 - The “noise” is the randomness in the arrival/departure process
- Reinforcement Learning: \(W_k \) is a vector of neural network parameters used to approximate the value function associated with a Markov process.
 - The “noise” is observation of the states which is assumed to evolve according the Markov process
- \(\theta \): parameters of a control policy (e.g., a scheduling or a routing policy)
Performance Analysis/Design

\[W_{k+1} = f_\theta(W_k, \text{noise}) \]

- Evaluate the performance of a control policy \(\theta \) in terms of a performance metric
 - E.g.: \(E(c(W(\infty))) \) or \(\frac{1}{T} \sum_{t=0}^{T} c(W(t)) \)
 - Example: \(W = q \), vector of queue lengths, and \(c(q) = q_1 + q_2 + \cdots + q_n \)
 - In RL, \(W \) is the vector of neural network parameters used to approximate the value function \(V \) of a Markov process and \(c(W) \) is some measure of the accuracy of the approximation
 - In addition to performance analysis, we may also be interested in getting an improved control policy (not in today’s talk)
Steady-State Analysis

• Lyapunov drift for moment bounds: non-negative L s.t.

\[E[L(W(t+1)) - L(W(t))|F_{t-1}] \leq -c(W(t)) + K \]

Thus,

\[E(c(W(t))) \leq E(L(W(t))) - E(L(W(t+1))) + K \]

• Recall: we are interested in bounding $E(c(W(\infty)))$
Steady-State Analysis

• In steady-state

\[E(L(W(t))) - E(L(W(t + 1))) = 0 \]

Then,

\[E(c(W(\infty))) \leq K \]

• Technicality: one has to show that \(E(L(W(\infty))) \) exists
• How do we choose the Lyapunov function?
Part II: Switch Scheduling
Collaborator

Siva Theja Maguluri, GaTech
nxn Switch: Abstraction of a Data Center

- The matrix of queues operates in discrete-time
 - Queue \((i, j)\) contains packets generated at server \(i\) destined for server \(j\)
- Key constraint: In each time slot, one can remove at most one packet from the matrix from each row and at most one packet from each column
Bipartite Graph Interpretation

• Packets arrive to the edges of a bipartite graph
 • Link \((i, j)\) is an edge from server \(i\) to server \(j\)

• Only edges with non-zero backlogs are shown here

• New arrivals add to the backlog/create a new edge
Choose a Matching

• Remove one packet from each edge in the matching
Stability Condition

• λ_{ij}: Arrival rate of packets to matrix element (i,j). Necessary condition for stability:

$$\sum_i \lambda_{ij} < 1, \quad \sum_j \lambda_{ij} < 1.$$

• The necessary condition is also sufficient by the Birkhoff-von Neumann theorem (the matrix Λ is column and row sub-stochastic)

• Define $\rho = \max\{\sum_i \lambda_{ij}, \sum_j \lambda_{ij}\}$ to be the load on the switch
Open Conjecture I

• Is there a scheduling algorithm (i.e., a matching in each time slot) such that the expected packet delay in the network is $O(1)$?

• Why is the question interesting?
 • Practical significance: network size-independent delay
 • There exists a known lower bound which is $O(1)$
 • Conjecture: Yes
(Previously Open) Conjecture II

- In the limit as $\rho \to 1$ (the load increases), there exists a scheduling algorithm such that

\[
\frac{E(Delay)}{Lower \; Bound} \to O(1)
\]

- Remarks:
 - Computing $E(Delay)$ is equivalent to computing the expectation of the sum of the components of a Brownian motion constrained to live in a cone in \mathbb{R}^{n^2}.
 - The steady-state distribution of which is unknown!
Theorem

• In the limit $\rho \to 1$, using MaxWeight Matching,

\[
\frac{E(Delay)}{\text{Lower Bound}} \to \left(2 - \frac{1}{n}\right)
\]

• Remark: in terms of the (reflected) Brownian motion,

\[
E(\Sigma_{ij} X_{ij}) = O(n),
\]

even though there are n^2 components in the state of the Brownian motion
MaxWeight Matching

- Associate a weight with each edge: the backlog of packets at that link

- Find a matching with the largest weight

- Remove one packet from each edge in the matching
MaxWeight Matching

• Associate a weight with each edge: the backlog of packets at that link

• Find a matching with the largest weight

• Remove one packet from each edge in the matching
Back to the Switch Problem

• One packet from each link in the MaxWeight matching is removed
• In the meantime, arrivals to other links increase their weight
• At some point, there will be at least two matchings with the largest weight
• Important Insight: Eventually all (maximal) matchings will have roughly equal weight
State-Space Collapse

• Simplest 2x2 case: All matchings have equal weights implies state collapses from 4 dimensions to 3 dimensions

State Space Collapse for Switch

\[q = \begin{bmatrix}
 \tilde{w}_1 & \cdots & \tilde{w}_j & \cdots & \tilde{w}_n \\
 w_1 + \tilde{w}_1 & w_1 + \tilde{w}_j & w_1 + \tilde{w}_n \\
 \vdots & \vdots & \vdots & \vdots & \vdots \\
 w_i + \tilde{w}_1 & \cdots & w_i + \tilde{w}_j & \cdots & w_i + \tilde{w}_n \\
 \vdots & \vdots & \vdots & \vdots & \vdots \\
 w_n + \tilde{w}_1 & w_n + \tilde{w}_j & w_n + \tilde{w}_n
\end{bmatrix} \]

- The $2n$ variables w_i and \tilde{w}_j characterize the state. The algorithm pushes the state to lie in a $(2n - 1)$-dimensional space, instead of \mathbb{R}^{n^2}.
- Good policies seem to force a dramatic state-space collapse to achieve good performance in high-dimensional problems.
Drift of a Lyapunov Function

• Let q_{\parallel} denote the projection of the state vector in the lower-dimensional space. Define $q_{\perp} = q - q_{\parallel}$

Key Lemma:
\[
E \left(\|q_{\perp}(t + 1)\| - \|q_{\perp}(t)\| \bigg| q(t) \right) < 0 \text{ for “large” } \|q_{\perp}(t)\|
\]

• Using Hajek (1982) or Bertsimas, Gamarnik, Tsitsiklis (2001), one can then show that $E(\|q_{\perp}\|) \ll E(\|q\|)$ in steady-state, i.e., state-space collapse
Completing the Proof

• In steady-state: \(E \left(\| q_\parallel (t + 1) \|^2 \right) = E \left(\| q_\parallel (t) \|^2 \right) \)

• \(\| q_\parallel \|^2 = \sum_i \left(\sum_j q_{ij} \right)^2 + \sum_j \left(\sum_i q_{ij} \right)^2 - \frac{1}{n} \left(\sum_{ij} q_{ij} \right)^2 \)

• A long sequence of manipulations yields the result:

\[
\lim_{\rho \to 1} (1 - \rho) E \left(\sum_{ij} q_{ij} \right) = O(n)
\]

• From here, it is straightforward to show the main result on the ratio of the delay to the lower bound is \(O(1) \)
Comparing with the Traditional Approach

• In steady-state: $E(\|q(t + 1)\|^2) = E(\|q(t)\|^2)$

• Yields:

$$\lim_{\rho \to 1} (1 - \rho)E \left(\sum_{ij} q_{ij} \right) = O(n^2)$$

• Throwing away the “unnecessary” component of q gives us a much better result
Part III: Load Balancing
Coauthors

Wentao Weng

Xingyu Zhou
Load Balancing with Locality

• A job to a server can only be served by servers with the data it needs. **Goal: optimal response time**

- Green job can only be served at the servers with green data
- Load balancing does not involve all servers for all jobs
- Other models: Wang, Zhu, Ying, Tan and Zhang (2014), Xie and Lu (2015), Xie, Yekkehkhany, Lu (2016),...
- Important related work: Mukherjee, Borst, Leeuwarden (2018), Cruise, Jonckheere, Shneer (2020)
More than Stability…

- Poisson arrivals, exponential service times
- Is JSQ (join-the-shortest-queue) optimal in this model?
 - In the sense of minimizing mean response time
- What’s the mean response time when the system size does not scale to infinity?
 - Bounds on the deviation from the mean-field limit for finite-sized systems

\[\lambda_1 \rightarrow 1 \rightarrow 1 \rightarrow \mu_1 \]
\[\lambda_2 \rightarrow 2 \rightarrow 2 \rightarrow \mu_2 \]
\[\ldots \]
\[\lambda_L \rightarrow L \rightarrow \ldots \rightarrow N \rightarrow \mu_N \]
Optimality

• For a **well-connected** system,

 JSQ has asymptotically zero delays for homogeneous servers

 JFSQ is asymptotically optimal for heterogeneous servers

 Join-the-Fastest-of-the-Shortest-Queues

 Stronger than zero delays

 Never wait in a queue

 JFSQ: In case of a tie in the shortest queue lengths, join the top queue
Optimality

- For a **well-connected** system,

 - JSQ has asymptotically zero delays for homogeneous servers
 - JFSQ is asymptotically optimal for heterogeneous servers
 - A delay bound for finite systems

Contemporaneous work: Rutten and Mukherjee (2020)
Model assumptions (simpler case)

- Finite buffer size: b
- Traffic:
 \[\sum \lambda_i = N \lambda, \lambda \in [0,1) \]
 - N can scale, λ is fixed.
- We are interested in the large-server limit and in performance guarantees for large, but finite-sized systems
Notation

• N: number of servers, Finite buffer size: b

• S_i is the fraction of servers with at least i backlogged jobs.
 • Thus, $NS_i = N\lambda$

• Note that $N \sum_{i \geq 1} S_i$ is the total number of jobs in the system

• In an “ideal” system, we would like $\sum_{i \geq 1} S_i \approx \lambda$
Main result

“Well-Connected Graph” assumption:
For any subset A of servers such that
$$|A| \geq \frac{1-\lambda}{2} N,$$
the sum of arrival rates of ports not connected with A is bounded by $\tilde{d}N$.

For any $0 < \epsilon \leq \frac{1-\lambda}{4}$, with $\tilde{d} \leq \frac{\epsilon}{2b}$,
under JSQ,
$$E \left[\max \left(\sum_{i \geq 1} S_i - (\lambda + \epsilon), 0 \right) \right] = O \left(\frac{b^2}{\epsilon N} \right),$$
and the blocking probability is at most
$$\frac{\tilde{d}}{\lambda} + O \left(\frac{b^2}{\epsilon N} \right).$$

$S_i(t)$ is the fraction of servers with queue length at least i
Interpretation

- **Assumption:** Any large subset of servers must be connected to a large number of sources
- Is JSQ nearly optimal for our model?
 - Yes! Asymptotically goes to 1
- What is the blocking probability?
 - Asymptotically goes to zero
- For finite-sized systems, close to the above asymptotic values
 - Depending on the buffer size, the connectivity of the graph, and the size of the system

\[\lambda_1 \rightarrow 1 \rightarrow 1 \quad \lambda_2 \rightarrow 2 \rightarrow 2 \quad \vdots \quad \lambda_L \rightarrow L \rightarrow N \rightarrow 1 \]
Proof: The Goal is to Match the Mean-Field

• $S_i = \frac{1}{N} \times \text{# of servers with queue length } \geq i$

• For JSQ in classical load balancing, when $N \to \infty$,

 $S_1 \to \lambda, S_i \to 0, \forall i \geq 1$

• Want to show similar result for bipartite load balancing
Drift method for the Large-Server Limit

• Metric of Interest: \(E \left[\left(\sum_{i=1}^{b} S_i - (\lambda + \epsilon) \right)^+ \right] \)

• Use the Lyapunov function \(L(S) = \frac{1}{2} \max \left(\sum_{i=1}^{b} S_i - (\lambda + \epsilon), 0 \right)^2 \)
Key Difficulty in the Drift Analysis

• We need to show that the system does not idle when there are enough jobs in the system.

Resource Pooling
Use a Second Lyapunov function

- Consider the Lyapunov function \((\text{Liu and Ying, 2020})\)
 \[
 V(s) = \min \left(\sum_{i=2}^{b} s_i, \left(\lambda + \frac{1}{2} \epsilon + 4 \delta - s_1 \right)^+ \right)
 \]

- If \(V(s)\) is small: either purple region or yellow region is small.
Large V Implies Many Idle Servers

- $V(s) = \min \left(\sum_{i=2}^{b} s_i, \left(\lambda + \frac{1}{2} \epsilon + 4\delta - s_1 \right)^+ \right)$

- If $V(s) \geq \frac{1}{2} \epsilon + \delta$, then $s_1 \leq \lambda + 3\delta$

 - #of idle servers must be large: $N(1 - s_1) \geq \frac{N(1-\lambda)}{2}$
 - Show V has negative drift
“Well Connectedness” implies negative drift

Consequence of the “Well Connectedness” assumption:
If the number of idle servers is large, then the arrival rate must be large

- # idle servers $= N(1 - s_1) \geq \frac{N(1-\lambda)}{2}$
- Implies # idle servers decreases

\[\geq \lambda \Sigma - \tilde{d}N \leq \tilde{d}N \]

Demand Pooling

\[\sum_{i=2}^b S_i \]
• Putting it all together yields

\[E \left[\max \left(\sum_{i=1}^{b} S_i - (\lambda + \epsilon), 0 \right) \right]^+ = O \left(\frac{b^2}{\epsilon N} \right) \]

• The analysis of JFSQ is a bit more complicated, but the key ideas presented here are used there as well
Conclusions

• Lyapunov drift is a powerful tool to study the performance of control policies in complex (deterministic and) stochastic systems
 • Two examples: cloud computing and RL

• Not covered here:
 • Stability analysis (books of S.+Ying, Asmussen, Meyn+Tweedie, Meyn)
 • Utility-based resource allocation (books of Neely, S.+Ying)
 • Useful for online learning too
 • Stein’s method (Stein, Dai+Braverman, Gurvich, Ying, Stolyar)
 • Reinforcement learning (work with Cayci, Satpathi, He)