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ABSTRACT. We consider a network of infinite-server queues where the input process is a
Cox process of the following form. The arrival rate is a vector valued linear transform of
a multivariate generalized (i.e., being driven by a subordinator rather than a compound
Poisson process) shot-noise process. We first derive some distributional properties of the
multivariate generalized shot-noise process. Then these are exploited to obtain the joint
transform of the numbers of customers, at various time epochs, in a single infinite-server
queue fed by the above mentioned Cox process. We also obtain transforms pertaining to
the joint stationary arrival rate and queue length processes (thus facilitating the analysis
of the corresponding departure process), as well as their means and covariance structure.
Finally, we extend to the setting of a network of infinite-server queues.
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1. INTRODUCTION

In queueing theory it is commonly assumed that the customer arrival process is a Poisson
process. Some recent empirical studies (see e.g. [3] for references) suggest, however, that
arrival processes may exhibit overdispersion, i.e., the variance of the number of arrivals
in an interval is larger than the corresponding mean. This has triggered research on
queueing systems with overdispersed input.
The focus of the present paper is on infinite-server queues with as input process a doubly
stochastic process, also known as a Cox process. That is a Poisson process in which the
rate is not a constant; the rate process {Λ(t), t ∈ R} itself is a (nonnegative) stochastic
process. As an immediate consequence of the law of total variance, Cox processes indeed
are overdispersed.
Infinite-server queues with overdispersed input have various applications; one could
for instance think of the number of simultaneous visitors of a popular website or online
video [9, 10]. While the arrival process of visitors to the website may well be a Poisson
process, its rate may jump up due to some (external) event, then decay gradually, only to
jump up again because of another event. Such an example formed one of the motivations
for [1, 5, 6], which are all studying infinite-server queues with an overdispersed arrival
process. Before describing the main contributions of the present paper, we first provide
a brief account of the existing literature.
In [5], the arrival process of the infinite-server queues is a Cox process in which the
arrival rate is a shot-noise process. More specifically, the jumps of the shot-noise pro-
cess occur according to a homogeneous Poisson process, and are i.i.d. (independent and
identically distributed) with a general distribution; and between jumps, the shot-noise
process decays exponentially fast. The main object of study in [5] is a feedforward net-
work of infinite-server queues, and the main result is the joint transform of the shot-
noise driven arrival rates and the numbers of customers in the queues. Also in [1] and
[6] infinite-server queues are studied, but the arrival process is now a self-exciting or
Hawkes process. Daw and Pender [1] present several interesting motivating examples.
They consider deterministic jump sizes in the shot-noise process, and study in particu-
lar the Hawkes/Ph/∞ and Hawkes/D/∞ queues, obtaining detailed expressions for mo-
ments and auto-covariances. Koops et al. [6] allow generally distributed jump sizes. For
the case of exponentially distributed service times, the joint Laplace- and z-transform
of the Hawkes intensity and the number of customers is characterized via a partial dif-
ferential equation, and that PDE is exploited to obtain recursive expressions for (joint)
moments of the Hawkes intensity and the number of customers. For the case of generally
distributed service times, the Hawkes process is viewed as a branching process, which
allows expressing the z-transform of the number of customers in terms of the solution of
a fixed-point equation.

◦Main goals and results. In this paper we aim to develop a general framework for the
study of infinite-server queues with as input a quite general Cox process. The modelling
framework of [5] is extended in several ways; in particular, the shot-noise process is
multivariate and not driven by a compound Poisson process, but by a Lévy subordinator.
The main results are compact, elegant, transform expressions for joint distributions of
arrival rates and numbers of customers, and properties of the departure processes, which
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reveal an interesting generalization of the classical Poisson results for the number-of-
customers process and the departure process in the M/G/∞ queue.

◦ Organization of the paper. In Section 2 we introduce the multivariate shot-noise pro-
cess, and we describe distributional properties of this process. Section 3 is devoted to
the study of a single infinite-server queue with as input process the above described Cox
process. The general case of a network of infinite-server queues is treated in Section 4.
Section 5 contains some conclusions and suggestions for further research.

2. MULTIVARIATE SHOT-NOISE

In this preliminary section, we first define multivariate shot-noise and its stationary ver-
sion, then we recall some basic facts on Poisson random measures, and we conclude with
describing distributional properties of the multivariate shot-noise process.

◦Definition of multivariate shot-noise. LetX(·) be a (generalized) d-dimensional mul-
tivariate shot-noise process, which is defined as follows. Let J(·) be a d-dimensional
subordinator (i.e., a d-dimensional Lévy process which is non-decreasing in all compo-
nents). We define the exponent of J(·) by −η(·); it satisfies, for α ∈ Rd+ and with ′

denoting transposition,

(1) η(α) = − log
(
E e−α

′J(1)
)

= α′c+

∫ ∞
0

(1− e−α
′x)ν(dx)

where c ∈ Rd+ and ν is an associated Lévy measure satisfying

(2) ν
((

Rd+
)c
∪ {0}

)
= 0 and

∫
Rd
+

(‖x‖ ∧ 1)ν(dx) <∞.

Also let Q = (qij) be a (d × d)-matrix with nonnegative diagonal and nonpositive off-
diagonal, and with all eigenvalues having strictly positive real parts. An example of such
a matrix is Q = (I −P ′)D where D is a positive diagonal matrix and P is a substochastic
matrix satisfying Pn → 0 as n→∞. Such a matrix is obtained as the negative transpose
of a transition rate submatrix associated with a set of states which does not contain any
closed subset of states in a time-homogeneous continuous-time Markov chain with a fi-
nite state space. A detailed motivation for studying this setting is provided in [4, Section
4].
We now introduce, for X(0) componentwise strictly positive and independent of J(·),
the multivariate shot-noise processX(t), cf. [4],

(3) X(t) = e−QtX(0) +

∫
(0,t]

e−Q(t−s)dJ(s)

or alternatively,X(·) is the unique (strong) solution to the stochastic integral equation

(4) X(t) = X(0) + J(t)−Q
∫ t

0
X(s) ds .

The process X(·) is Markovian and strictly positive (i.e., never hits or crosses any of the
axes). Moreover, it has a unique stationary/ergodic/limiting distribution. This limiting
distribution is identical to that of

(5) X(∞) =

∫
(0,∞)

e−Qs dJ(s).
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So far we considered J(t) for positive values of t, but we can extend J(·) to the whole
real line (with J(0) = 0). It follows directly that

(6) X∗(t) :=

∫
(−∞,t]

e−Q(t−s)dJ(s)

is a stationary process satisfying the same conditions that X does, that is, relations (3)
and (4). From here on we assume thatX = X∗.

◦ Properties of Poisson random measures. To proceed, we first note that it is well
known that N is a Poisson random measure on some measurable space (X,G ) with
sigma-finite mean measure µ if and only if for any G -measurable f : X → R+ we have
that

(7) E exp

(
−
∫
f(s) dN(s)

)
= exp

(∫ (
1− e−f(s)

)
µ(ds)

)
.

Observe that E
∫
f(s) dN(s) =

∫
f(s)µ(ds) (which holds even if N is not Poisson). Fi-

nally, it is also known, and actually easy to check (first for indicators, then simple func-
tions, etc.), that if f1(·) and f2(·) are nonnegative G -measurable, then

(8) E
∫
f1(s) dN(s)

∫
f2(s) dN(s) =

∫
f1(s)f2(s)µ(ds) +

∫
f1(s)µ(ds)

∫
f2(s)µ(ds) .

Let % = (%i) be the mean rate of growth of the subordinator J(·), that is, %i := ci +∫
Rd
+
xiν(dx). We can also write %i = ci +

∫
R+
xiνi(dxi), using the notation

(9) νi(A) = ν
(
Ri−1

+ ×A× Rd−i+

)
.

It is also well known that there exists a Poisson random measure N(·, ·) on R× Rd+ with
mean measure `⊗ ν, where ` is Lebesgue measure, such that

(10) Ji(t) =


cit+

∫
(0,t]×Rd

+

xi dN(s,x), t ≥ 0,

cit−
∫

[t,0)×Rd
+

xi dN(s,x), t < 0,

where x = (x1, . . . , xd)
′. This property entails that if we take f1(t,x) =

∑d
i=1 gi(s)xi and

f2(t,x) =
∑d

i=1 hi(s)xi, then we can immediately conclude that for each Borel g,h : R→
Rd+ the following three identities hold:

E
∫
R
g(s)′ dJ(s) =

∫
R
g(s)′%ds,(11)

E exp

(
−
∫
R
g(s)′dJ(s)

)
= exp

(
−
∫
R
η(g(s))ds

)
(12)

and

(13) Cov

(∫
R
g(s)′dJ(s),

∫
R
h(s)′dJ(s)

)
=

∫
R
g(s)′Σh(s)ds

with

(14) Σ := −∇2η(0) =

∫
Rd
+

xx′ν(dx),
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provided that the corresponding variances
∫
R g(s)′Σg(s)ds and

∫
R h(s)′Σh(s)ds are both

finite. With σij denoting the (i, j)-th coordinate of Σ, it also holds that

(15) σij =

∫
Rd
+

xixjν(dx) =

∫
R2
+

xixj νij(dxi,dxj)

where νij is the (i, j)-th marginal measure associated with ν (i.e., the Lévy measure as-
sociated with the (i, j)-th coordinate of J(·)).

◦ Distributional properties of multivariate shot-noise. We now point out how the d-
dimensional Laplace-Stieltjes transform (LST) of X can be evaluated. To this end, we
appeal to (5) and (12), so as to obtain

(16) E e−α
′X = exp

(
−
∫ ∞

0
η
(

e−Q
′sα
)

ds

)
.

In the usual manner moments can be found from the LST. The first moment takes the
following form: with ∇(0) the vector of first derivatives,

(17) EX = Q−1 ∇η(0) = Q−1%.

We now identify the covariance matrix of X . From (15) it follows, as was also shown in
[4, Thm. 5.2], that the covariance matrix ofX is given by

(18) Σ0 =

∫ ∞
0

e−Qs Σ e−Q
′s ds,

and is the unique solution of

(19) QΣ0 + Σ0Q
′ = Σ .

The next objective is to find an expression for the covariance betweenX(t) andX(t+h),
again bearing in mind that we started the process at −∞. Now, clearly

(20) Y (t, h) :=

∫
(t,t+h]

e−Q(t+h−s) dJ(s)

is independent of X(t), due to the independent increment property of J(·). As a conse-
quence, with

(21) Z(t, h) :=

∫
(−∞,t]

e−Q(t+h−s) dJ(s),

we obtain, by splittingX(t+ h) into the sum of Y (t, h) and Z(t, h), that

(22) Cov(X(t),X(t+ h)) = Cov(X(t),Y (t, h) +Z(t, h)) = Cov(X(t),Z(t, h)).

Denote (for h ≥ 0) by Σh a matrix of which the (i, j)-th entry is Cov(Xi(t), Xj(t+ h)). It
now follows from (15) that, by taking g(s) := e−Q

′(t−s)x and h(s) := e−Q
′(t+h−s)y,

(23) x′Σhy =

∫ t

−∞
x′e−Q(t−s)Σe−Q

′(t+h−s)y ds =

∫ ∞
0
x′ e−Qs Σ e−Q

′(s+h)y ds

for every x,y ∈ Rd. It thus follows, using (18), that

(24) Σh =

∫ ∞
0

e−Qs Σ e−Q
′(s+h) ds = Σ0 e−Q

′h

Combining the above, we find the following result.
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Proposition 2.1. The (R2d-valued) covariance matrix of (X(t),X(t+ h)) is given by

(25)

(
Σ0 Σ0 e−Q

′h

e−Qh Σ0 Σ0

)
.

Since Q′ and e−Q
′h commute, it also follows from (19) that

(26) QΣh + ΣhQ
′ = Σ e−Q

′h .

In fact, employing the method of proof of [4, Thm. 5.2], Σh is the unique solution of this
equation.

Remark 2.2. In the one-dimensional case, letting σ2 and q denote the one-dimensional
versions of the matrices Σ and Q, respectively, we conclude that the covariance between
X(t) and X(t+ h) is given by 1

2e−qhσ2/q.

3. SINGLE INFINITE-SERVER QUEUE WITH A COX INPUT PROCESS

We consider an infinite-server queue in which conditioned on J(·), the arrival process is
a non-homogeneous Poisson process with rate function Λ(t) = a′X(t) at time t, where
a ∈ Rd+. It is throughout assumed that service times are i.i.d. and are independent of J(·)
(hence also ofX(·)) and the arrival process. The service times have distribution function
F (·), complementary distribution function sF (·), and in addition define F (s, t) := F (t)−
F (s) for s < t.

3.1. Transform of queue lengths and numbers of arrivals. Our first objective is to de-
rive the transform of queue lengths at various points in time, jointly with the number of
arrivals in corresponding intervals.
To this end, we consider n ∈ N time intervals, say (t0, t1] up to (tn−1, tn] (where it is
assumed that ti−1 < ti for i = 1, . . . , n). Our goal is to establish the joint transform of the
queue lengths Li at each of the ti and the numbers of arrivals Ai in each of the intervals
(ti−1, ti], i.e., we shall compute the transform, for w ∈ Rn+1 and z ∈ Rn,

(27) Ψ(w, z) := E

(
n∏
i=0

wLi
i ·

n∏
i=1

zAi
i

)
.

Notice that a job arriving in the interval (ti−1, ti] contributes to Ai (and does not con-
tribute to any of the other Aj), and potentially contributes to Li up to Ln. More precisely,
supposing that the job arrives at s ∈ (ti−1, ti], with probability F (tj − s, tj+1 − s) it
contributes to Li up to Lj , for j ∈ {i, . . . , n} and defining tn+1 := ∞. Conditional on
Λ(·) = λ(·) this concerns a Poisson contribution with parameter

(28)
∫ ti

ti−1

λ(s)F (tj − s, tj+1 − s) ds;

conditional on Λ(·) = λ(·) all these contributions are independent. In addition we recall
that the probability generating function (evaluated in z) of a Poisson random variable
with parameter λ equals exp(λ(z − 1)). Combining the above elements, we obtain

(29) Ψ(w, z) = E exp

(∫ tn

−∞
Λ(s)ψ(s |w, z) ds

)
,



INFINITE-SERVER SYSTEMS WITH COXIAN ARRIVALS 7

where, with t−1 := −∞,

(30) ψ(s |w, z) =

n∑
i=0

ψi(s |w, z)1{s∈(ti−1,ti]};

the individual ψi(s |w, z) are defined by

ψ0(s |w, z) :=

n∑
j=0

F (tj − s, tj+1 − s)

(
j∏
i=0

wi − 1

)
(31)

=

n∑
j=0

F (tj − s, tj+1 − s)
j∏
i=0

wi + F (t0 − s)− 1

for i = 0, and

ψi(s |w, z) :=

n∑
j=i

F (tj − s, tj+1 − s)

(
zi

j∏
k=i

wk − 1

)
(32)

=
n∑
j=i

F (tj − s, tj+1 − s)zi
j∏
k=i

wk + F (ti − s)− 1

for i ∈ {1, . . . , n}.
The representation (29) generally holds, i.e., for any non-negative arrival rate process
Λ(·). For the case of multivariate shot-noise, however, the expression can be made more
explicit. To this end, we substitute

(33) Λ(s) = a′X(s) = a′
∫ s

−∞
e−Q(s−r)dJ(r).

By applying Equation (16), we obtain that (29) equals

Ψ(w, z) = E exp

(
a′
∫ tn

−∞

∫ s

−∞
e−Q(s−r)dJ(r)ψ(s |w, z) ds

)
(34)

= E exp

(
a′
∫ tn

−∞

∫ tn

r
e−Q(s−r)ψ(s |w, z) ds dJ(r)

)
= exp

(
−
∫ tn

−∞
η

(
−
∫ tn

r
e−Q

′(s−r) ψ(s |w, z)dsa

)
dr

)
.

We have thus established the following result.

Theorem 3.1. For any w ∈ Rn+1 and z ∈ Rn,

(35) Ψ(w, z) = exp

(
−
∫ tn

−∞
η

(
−
∫ tn

r
e−Q

′(s−r) ψ(s |w, z)dsa

)
dr

)
.

Interestingly, the above result directly enables us to describe the distribution of the num-
ber of departures in all intervals. Let Di be the number of departures in (ti−1, ti]. Then
we would like to evaluate

(36) Φ(v) := E

(
n∏
i=1

vDi
i

)
.
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Now observe that Li = Li−1 +Ai−Di, and henceDi = Li−1−Li+Ai. As a consequence,

Φ(v) = E

(
n∏
i=1

v
Li−1−Li+Ai

i

)
= E

(
vL0

1 ·
n−1∏
i=1

(
vi+1

vi

)Li

· v−Ln
n ·

n∏
i=1

vAi
i

)
(37)

With w1(v) := v1, wi(v) := vi+1/vi for i ∈ {1, . . . , n− 1} and wn(v) := v−1
n , we thus find

the following result.

Proposition 3.2. For any v ∈ Rn,

(38) Φ(v) = Ψ(w(v),v).

3.2. Explicit calculations. Let L(t) be the number of customers present at time t. In this
subsection we compute (i) mean and variance of L(0), (ii) the joint transform of Λ(0)

and L(0), and (iii) the covariance between L(0) and L(t) for some t > 0. As before, we
assume that the process started at −∞, so that it displays stationary behavior at time
0 (and consequently at t as well). In principle (factorial) moments can be derived by
differentiating Ψ(w, z) suitably often and plugging in w = 1 and z = 1, but elegant
direct arguments can be given, as we show now.
We first introduce some notation. Define β as the mean service time:

(39) β =

∫ ∞
0

sF (s) ds.

The density of the residual service time Be is given by fe(s) := sF (s)/β.

◦Mean and variance of Λ(0) and L(0). It is easily checked that EΛ(0) = λ := a′Q−1 %

and Var Λ(0) = a′Σ0 a. We therefore now concentrate on the mean and variance of L(0).

Let P(µ) denote a Poisson random variable with parameter µ. It is straightforward that

EL(0) = E
(

P

(∫ 0

−∞
Λ(s) sF (−s) ds

))
= E

(∫ 0

−∞
Λ(s) sF (−s) ds

)
.(40)

We thus find, with J shorthand notation for the entire path of the process J(·),

E[L(0) |J ] =

∫ 0

−∞
Λ(s) sF (−s) ds =

∫ ∞
0

Λ(−s) sF (s) ds(41)

= β

∫ ∞
0

Λ(−s)fe(s) ds = β E[Λ(−Be) |J ].

For later use, we rewrite this expression as

β E[Λ(−Be) |J ] = β E[a′X(−Be) |J ] = β a′ E[X(−Be) |J ](42)

= β

∫ 0

−∞

(
Ea′ e−Q(−Be−s)1{s≤−Be}

)
dJ(s)

d
= β

∫ ∞
0

(
E e−Q

′(s−Be)a 1{Be≤s}

)′
dJ(s)

where the last step is due to time-reversibility of J(·).
Applying (11), we obtain

EL(0) = β EΛ(0) = λβ.(43)
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Now we move to computing VarL(0). Due to the fact that L(0) is mixed Poisson, we
have that Var(L(0) |J) = E(L(0) |J) and thus EVar(L(0) |J) = EL(0) = λβ. It thus
follows with the law of total variance that

VarL(0) = EVar (L(0) |J) + Var (E[L(0) |J ])

= λβ + Var(E(Λ(−Be) |J))β2

= λβ + β2

∫ ∞
0
a′
(
E e−Q(s−Be)1{Be≤s}

)
Σ
(
E e−Q

′(s−Be)1{Be≤s}

)
ads(44)

which follows from (43) and (15). Expression (44) can be substantially simplified, which
we do later in this section. Observe that VarL(0) ≥ EL(0), reflecting the fact that Coxian
arrival rates lead to overdispersed arrival processes; see e.g. [3, 5].

◦ Joint transform of Λ(0) and L(0). Here the goal is to determine E e−vΛ(0)wL(0). By
arguments similar to those used in Section 3,

E e−vΛ(0)wL(0) = E exp

(
(w − 1)

∫ 0

−∞
Λ(s) sF (−s)ds− vΛ(0)

)
(45)

= E exp

(
(w − 1)a′

∫ 0

−∞
X(s) sF (−s)ds− v a′X(0)

)
.

Now observe that∫ 0

−∞
X(s) sF (−s)ds =

∫ 0

−∞

∫ s

−∞
e−Q(r−s) dJ(r) sF (−s) ds(46)

=

∫ 0

−∞

∫ 0

r
e−Q(r−s)

sF (−s)ds dJ(r)

=

∫ ∞
0

∫ s

0
e−Q(s−r)

sF (r)dr dJ(s),

so that

(47) E e−vΛ(0)wL(0) = E exp

(
a′
∫ ∞

0
Ω(v, w, s) dJ(s)

)
,

with

Ω(v, w, s) := (w − 1)

∫ s

0
e−Q(s−r)

sF (r) dr − v e−Qs(48)

= (w − 1)β E e−Q(s−Be)1{Be≤s} − v e−Qs.

Applying (12), we thus obtain

(49) E e−vΛ(0)wL(0) = exp

(
−
∫ ∞

0
η
(
−Ω(v, w, s)′a

)
ds

)
.

It is possible to apply this joint transform to the computation of moments of L(0) and
Λ(0), as well as their mixed moments, but lower moments can typically be computed by
direct arguments. The mean and variance of Λ(0) and L(0) have been identified above.
We therefore now focus on the covariance between Λ(0) and L(0). Since E[Λ(0) |J ] =
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Λ(0) (asX(·) is a functional of J(·)) and since Be is independent of J , we find

Cov(Λ(0), L(0)) = Cov(E[L(0) |J ],Λ(0)) = Cov(E[Λ(−Be) |J ],Λ(0))(50)

= Cov(Λ(−Be),Λ(0)) = ECov(Λ(−Be),Λ(0) |Be)

= a′ EΣBe a = a′Σ0 E e−Q
′Be a ,

where we employ the fact that the covariance matrix betweenX(t) andX(t+ h), which
is the same as that betweenX(t− h) andX(t), is given by Σh = Σ0 e−Q

′h.

◦ Covariance between L(0) and L(t). The starting point is the law of total covariance:

Cov (L(0), L(t)) = ECov (L(0), L(t) |J) + Cov(E[L(0) |J ],E[L(t) |J ]).(51)

We evaluate the two terms separately. The first term can be rewritten as follows. Let
C1(t) denote the number of customers that arrive before time 0 and depart in (0, t]; C2(t)

is the number of customers that arrive before time 0 and depart after t; finally, C3(t) is
the number of customers that arrive in (0, t] and depart after t. Evidently, due to the
conditional independence of these three quantities,

Cov (L(0), L(t) |J) = Cov (C1(t) + C2(t), C2(t) + C3(t) |J)(52)

= Var (C2(t)| J) = E(C2(t) |J),

with, mimicking the above arguments,

E(C2(t) |J)
d
= β

∫ ∞
0

E
(

e−Q
′(s+t−Be)a 1{t<Be≤t+s}

)
dJ(s),(53)

where the last equality is due to the fact that the conditional distribution of C2(t) given
J is Poisson. Thus, with Fe(·) denoting the distribution function of Be and sFe(·) the
corresponding complementary distribution function,

ECov (L(0), L(t) |J) = β

∫ ∞
0

E
(
a′e−Q(s+t−Be)%1{t<Be≤t+s}

)
ds(54)

= β E
(∫ ∞

Be−t

(
a′e−Q(s−(Be−t))%

)
ds 1{Be>t}

)
= β E

(∫ ∞
0
a′e−Qs ds 1{Be>t}

)
%

= β a′Q−1 %P(Be > t) = λβ sFe(t) .

Next, we move to the second term. To this end, we first recall that

E[L(0) |J ] =

∫ ∞
0

E
(

e−Q
′(s−Be)a 1{Be≤s}

)
dJ(s),(55)

E[L(t) |J ] =

∫ ∞
−t

E
(

e−Q
′(s+t−Be)a 1{Be≤s+t}

)
dJ(s) .(56)
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As J has independent increments, when considering the covariance between E[L(0) |J ]

and E[L(t) |J ], we can restrict ourselves to integrating over s > 0 only; more concretely,

Cov(E[L(0) |J ],E[L(t) |J ])(57)

= β2 Cov

(∫ ∞
0

E
(
e−Q

′(s−Be)a 1{Be≤s}

)
dJ(s),∫ ∞

0
E
(

e−Q
′(s+t−Be)a 1{Be≤s+t}

)
dJ(s)

)
= β2

∫ ∞
0

E
(
a′ e−Q(s−Be)1{Be≤s}

)
ΣE
(

e−Q
′(s+t−Be) a 1{Be≤s+t}

)
ds ,

where the last step follows by using (15).
As it turns out, the last formula (as well as (44)) may be simplified, as follows. Let
Be,1 and Be,2 be two i.i.d. copies of Be. Recalling (19) and denoting x+ := x ∨ 0 and
x− := −x ∧ 0 = (−x)+, (58) can be rewritten as

β2a′
∫ ∞

0
E
(
e−Q(s−Be)1{Be≤s}

)
ΣE
(
e−Q

′(s+t−Be)1{Be≤s+t}

)
dsa(58)

= β2a′ E

(∫ ∞
Be,1∨(Be,2−t)

e−Q(s−Be,1)Σ e−Q
′(s+t−Be,2)ds

)
a

= β2a′ E
(

e−Q(Be,1−Be,2+t)−
(∫ ∞

0
e−QsΣ e−Q

′sds

)
e−Q

′(Be,1−Be,2+t)+
)
a

= β2a′ E
(

e−Q(Be,1−Be,2+t)−Σ0 e−Q
′(Be,1−Be,2+t)+

)
a ,

where in the last equality (18) has been used. For any s ∈ R we have that, recalling
Equation (24),

(59) a′ e−Qs
−

Σ0 e−Q
′s+a = a′Σ0 e−Q

′|s|a = a′Σ|s| a .

Thus, denoting by R(t) the autocorrelation function (with R(0) = 1), then adding the
two terms yields

R(t) · VarL(0) = Cov(L(0), L(t)) = λβ sFe(t) + β2 a′ E
(
Σ|Be,1−Be,2+t|

)
a .(60)

In particular, when t = 0, (60) provides us with a more simplified expression for VarL(0).
The density of Be,1 −Be,2 is clearly symmetric around zero and is given by

(61) g(x) =

∫ ∞
0

fe(y)fe(y + |x|) dy .

Since fe(·) = β−1
sF (·) is non-increasing on [0,∞), this implies that g(·) is unimodal.

We end this subsection by considering the 1-dimensional case. Since both h(x) := e−q|x|

(q > 0) and g(x) are symmetric and unimodal (around zero), it follows by [11] that so
is their convolution. Alternatively, this follows also from [2] as h(·) is also log-concave.
This implies that

E e−q|Be,1−Be,2+t| =

∫ ∞
−∞

e−q|x+t|g(x) dx =

∫ ∞
−∞

e−q|−x+t|g(−x) dx(62)

=

∫ ∞
−∞

e−q|t−x|g(x) dx



12 ONNO BOXMA, OFFER KELLA, AND MICHEL MANDJES

is unimodal with a mode at zero, hence non-increasing on [0,∞) and thus so is R(·). A
similar result holds if a is an eigenvector associated with a real-valued (positive) eigen-
value q of Q′ since then a′Σ0 e−Q

′|x| a = a′Σ0 a e−q|x|. However, in general, even though
a′Σ0 e−Q

′|x| a is a symmetric function, it is not clear if it is decreasing on [0,∞) or if it
is log-concave. However, since it vanishes as |x| → ∞, it is clear that R(t) vanishes as
t→∞.

4. THE NETWORK CASE

In this section we consider networks of infinite-server queues with a Cox input process.
There are n queues, with the arrival rate of queue k being a non-homogeneous Poisson
process with rate function Λk(t) = a′kX(t). This is the same as defining the vector of
arrival processes to be Λ(t) = AX(t) for some matrix A with rows a′k. TheX(t) process
is the same multivariate shot-noise process as before. Notice that in this construction the
arrival processes at the various queues are potentially dependent.
Define by pkm(t) the probability that a job entering at queue k at time 0 is at queue
m at time t; likewise, pk0(t) is the probability that a job entering at queue k at time 0

has left the network by time t. In the case of exponentially distributed service times
and probabilistic routing, these pkm(t)’s can be computed more explicitly (relying on the
machinery developed for phase-type distributions).

4.1. Joint queue-length. We focus on analyzing the stationary joint queue-length dis-
tribution. In principle, virtually all quantities studied in the previous section can be
derived again, at the expense of introducing rather heavy notation.
In this section, we let Km denote the stationary queue length at node m ∈ {1, . . . , n}.
Our objective is to compute the joint probability generating function

(63) Π(w) = E

(
n∏

m=1

wKm
m

)
.

Using the same arguments as in the previous section, we conclude that Km has a mixed-
Poisson distribution. More precisely,Km has Poisson distribution with (random) param-
eter

(64)
∫ 0

−∞

n∑
k=1

Λk(s)pkm(−s) ds.

It follows that

Π(w) = E exp

(
n∑

m=1

∫ 0

−∞

n∑
k=1

Λk(s) pkm(−s) ds (wm − 1)

)
(65)

= E exp

(
n∑

m=1

∫ 0

−∞

n∑
k=1

a′kX(s) pkm(−s) ds (wm − 1)

)
.

Recalling that

(66) X(s) =

∫ s

−∞
e−Q(s−r)dJ(r),
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we obtain that

(67) Π(w) = E exp

(
n∑
k=1

a′k

∫ 0

−∞

∫ 0

r
e−Q(s−r) πk(s |w) ds dJ(r)

)
,

with

πk(s |w) :=
n∑

m=1

pkm(−s) (wm − 1) =
n∑

m=1

pkm(−s)wm + pk0(−s)− 1.(68)

This leads to the following result.

Theorem 4.1. For any w ∈ Rn,

(69) Π(w) = exp

(
−
∫ 0

−∞
η

(
−

n∑
k=1

∫ 0

r
e−Q

′(s−r) πk(s |w) dsak

)
dr

)
.

4.2. Example. In this illustrative example we consider a two-node tandem system in
which the service times at both nodes are exponential with parameter κ > 0. We assume
for ease that there is only input at the first queue. It is immediate that, for t > 0,

(70) p11(t) = e−κt, p12(t) = κt e−κt, p10 = 1− e−κt − κt e−κt;

use that the sojourn time in the system is Erlang(2). We find that

(71) π1(t |w1, w2) = (w1 − 1) eκt − (w2 − 1)κt eκt.

Assume for ease that d = 1. We choose a1 = 1 (whereas a2 = 0, as we assumed no
external input to the second queue). As a consequence, we have that Λ1(t) = X(t) and
Λ2(t) = 0, where X(t) can be represented as

(72) X(t) =

∫
(−∞,t]

e−q(t−s) dJ(s),

for some q > 0 and a (scalar) Lévy subordinator J(·) (with exponent −η(·)).
Appealing to Thm. 4.1,

(73) Π(w1, w2) = E
[
wK1

1 wK2
2

]
= exp

(
−
∫ 0

−∞
η

(
−
∫ 0

r
e−q(s−r)π1(s |w1, w2) ds

)
dr

)
.

To evaluate this expression, observe that∫ 0

r
e−q(s−r)π1(s |w1, w2) ds =

∫ 0

r
e−q(s−r)((w1 − 1) eκs − (w2 − 1)κs eκs)ds(74)

= (w1 − 1)
eqr − eκr

κ− q
+ (w2 − 1)

(
κr eκr

κ− q
+
κ(eqr − eκr)

(κ− q)2

)
.

Now suppose that J(·) corresponds to a Gamma process [7, Section 1.2.4] with (without
loss of generality) rate and shape parameters both equal to 1, i.e.,

(75) η(α) = − log

(
1

1 + α

)
= log(1 + α).

The probability generating function of the queue length in the first queue is therefore

(76) Π(w, 1) = exp

(
−
∫ 0

−∞
log

(
1 + (1− w)

eqr − eκr

κ− q

)
dr

)
.
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Using the Taylor expansion of the logarithm, the exponent of this expression can be
rewritten as

(77)
∫ 0

−∞

∞∑
n=1

(−1)n

n
(v(w) (eqr − eκr))ndr,

with v(w) := (1− w)/(κ− q). Relying on the binomium, this equals

(78)
∫ 0

−∞

∞∑
n=1

(−1)n

n
(v(w))n

(
n∑
k=0

(
n

k

)
(−1)n−k eqrk+κr(n−k)

)
dr.

Swapping the order of the summations and the integral, we obtain

(79)
∞∑
n=1

1

n
(v(w))n

n∑
k=0

(
n

k

)
(−1)k

1

qk + κ(n− k)
.

We thus end up with

(80) E
[
wK1

]
= exp

(
−
∞∑
n=1

1

n
(v(w))n

n∑
k=0

(
n

k

)
(−1)k

1

qk + κ(n− k)

)
.

A similar procedure yields the probability generating function of the second queue, but
the resulting expressions are slightly more complicated.

5. CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

In this paper we have considered a network of infinite-server queues where the input
process is a Cox process that allows much modelling flexibility; the arrival rate is rep-
resented as a linear combination of the components of a multivariate generalized shot-
noise process. We have derived some distributional properties of the multivariate shot-
noise process, subsequently exploiting them to obtain the joint transform of the numbers
of customers, at consecutive time epochs, in an infinite-server queue with as input pro-
cess such a Cox process. We have also derived the joint steady-state transform of the
vectors of arrival rate and queue length, as well as their means and covariance struc-
ture, and we have studied the departure process from the queue. Finally, we extended
our analysis to the setting of a network of infinite-server queues, allowing the arrival
processes at the various queues to be dependent Cox processes.
In a future study, we intend to investigate various related aspects, including (i) develop
a recursive scheme that will allow us to obtain higher-order moments of (Λ(t), L(t)),
(ii) derive asymptotics of the queue length process, under assumptions regarding the
tail behavior of the shot-noise process, and (iii) study the heavy-traffic behavior of the
queue-length process. It could also be investigated to what extent the assumption of
exponential decay in the shot-noise process can be relaxed.
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