The Drift Method Switch Scheduling and Load Balancing

R. Srikant c3.ai DTI / ECE / CSL University of Illinois at Urbana-Champaign

Data Centers and Cloud Computing

Data Center: large number of servers, large network, massive amounts of data

Design Algorithms/Characterize Delay Performance

Outline

- Drift Method: An Introduction
- Scheduling in Switches (heavy traffic $\rho \rightarrow 1$)
- Load Balancing in Cloud Computing Systems (ho < 1)
- Conclusions

Part I: Introduction

Stochastic Dynamical Systems

 $W_{k+1} = f_{\theta}(W_k, noise)$

- Communication Networks, Queueing Systems: W_k is a vector of queue lengths
 - The "noise" is the randomness in the arrival/departure process
- Reinforcement Learning: W_k is a vector of neural network parameters used to approximate the value function associated with a Markov process.
 - The "noise" is observation of the states which is assumed to evolve according the Markov process
- θ : parameters of a control policy (e.g., a scheduling or a routing policy)

Performance Analysis/Design

 $W_{k+1} = f_{\theta}(W_k, noise)$

- Evaluate the performance of a control policy $\boldsymbol{\theta}$ in terms of a performance metric
 - E.g.: $E(c(W(\infty)) \text{ or } \frac{1}{T} \sum_{t=0}^{T} c(W(t))$
 - Example: W = q, vector of queue lengths, and $c(q) = q_1 + q_2 + \dots + q_n$
 - In RL, W is the vector of neural network parameters used to approximate the value function V of a Markov process and c(W) is some measure of the accuracy of the approximation
 - In addition to performance analysis, we may also be interested in getting an improved control policy (not in today's talk)

Steady-State Analysis

• Lyapunov drift for moment bounds: non-negative L s.t.

$$E\left[L\left(W(t+1)\right) - L\left(W(t)\right)\middle|F_{t-1}\right] \le -c\left(W(t)\right) + K$$

Thus,

$$E(c(W(t)) \le E(L(W(t)) - E(L(W(t+1)) + K))$$

• Recall: we are interested in bounding $E(c(W(\infty)))$

Steady-State Analysis

• In steady-state

$$E(L\big(W(t)\big)-E(L\big(W(t+1)\big)=0$$

Then,

 $E(c(W(\infty))) \leq K$

- Technicality: one has to show that $E(L(W(\infty)))$ exists
- How do we choose the Lyapunov function?

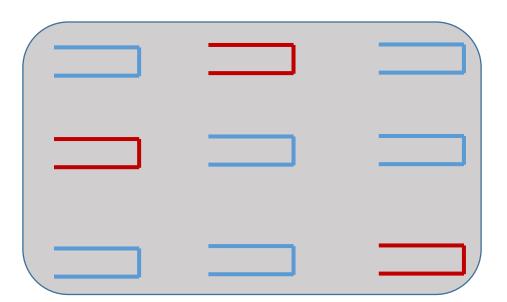
Part II: Switch Scheduling

Collaborator

Siva Theja Maguluri, GaTech

nxn Switch: Abstraction of a Data Center

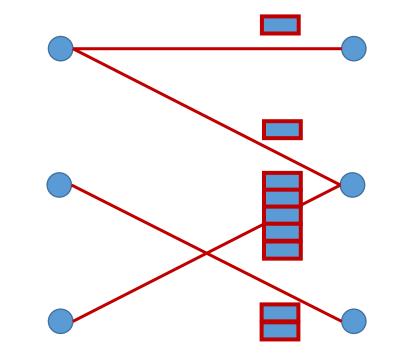
- The matrix of queues operates in discrete-time
 - Queue (*i*, *j*) contains packets generated at server *i* destined for server *j*
- Key constraint: In each time slot, one can remove at most one packet from the matrix from each row and at most one packet from each column



Bipartite Graph Interpretation

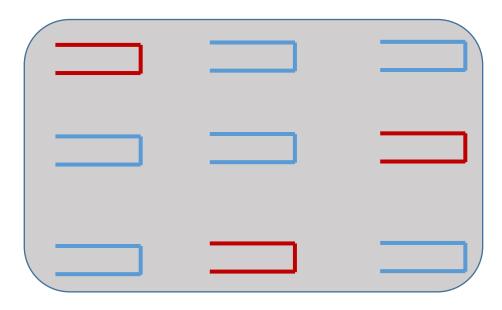
- Packets arrive to the edges of a bipartite graph
 - Link (*i*, *j*) is an edge from server *i* to server *j*

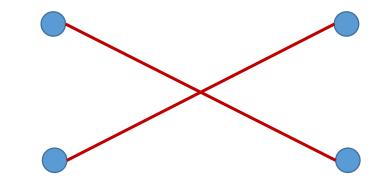
- Only edges with non-zero backlogs are shown here
- New arrivals add to the backlog/create a new edge



Choose a Matching

• Remove one packet from each edge in the matching





Stability Condition

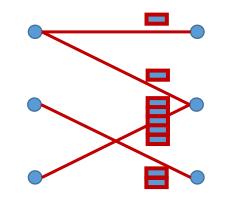
• λ_{ij} : Arrival rate of packets to matrix element (i,j). Necessary condition for stability:

$$\sum_i \lambda_{ij} < 1, \qquad \sum_j \lambda_{ij} < 1.$$

- The necessary condition is also sufficient by the Birkhoff-von Neumann theorem (the matrix Λ is column and row sub-stochastic)
- Define $\rho = \max\{\sum_{i} \lambda_{ij}, \sum_{j} \lambda_{ij}\}$ to be the load on the switch

Open Conjecture I

• Is there a scheduling algorithm (i.e., a matching in each time slot) such that the expected packet delay in the network is O(1)?



- Why is the question interesting?
 - Practical significance: network size-independent delay
 - There exists a known lower bound which is O(1)
 - Conjecture: Yes

(Previously Open) Conjecture II

- In the limit as $\rho \to 1$ (the load increases), there exists a scheduling algorithm such that

$$\frac{E(Delay)}{\text{Lower Bound}} \to O(1)$$

- Remarks:
 - Computing E(Delay) is equivalent to computing the expectation of the sum of the components of a Brownian motion constrained to live in a cone in R^{n^2} .
 - The steady-state distribution of which is unknown!

Theorem

• In the limit ho
ightarrow 1, using MaxWeight Matching,

$$\frac{E(Delay)}{\text{Lower Bound}} \to \left(2 - \frac{1}{n}\right)$$

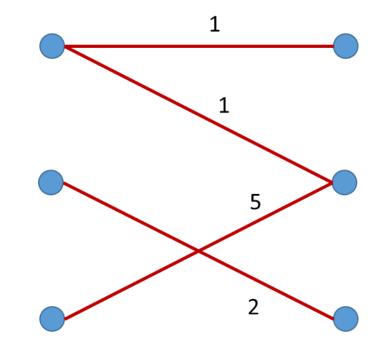
• Remark: in terms of the (reflected) Brownian motion,

 $E\left(\sum_{ij}X_{ij}\right)=O(n),$

even though there are n^2 components in the state of the Brownian motion

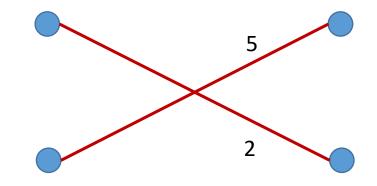
MaxWeight Matching

- Associate a weight with each edge: the backlog of packets at that link
- Find a matching with the largest weight
- Remove one packet from each edge in the matching



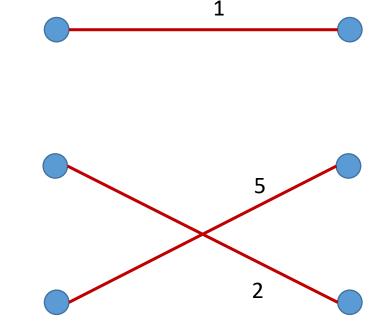
MaxWeight Matching

- Associate a weight with each edge: the backlog of packets at that link
- Find a matching with the largest weight
- Remove one packet from each edge in the matching



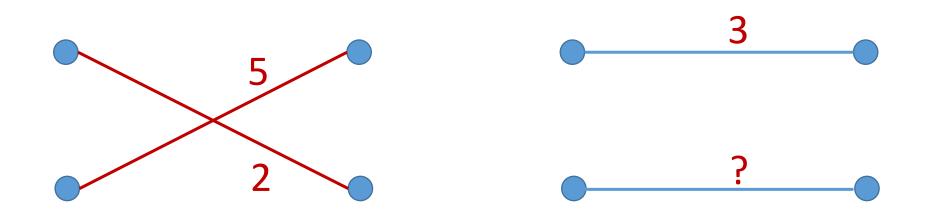
Back to the Switch Problem

- One packet from each link in the MaxWeight matching is removed
- In the meantime, arrivals to other links increase their weight
- At some point, there will be at least two matchings with the largest weight
- Important Insight: Eventually all (maximal) matchings will have roughly equal weight



State-Space Collapse

• Simplest 2x2 case: All matchings have equal weights implies state collapses from 4 dimensions to 3 dimensions



• Important Related Work: Andrews-Jung-Stolyar (2007), Shah-Wischik (2012)

State Space Collapse for Switch

- The 2n variables w_i and $\widetilde{w_j}$ characterize the state. The algorithm pushes the state to lie in a (2n 1)-dimensional space, instead of R^{n^2}
- Good policies seem to force a dramatic state-space collapse to achieve good performance in high-dimensional problems

Drift of a Lyapunov Function

• Let q_{\parallel} denote the projection of the state vector in the lower-dimensional space. Define $q_{\perp}=q-q_{\parallel}$

Key Lemma:

$$E\left(\|q_{\perp}(t+1)\| - \|q_{\perp}(t)\| \mid q(t)\right) < 0 \text{ for "large" } \|q_{\perp}(t)\|$$

• Using Hajek (1982) or Bertsimas, Gamarnik, Tsitsiklis (2001), one can then show that $E(||q_{\perp}||) \ll E(||q||)$ in steady-state, i.e., state-space collapse

Completing the Proof

• In steady-state:
$$E\left(\left\|q_{\parallel}(t+1)\right\|^{2}\right) = E\left(\left\|q_{\parallel}(t)\right\|^{2}\right)$$

• $\left\|q_{\parallel}\right\|^{2} = \sum_{i} \left(\sum_{j} q_{ij}\right)^{2} + \sum_{j} \left(\sum_{i} q_{ij}\right)^{2} - \frac{1}{n} \left(\sum_{ij} q_{ij}\right)^{2}$

• A long sequence of manipulations yields the result:

$$\lim_{\rho \to 1} (1 - \rho) E\left(\sum_{ij} q_{ij}\right) = O(n)$$

• From here, it is straightforward to show the main result on the ratio of the delay to the lower bound is O(1)

Comparing with the Traditional Approach

- In steady-state: $E(||q(t + 1)||^2) = E(||q(t)||^2)$
- Yields:

$$\lim_{\rho \to 1} (1 - \rho) E\left(\sum_{ij} q_{ij}\right) = O(n^2)$$

 Throwing away the "unnecessary" component of q gives us a much better result

Part III: Load Balancing

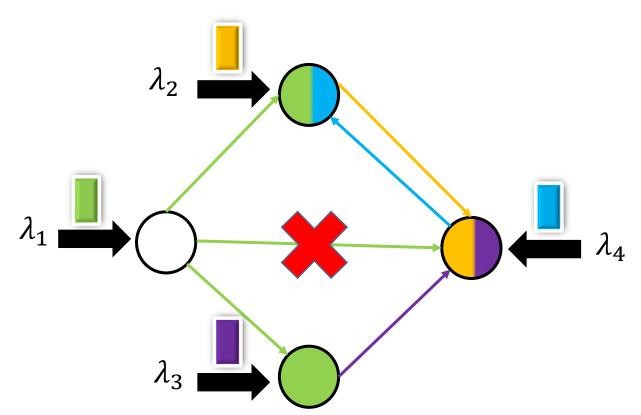
Coauthors

Wentao Weng

Xingyu Zhou

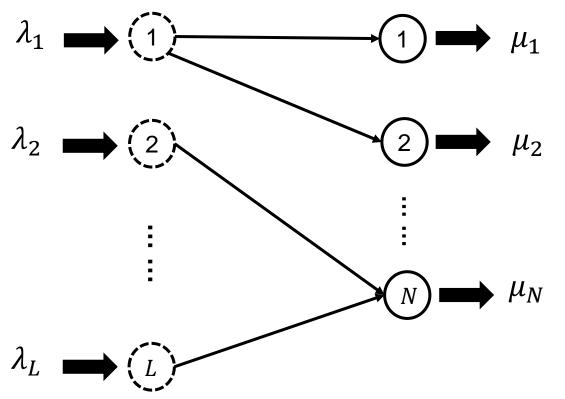
Load Balancing with Locality

 A job to a server can only be served by servers with the data it needs. <u>Goal: optimal response time</u>



- Green job can only be served at the servers with green data
- Load balancing does not involve all servers for all jobs
- Other models: Wang, Zhu, Ying, Tan and Zhang (2014), Xie and Lu (2015), Xie, Yekkehkhany, Lu (2016),...
- Important related work: Mukherjee, Borst, Leeuwarden (2018), Cruise, Jonckheere, Shneer (2020)

More than Stability...



- Poisson arrivals, exponential service times
- Is JSQ (join-the-shortest-queue) optimal in this model?
 - In the sense of minimizing mean response time
- What's the mean response time when the system size does not scale to infinity?
 - Bounds on the deviation from the mean-field limit for finite-sized systems

• For a *well-connected* system,

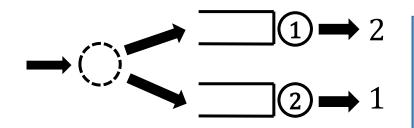
Never wait in a queue

JSQ has asymptotically zero delays for homogeneous servers

Join-the-Fastest-of-the-Shortest-Queues

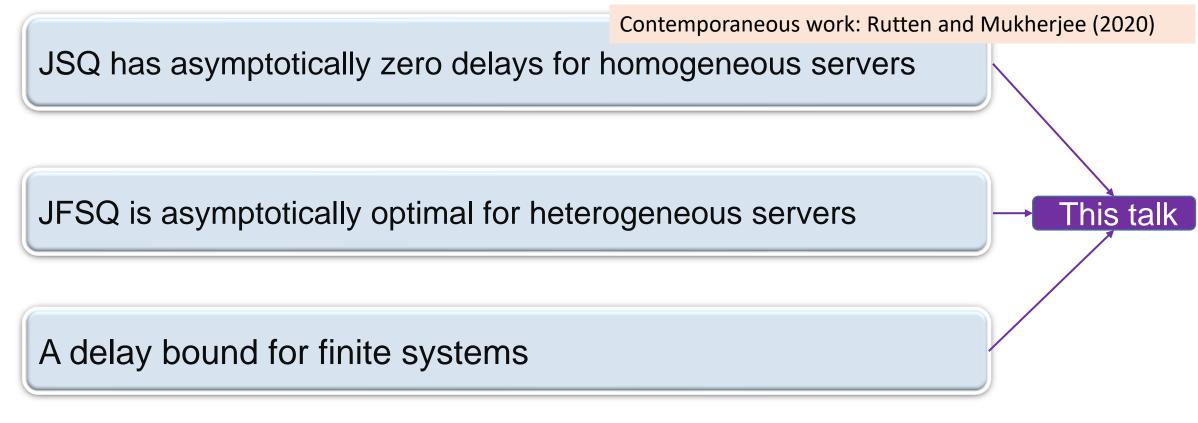
Stronger than zero delays

JFSQ is asymptotically optimal for heterogeneous servers

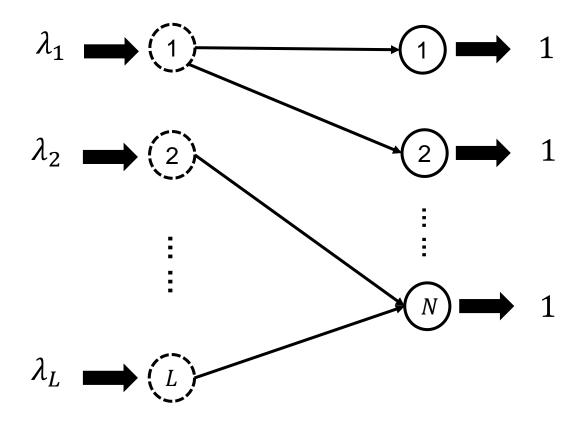


JFSQ: In case of a tie in the shortest queue lengths, join the top queue

• For a *well-connected* system,



Model assumptions (simpler case)



- Finite buffer size: *b*
- Traffic:

$$\sum \lambda_i = N\lambda, \lambda \in [0,1)$$

- *N* can scale, λ is fixed.
- We are interested in the large-server limit and in performance guarantees for large, but finite-sized systems

Notation

- *N*: number of servers, Finite buffer size: *b*
- S_i is the fraction of servers with at least i backlogged jobs.
 - Thus, $NS_i = N\lambda$
- Note that $N \sum_{i \ge 1} S_i$ is the total number of jobs in the system
- In an "ideal" system, we would like $\sum_{i\geq 1} S_i \approx \lambda$

Main result λ_1 λ_2 λ_L

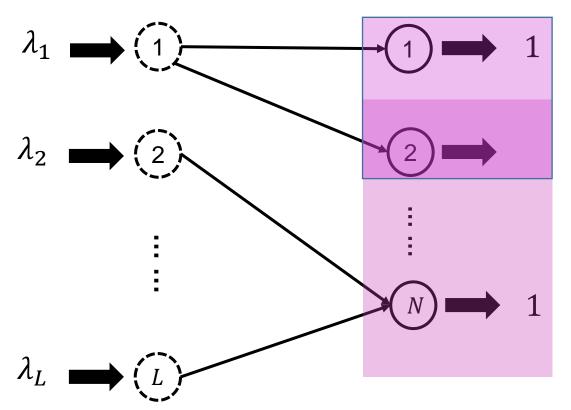
 $S_i(t)$ is the fraction of servers with queue length at least *i*

a

"Well-Connected Graph" assumption: For any subset *A* of servers such that $|A| \ge \frac{1-\lambda}{2}N$, the sum of arrival rates of ports not connected with *A* is bounded by $\tilde{d}N$.

For any
$$0 < \epsilon \leq \frac{1-\lambda}{4}$$
, with $\tilde{d} \leq \frac{\epsilon}{2b}$,
under JSQ,
 $E\left[\max\left(\sum_{i\geq 1} S_i - (\lambda + \epsilon), 0\right)\right] = O\left(\frac{b^2}{\epsilon N}\right)$,
nd the blocking probability is at most
 $\frac{\tilde{d}}{\lambda} + O\left(\frac{b^2}{\epsilon N}\right)$.

Interpretation



- Assumption: Any large subset of servers must be connected to a large number of sources
- Is JSQ nearly optimal for our model?
 - Yes! Asymptotically goes to 1
- What is the blocking probability?
 - Asymptotically goes to zero
- For finite-sized systems, close to the above asymptotic values
 - Depending on the buffer size, the connectivity of the graph, and the size of the system

Proof: The Goal is to Match the Mean-Field

- $S_i = \frac{1}{N} * |\# of \text{ servers with queue length} \ge i|$
- For JSQ in classical load balancing, when $N \to \infty$, $S_1 \to \lambda, S_i \to 0, \forall i \ge 1$
- Want to show similar result for bipartite load balancing

Drift method for the Large-Server Limit

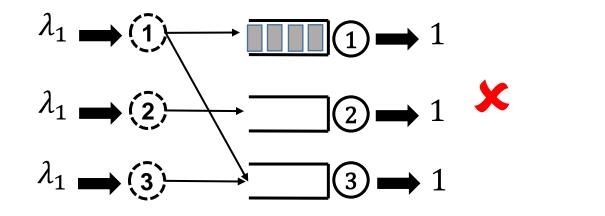
• Metric of Interest:
$$E\left[\left(\sum_{i=1}^{b} S_i - (\lambda + \epsilon)\right)^+\right]$$

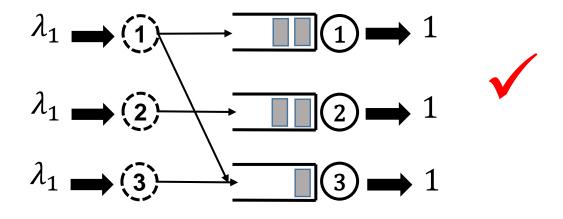
• Use the Lyapunov function $L(S) = \frac{1}{2} \max(\sum_{i=1}^{b} S_i - (\lambda + \epsilon), 0)^2$

Key Difficulty in the Drift Analysis

 We need to show that the system does not idle when there are enough jobs in the system

Resource Pooling



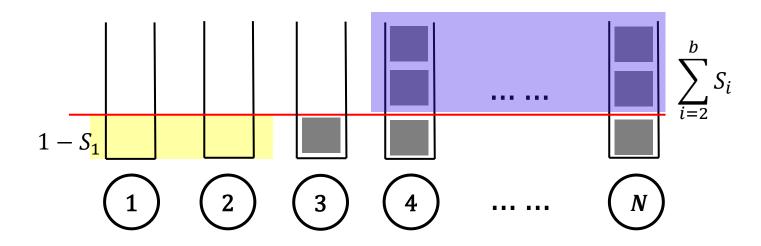


Use a Second Lyapunov function

• Consider the Lyapunov function (Liu and Ying, 2020)

$$V(s) = \min\left(\sum_{i=2}^{b} s_i, \left(\lambda + \frac{1}{2}\epsilon + 4\delta - s_1\right)^+\right)$$

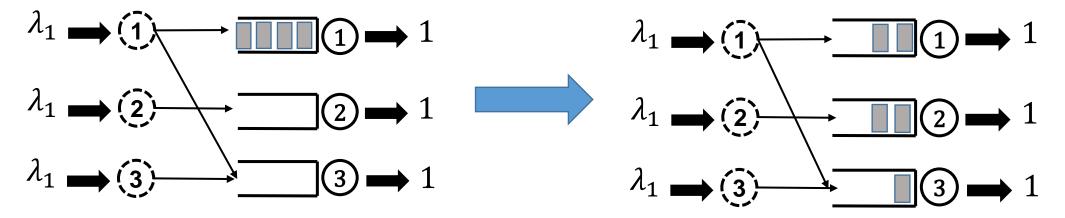
• If V(s) is small: either purple region or yellow region is small.



Large V Implies Many Idle Servers

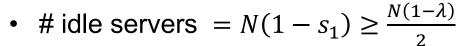
•
$$V(s) = \min\left(\sum_{i=2}^{b} s_i, \left(\lambda + \frac{1}{2}\epsilon + 4\delta - s_1\right)^+\right)$$

- If $V(s) \ge \frac{1}{2}\epsilon + \delta$, then $s_1 \le \lambda + 3\delta$
 - #of idle servers must be large: $N(1 s_1) \ge \frac{N(1 \lambda)}{2}$
 - Show V has negative drift

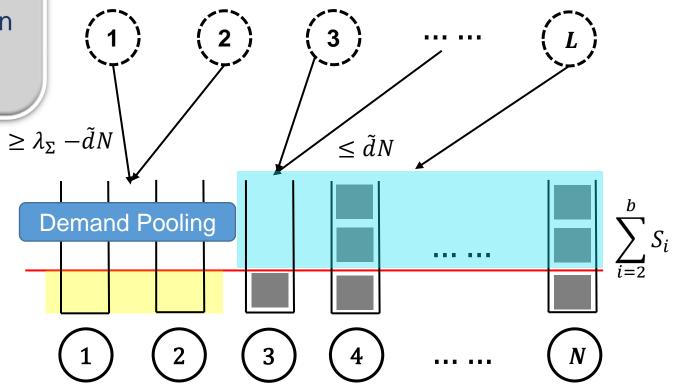


"Well Connectedness" implies negative drift

Consequence of the "**Well Connectedness**" assumption: If the number of idle servers is large, then the arrival rate must be large



• Implies # idle servers decreases



Back to Main Result

• Putting it all together yields

$$E\left[\max\left(\sum_{i=1}^{b}S_{i}-(\lambda+\epsilon),0\right)^{+}\right]=O\left(\frac{b^{2}}{\epsilon N}\right)$$

• The analysis of JFSQ is a bit more complicated, but the key ideas presented here are used there as well

Conclusions

- Lyapunov drift is a powerful tool to study the performance of control policies in complex (deterministic and) stochastic systems
 - Two examples: cloud computing and RL
- Not covered here:
 - Stability analysis (books of S.+Ying, Asmussen, Meyn+Tweedie, Meyn)
 - Utility-based resource allocation (books of Neely, S.+Ying)
 - Useful for online learning too
 - Stein's method (Stein, Dai+Braverman, Gurvich, Ying, Stolyar)
 - Reinforcement learning (work with Cayci, Satpathi, He)