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Abstract

We present a stochastic growth-collapse model for the capital process of a peer-
to-peer lending platform. New lenders arrive according to a compound Poisson-type
process with a state-dependent intensity function; the growth of the lending capital is
from time to time interrupted by partial collapses whose arrival intensities and sizes
are also state-dependent. In our model the steady-state probability distribution of
the capital level administered via the platform is a key performance measure, because
the brokerage fee is a fixed (small) fraction of it. In the case of exponentially dis-
tributed upward jumps we derive an explicit expression for its probability density, for
quite general arrival rates of upward and downward jumps and for certain collapse
mechanisms. In the case of generally distributed upward jumps, we derive an explicit
expression for the Laplace transform of the steady-state cash level density in various
special cases. An alternative model featuring up and down periods and a shot noise
mechanism for the downward evolution is also analyzed in steady state.

1 Introduction

The goals of this paper are (i) to present a stochastic capital management model for peer-
to-peer (P2P) lending, and (ii) to perform a steady-state analysis of the capital level in
that model.
P2P lending is the practice of lending money through online services that match lenders
with borrowers. The P2P lending company offers a platform where people, or businesses,
can lend directly to other people or businesses without the need for a bank as a middle-
man. It takes brokerage fees for providing the match-making platform (and for doing a
credit-check of the borrowers). Compared to investment and savings products from banks,
borrowers can borrow money at lower interest rates, and lenders can earn higher returns.
Although the P2P lending company applies a strict screening system, it may happen that
a borrower is in arrears. If that happens, the company initiates collection procedures
against the debtor.
P2P lending started in 2005 in the UK, shortly thereafter followed by the US, and became
more popular after the 2007/2008 financial crisis when banks refused to increase their loan
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portfolios. Nowadays there are numerous P2P platforms all over the world; P2P lending
is rapidly gaining recognition among rule-makers and regulators.
A distinguishing feature is that the money of the lenders is transferred to a trust account
from where the borrowing is carried out. The repayments are also transferred directly
to the trust account whose existence ensures that investor’s deposits do not mingle with
the money of the P2P lending company, so that the lenders are protected in case of an
insolvency of that company. Another distinguishing feature is that there is no direct re-
lation between lender and borrower; every deposit is typically divided into much smaller
parts among many borrowers. A principal difference between banks and P2P systems is
the economic fact that depositors become lenders whose profits are not exposed to the
usual fluctuations in the capital market, so that the cash level process has relatively little
volatility; P2P systems are exposed only to the exceptional volatility caused by a severe
crash in which many borrowers go bankrupt. Examples of such crashes are the dot.com
bubble in 2000, the subprime crisis in 2008 that started with the crash of Lehman Broth-
ers, and the corona crisis of 2020. In these cases, the stock market crash was accompanied
by bankruptcies in the entire business sector of small and medium businesses and even
large companies. In other words, the crisis hit the entire capital market, since all those
economic entities could not meet their financial obligations.

The P2P cash management model. In our model we investigate the temporal evolution of
the total amount of money transferred to the P2P company by lenders. We assume that
all lenders want long-term investments so that every deposit is virtually forever available
for lending out by the system. The jumps are due to new arrivals of lenders. There is
an infinite demand by borrowers, so that all money is always lent to borrowers. Their
back payments are split in two streams. The pure interest on the residual debt goes to
the lenders (is not reborrowed). The part that gradually repays the loan goes to the sys-
tem and is immediately given to new borrowers (sufficient demand is always available).
This way the total amount of borrowed money is always equal to the total amount in-
vested by the lenders. The lenders are satisfied with the continuous stream of interest on
their investment that they are receiving. The P2P company receives a small fraction of
the incoming pure interest as its brokerage fee, which constitutes its profit. The upward
evolution of the cash level is only interrupted by the effects of a severe economic crash
(examples were mentioned above) which causes a significant portion of the borrowers to
default. Note that the P2P lending company’s cash level is virtual in the sense that the
money is never in the company’s account but always lent out in full.

We model the content (cash) level as a stochastic process that fluctuates over time. It
jumps upward and downward at random times, and stays constant in between jumps. A
jump upward occurs whenever a lender deposits a new amount in the account. The jumps
downward represent the effects of crises. In such a case, the market partially collapses and
a random portion of the capital is lost. We shall model this via downward jumps of the
content level by a random fraction that is proportional to that content level. Generally
speaking (a detailed model description is provided in Section 2), we assume that arrivals
of deposits and of crises occur according to independent Poisson processes, whose rates
are allowed to depend on the current cash level. In the main model of the paper, we do
not take into account the following two possibilities: (i) a lender decides to withdraw part
of her deposit; (ii) an individual borrower is not able to repay her loan. In Remark 6 we
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briefly outline how (i) could be taken into account in our model analysis; (ii) could be a
problem for further research.

Main results. Our main focus is on the steady-state probability distribution of the cash
level. This is the key performance measure, because the brokerage fee of the P2P lending
company is a fixed portion of it. In the case of exponentially distributed upward jumps
we derive an explicit expression for the stationary cash level probability density, for quite
general arrival rates of upward and downward jumps, and for a proportionality function
h(x) = xa, with 0 < x < 1 and a > 0, for the downward jumps. In the case of generally
distributed upward jumps, we derive an explicit expression for the Laplace transform of
the steady-state cash level density in two cases: (i) constant jump rates and h(x) = xa,
and (ii) the ratio of intensities of upward and downward jumps is inversely proportional
to x, and h(x) = x (jumps downward are uniformly proportional to the just-before-crash
cash level).
We also obtain the Laplace transform of the stead-state cash level in a model variant in
which there is a background process that alternates between two period types. During up
periods the cash level grows, according to a compound Poisson process, and stays constant
in between jumps; during down periods (recessions) it grows according to another com-
pound Poisson process, but in between jumps it decreases gradually, with a speed that is
proportional to the cash level.

Related literature. The economic research has focussed on descriptively studying the real-
life determinants of online P2P lending and borrowing practices (see e.g. the survey articles
by Bachmann et al. [4] and Chen and Han [13] as well as Au et al. [3]). To the best
of our knowledge this paper provides the first attempt toward a mathematical analysis of
P2P systems by means of stochastic models. The models presented here bear a similarity
to models in disciplines like storage theory, insurance risk and queueing theory. Some
key papers on storage processes with a non-constant release rate are those of Gaver and
Miller [15], Harrison and Resnick [16] and Brockwell et al. [12]. We also refer to [16] for an
insightful discussion of the stability condition of storage processes with state-dependent
release rate. Bekker et al. [5] consider a class of queueing models in which both the arrival
rate and the service speed may be workload dependent. We further refer to [8] for the
analysis of a large class of storage processes in which the rate at which storage increases or
decreases is an affine function of the current storage level, while also upward and downward
jumps are allowed. That paper also considers related – in some cases dual – insurance risk
models, and contains many references. The downward jumps in our model also occur in
the literature on so-called growth-collapse models; see, e.g., [7, 10, 17].

The paper is organized as follows. The main model under consideration is described in
Section 2. The case of exponentially distributed upward jumps and very general arrival
rate functions of deposits and crises is analyzed in Section 3, while Section 4 is devoted
to the case of generally distributed upward jumps. Section 5 studies the model variant in
which up and down periods alternate.
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2 Model description

In this section we present the model under consideration, and we discuss the stability
condition. We describe the capital (content level) of the cash management system of
a P2P lending company as a stochastic process {V(t), t ≥ 0} that evolves in the fol-
lowing way. It jumps upward and downward at random times, and stays constant in
between jumps. Jumps upward (due to deposits) occur according to a Poisson process,
with state-dependent rate function λ(w) when the capital equals w. Successive jump sizes
are independent, identically distributed (i.i.d.) integrable random variables, generically
denoted by G, with distribution function G(·) and Laplace-Stieltjes transform (LST) γ(·).
The upward jump sizes are assumed to have a continuous density and finite mean.
Jumps downward (due to crises) occur according to a Poisson process, with state-dependent
rate η(w) when the capital equals w. They occur independently of the process of upward
jumps. A special feature of the model is that the sizes of downward jumps depend on their
starting level w, via a function h(·): If the capital level is w just before a downward jump,
then the probability to jump to a level lower than x is given by h( xw ), for any 0 < x < w.
Mathematically, this can be viewed as a multiplication of the just-before-crash level by
a random variable with distribution function h(·) on [0, 1]. We shall restrict ourselves in
this paper to the choice h(y) = ya with 0 < y < 1 and a > 0. Observe that the case a = 1
corresponds to jumps downward from level w that are uniformly distributed on (0, w);
furthermore observe that for these h(·) level 0 is never reached. The latter property also
holds for any other a > 0.
The cash level remains constant between jumps, because the back payments of the bor-
rowers are split into pure interest for the residual debt and repayments of the loan: the
first stream goes to the lender except for a proportional fee that goes to the P2P com-
pany, while the second stream remains in the P2P system (immediately used for further
lending), so that the deposits of all lenders remain unchanged.

Let us first discuss the question of stability of V = {V(t), t ≥ 0}. The lack-of-memory
property of the two underlying jump processes together with the proportionality feature
of the downward jumps imply that V is a Markov process. Under our assumptions it is
readily seen that the transition densities of V are jointly continuous in their variables and
there is an open set on which they are bounded away from zero. Therefore the theory
of Harris recurrence for Markov processes with continuous time and with state space
[0,∞) can be applied (the standard results on Harris recurrence needed here can e.g. be
found in Section VII.3 of Asmussen (2003); see in particular Example 3.1 and Proposition
3.8). V can be reconstructed as a Harris process as follows. We use Example 3.8 of
Asmussen (2003) where without restriction of generality we can take R = S = [0, 1) and
an arbitrary r > 0. Then we can fix an ε > 0 such that the transition probability measure
B 7→ P (V(t) ∈ B|V(0) = x) = P r(x,B) dominates the measure B 7→ εl(B ∩ [0, 1)), l
being the Lebesgue measure. Now we can construct a process equivalent to V as follows.
It is equal to V until the time τ at which the first jump from [1,∞) to [0, 1) occurs. Then
with probability ε the process starts a new cycle at time τ + r with the Lebesgue measure
on [0, 1) as restarting distribution, while with probability 1− ε it continues at time τ + r
with the restarting distribution

B 7→ (1− ε)−1(P r(V(τ), B)− εl(B)).
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Finally, the missing intermediate piece (V(t))τ<t<τ+r is constructed by using the condi-
tional distribution of (V(t))0<t<r given that the boundary values V(0) and V(r) are equal
to the already constructed values of V(τ) and V(τ + r), respectively.
Continuing with this construction cycle per cycle, this provides V with a regenerative
structure. Hence, V is positive recurrent if the cycle lengths and the accumulated incre-
ments during cycles have a finite expectation. For this it is sufficient that the following
condition holds.

Condition SC. η(w) > η0 for some η0 > 0 and all w ≥ 1, and λ(w)/η(w) < c < ∞ for
some c > 0 and all w ≥ 1.

To see this, note that in this case the expected time between any two successive partial
collapses is smaller than 1/η0 and the corresponding expected accumulated increase is
smaller than m(1 + c), because after any upward jump the probability that the next jump
will be a collapse is greater than 1/(1 + c) so that the number of upward jumps before a
downward jump is geometrically distributed. Now denote by In the increase between the
(n− 1)st and the nth collapse and by Bn the proportionality factor corresponding to the
nth collapse. Then the cash level just before the nth collapse is given by

Cn = In + Bn−1In−1 + ...+ Bn−1 · · ·B1I1, n > 1,

and C1 = I1. Note that Bn−1 · · ·Bj is independent of Ij for every j and that the Bn are
i.i.d. and have the common distribution function h on (0,1) so that their common mean
is smaller than 1. Since the In have uniformly bounded means, it follows that

K = sup
n
E(Cn) <∞,

and thus
sup
n
P (Cn ≥ 2K) ≤ sup

n
E(Cn)/2K = 1/2.

Hence, as long as Cn < 2K, the probability that level 1 is downcrossed at the nth jump
downwards is bounded from below by P (Bn < 1/(2K)) = h(1/(2K)), and the probability
that Cn < 2K is at least 1/2. Thereafter, a randomization takes place which leads with
probability ε to the beginning of a new cycle. Therefore, the cycle lengths have finite
mean.
It follows that the steady-state distribution of V exists when Condition SC holds. We
denote the steady-state capital level by Ve and its density by f(·). In the next two
sections we aim to determine f(·) for a number of choices of λ(·), η(·), G(·) and a.

3 Case I: Exponential jumps upward

In this section we restrict ourselves to the case of exponentially distributed upward jumps
with mean 1/µ: P(G < w) = 1 − e−µw, w > 0. That restriction will allow us to derive
the density f(·) of the steady-state capital level Ve, without having to resort to LSTs and
while allowing quite general arrival rate functions of deposits and crises. We use the level-
crossing technique (cf. Brill [11] and Cohen [14]), which states that, in equilibrium, the
rate of upcrossing any level x > 0 should equal the rate of downcrossing that level. This
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results in the following integral equation, which we first formulate for generally distributed
upward jumps and a non-specified function h(·):∫ x

w=0
λ(w)(1−G(x− w))f(w)dw =

∫ ∞
w=x

h(
x

w
)η(w)f(w)dw, x > 0. (1)

The lefthand side of (1) represents the rate to upcross level x, and the righthand side
represents the rate to downcross level x. Indeed, when the capital equals w < x, then
the probability to upcross level x in the next dw time units equals λ(w)dw times the
probability 1 − G(x − w) that a jump from level w is larger than x − w (we ignore o(w)
contributions); and when the capital equals w > x, then the probability to downcross
level x in the next dw time units equals η(w)dw times the probability that a downward
jump from level w is larger than w−x, i.e., that the capital reduction factor exceeds w/x,
i.e., the proportionality factor is less than x/w, and this probability equals h(x/w). In
principle there also should be a term in the lefthand side that represents jumps from level
0 that upcross x. However, our choice of h(·) will exclude the possibility that level zero is
reached.
The choice G(x) = 1− e−µx and h(y) = ya reduces (1) to∫ x

w=0
λ(w)e−µ(x−w)f(w)dw =

∫ ∞
w=x

(
x

w
)aη(w)f(w)dw, x > 0. (2)

Introduce, for w > 0, z(w) := η(w)
wa f(w) and R(w) := λ(w)

η(w) . Then (2) becomes∫ x

w=0
waR(w)eµwz(w)dw = xaeµx

∫ ∞
w=x

z(w)dw, x > 0. (3)

Differentiation with respect to x yields, after division by eµx:

xaR(x)z(x) = (µxa + axa−1)

∫ ∞
w=x

z(w)dw − xaz(x), (4)

and hence

(R(x) + 1)z(x) = (µ+
a

x
)

∫ ∞
w=x

z(w)dw. (5)

Differentiating once more, and using (5) to eliminate the integral, gives

(R(x) + 1)z′(x) = −[R′(x) + µ+
a

x
+

a

µx2 + ax
(R(x) + 1)]z(x), (6)

so
z′(x)

z(x)
= − a

µx2 + ax
− R′(x) + µ+ a/x

R(x) + 1
. (7)

Its solution is easily seen to be

z(x) = C(1 +
a

µx
)

1

R(x) + 1
exp
(
−
∫ x µy + a

y(R(y) + 1)
dy
)
, (8)

with C a constant. Notice that we do not yet specify the lower integration bound in the
integral in (8). We need to take into account the possibility that y = 0 is a singularity of
its integrand. The integral has no other singularities, because R(y) > 0 for all y > 0. In
conclusion we have the following result.
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Theorem 3.1. The stationary cash level density for the case of exp(µ) distributed upward
jumps, upward jump rate λ(x), downward jump rate η(x) and proportionality function
h(x) = xa is given by

f(x) = C(xa +
a

µ
xa−1)

1

λ(x) + η(x)
exp
(
−
∫ x µy + a

y(R(y) + 1)
dy
)
, x > 0. (9)

The constant C is determined by the fact that the integral of the cash level density equals
one:

∫∞
0 f(x)dx = 1.

Special cases.
(i) If R(x) = λ(x)/η(x) = r, then

f(x) =
C

r + 1
(xa +

a

µ
xa−1)

1

η(x)
exp
(
−
∫ x µy + a

y(r + 1)
dy
)

=
C

r + 1
(xa +

a

µ
xa−1)

1

η(x)
x−

a
r+1 e−

µ
r+1

x, x > 0. (10)

Observe that, when η(x) is a constant, say η (and hence λ(x) also is a constant), this is a
mixture of the two Gamma densities Gamma(a r

r+1 + 1, µ
r+1) and Gamma(a r

r+1 ,
µ
r+1). A

straightforward calculation gives the constant C:

C =
µ

aη

( µ
r+1)a

r
r+1

Γ(a r
r+1)

. (11)

Notice that the resulting expression for f(x) does not contain η or λ anymore; they only
appear in the ratio r = λ/η. Indeed, that could already have been concluded from (1)
with λ/η = r.
Knowledge of the nth moment of the Gamma distribution immediately yields that

E[Vn
e ] =

n+ a

a
(
r + 1

µ
)n

Γ(n+ a r
r+1)

Γ(a r
r+1)

, n = 1, 2, . . . . (12)

In particular,

E[Ve] =
(1 + a)r

µ
. (13)

Apparently, the mean steady-state cash level grows linearly with the proportionality pa-
rameter a, the jump ratio r = λ/η, and the mean deposit size 1/µ.

(ii) If R(x) =
∑L

n=−K rnx
n, with K,L ≥ 0 (and the rn chosen such that R(x) = λ(x)

η(x) > 0

for all x), then the exponent in (9) can be evaluated by a partial fraction expansion. In
particular, for R(x) = r−1/x we have:

f(x) = C(xa+1 +
a

µ
xa)

1

η(x)
(

r−1
r−1 + x

)a+1−µr−1e−µx, x > 0. (14)

If K = L = 1, so R(x) = r−1

x + r0 + r1x, the integral in (9) becomes∫ x 1

r1

µy + a

y2 + r0+1
r1

y + r−1

r1

dy

=
1

r1

∫ x

(
A1

y − y1
+

A2

y − y2
)dy,
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with

y1,2 = −r0 + 1

2r−1
± 1

2

√
{(r0 + 1

r1
)2 − 4

r−1
r1
},

A1 =
µy1 + a

y1 − y2
, A2 =

µy2 + a

y2 − y1
.

Hence, from (9),

f(x) =
C

r1
(xa+1 +

a

µ
xa)

1

η(x)
(x− y1)−1−A1/r1(x− y2)−1−A2/r1 , x > 0. (15)

Note that for r1 > 0 we do not get an exponential term, unlike the special cases R(x) = r
and R(x) = r−1/x.

4 Case II: general jumps upward

In this section we allow the generic upward jump G (a deposit) to have a general distri-
bution G(·) with LST γ(s). In Subsection 4.1 we consider the case λ(x) ≡ λ, η(x) ≡ η,

h(x) = xa, and in Subsection 4.2 the case R(x) = λ(x)
η(x) = r−1

x , h(x) = x.

4.1 Case II.a

When λ(x) ≡ λ, η(x) ≡ η, h(x) = xa, the level-crossing equation (1) becomes∫ x

w=0
λP (G > x− w)f(w)dw = η

∫ ∞
w=x

(
x

w
)af(w)dw. (16)

Taking Laplace transforms, and introducing φ(s) := E[e−sVe ] =
∫∞
0 e−sxf(x)dx, we obtain

λ

∫ ∞
x=0

e−sx
∫ x

w=0
P (G > x− w)f(w)dwdx = η

∫ ∞
x=0

e−sx
∫ ∞
w=x

(
x

w
)af(w)dwdx. (17)

The lefthand side of (17) equals

λ

∫ ∞
x=0

e−sx
∫ x

w=0
P (G > x− w)f(w)dwdx = λ

1− γ(s)

s
φ(s). (18)

In handling the righthand side of (17), we use partial integration to write∫ w

x=0
e−sxxadx = −1

s
wae−sw +

a

s

∫ w

x=0
e−sxxa−1dx. (19)

The last term of that expression should be integrated with respect to s to, once more, get
a power xa:∫ w

x=0
e−sxxa−1dx = −

∫ w

x=0
xa−1

∫ s

v=0
xe−vxdvdx+

∫ w

x=0
xa−1dx

= −
∫ w

x=0
xa
∫ s

v=0
e−vxdvdx+

1

a
wa. (20)
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The Laplace transform of the righthand side of (17) now becomes (using (17) itself and
(18)):

η

∫ ∞
x=0

e−sx
∫ ∞
w=x

(
x

w
)af(w)dwdx

= −η
s
φ(s)− ηa

s

∫ s

v=0

λ

η

1− γ(v)

v
φ(v)dv +

η

s

∫ ∞
w=0

f(w)dw. (21)

We thus end up with the following equation:

(η + λ(1− γ(s)))φ(s) = η − aλ
∫ s

0

1− γ(v)

v
φ(v)dv, (22)

so after differentiation we obtain

(η + λ(1− γ(s)))φ′(s) = −φ(s)
d

ds
(η + λ(1− γ(s)))− aλ1− γ(s)

s
φ(s). (23)

Hence
φ′(s)

φ(s)
= −

d
ds(η + λ(1− γ(s))

η + λ(1− γ(s))
−

aλ1−γ(s)
s

η + λ(1− γ(s))
. (24)

We have thus proven the following theorem.

Theorem 4.1. The steady-state cash level LST for Case II.a is given by

E[e−sVe ] = φ(s) =
η

η + λ(1− γ(s))
exp
(
−aλ

∫ s

0

1− γ(u)

u[η + λ(1− γ(u))]
du
)
. (25)

Differentiation of (25) and subsequent substitution of s = 0 gives

E[Ve] = (1 + a)
λE[G]

η
. (26)

We end this subsection with several remarks.
Remark 1. It is interesting to see that a in (25) only appears as a factor in the exponent.
Further observe that (26) generalizes (13) to the case of generally distributed upward
jumps, for the case that λ(x) ≡ λ, η(x) ≡ η.

Remark 2. When G ∼ exp(µ), (25) reduces to

φ(s) =
η(µ+ s)

ηµ+ (λ+ η)s
exp
(
−a
∫ s

0

λ

ηµ+ (λ+ η)u
du
)

= (
η

λ+ η
+

λ

λ+ η

ηµ

ηµ+ (λ+ η)s
)(

ηµ

ηµ+ (λ+ η)s
)
a λ
λ+η

=
η

λ+ η
(

ηµ

ηµ+ (λ+ η)s
)
a λ
λ+η +

λ

λ+ η
(

ηµ

ηµ+ (λ+ η)s
)
a λ
λ+η

+1
. (27)

With r = λ/η, this becomes

φ(s) =
1

r + 1
(

µ

µ+ (r + 1)s
)a

r
r+1 +

r

r + 1
(

µ

µ+ (r + 1)s
)a

r
r+1

+1. (28)
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This case of exponential upward jumps was already discussed at the end of Section 3,
where we already saw that Ve is distributed as a weighted sum of a Gamma(a r

r+1 ,
µ
r+1)

and a Gamma(a r
r+1 +1, µ

r+1) distributed random variable. This is in agreement with (28).

Remark 3. We can interpret both factors of the cash level LST φ(s) in (25). First observe
that k(s) := η

η+λ(1−γ(s)) is the LST of the total increment K during an exp(η) time interval

of a compound Poisson process with jump rate λ and jump size LST γ(s). Also observe
that the integrand in the exponent of (25) can be rewritten as follows:

a
λ1−γ(u)

u

η + λ(1− γ(u))
=
aλEG

η

1− η
η+λ(1−γ(u))
λE[G]
η u

. (29)

Now recognize this as aλE[G]
η times the LST of the residual of K.

For a further interpretation of the second factor of (25), consider a so-called shot noise
queueing model. This is an M/G/1 queue with the special feature that the service speed
is proportional to the workload. Let us assume that the arrival rate of customers in
that queue is λ, that their service time LST is β(s) and that the service speed is αx if the

workload equals x. The steady-state workload LST E[e−sV̂e ] in such a shot noise queueing
model is given by (cf. Bekker et al. [5]):

E[e−sV̂e ] = exp
(
−λ
α

∫ s

0

1− β(u)

u
du
)
. (30)

In the case of (25) we should apparently take α = η and β(s) = k(s); in other words, the

upward jumps are distributed as K. The decomposition φ(s) = k(s)e
−

∫ s
0 a

λ
1−γ(u)
u

η+λ(1−γ(u))du in
(25) immediately yields that the steady-state cash level Ve in our model can be written
as

Ve
d
= K + V̂e, (31)

K and V̂e being independent. This decomposition also quickly allows us to get moments
(this is actually how (26) was found), and to obtain tail asymptotics. In particular, let us
assume that the deposit size G is regularly varying of index −ν, i.e.,

P (G > x) ∼ x−νL(x), x→∞, (32)

with L(x) a slowly varying function at infinity, so limx→∞
L(gx)
L(x) = 1 for any g > 0. The

Tauberian Theorem 8.1.6 of [6] relates the tail behavior of a regularly varing random
variable to the behavior of its LST near zero. It states that (32) with 1 < ν < 2 is
equivalent with the following relation:

γ(s)− 1 + sE[G] ∼ −Γ(1− ν)sνL(
1

s
), s ↓ 0. (33)

Now consider both terms of (25). Using that

η

η + λ(1− γ(s))
− 1 +

λ

η
EGs ∼ −λ

η
Γ(1− ν)sνL(

1

s
), s ↓ 0, (34)

and, after some calculations,

exp
(
−aλ

∫ s

0

1− γ(u)

u[η + λ(1− γ(u))]
du
)
− 1 +

aλ

η
EGs ∼ −aλ

η

Γ(1− ν)

ν
sνL(

1

s
), s ↓ 0, (35)
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it follows that (see also (26))

E[e−sVe ]− 1 + EVes ∼ −
λ

η
(1 +

a

ν
)Γ(1− ν)sνL(

1

s
), s ↓ 0. (36)

Another application of Theorem 8.1.6 of [6] now implies that

P (Ve > x) ∼ λ

η
(1 +

a

ν
)x−νL(x), x→∞. (37)

We conclude that, if G is regularly varying of index −ν ∈ (−2,−1), then the same holds
for the cash level Ve. More generally, a heavy tail of order x−ν of the deposits results in
an equally heavy tail of the cash level.

Remark 4. The proportionality property of the jumps down is indeed closely related to
having a gradual decrease according to shot noise (even with h(x) = xa). Consider a shot
noise process that decreases at rate αx if the level is x, and that has Poisson arrivals at
rate ζ. If, just after the nth arrival, the workload Xn = x, then the probability that it
decreases to a level Yn+1 below w in the arrival interval Tn+1 between arrivals n and n+1
equals, for w ≤ x:

P (Yn+1 < w|Xn = x) = P (xe−αTn+1 < w) = P (Tn+1 > −
1

α
ln(

w

x
)) = e

ζ
α
ln(w

x
)) = (

w

x
)
ζ
α .

(38)
This explains that h(w) = wa indeed is directly linked to shot noise.
To clarify the relation between the M/G/1 shot noise queue and the model of the present
subsection, observe that the LST in (25) can be interpreted as the LST of the workload

in the shot noise queue immediately after an arrival. Indeed, by PASTA, E[e−sV̂e ] is the
workload LST just before an arrival. To translate our model to the M/G/1 shot noise
queue, we should compress the upward parts in between two consecutive downward jumps
in our model to jumps upward distributed as K, and we should replace the proportional
jumps down by a shot noise decreasing path, as described in this remark. Finally, by
applying PASTA to our cash management model, we see that Ve is also distributed as
the capital just before a downward jump (crisis). Considering our model at such epochs
corresponds to considering the shot noise queue just after jumps.

Remark 5. It is not hard to verify that the compound Poisson input of this subsection,
with jump rate λ and jump size LST γ(s), can be generalized to the case of a Lévy input
process {X(t), t ≥ 0} that is a subordinator, i.e., a non-decreasing Lévy process. In such
a case, E[e−sX(t)] = e−τ(s)t. In our case of compound Poisson input, τ(s) = λ(1 − γ(s));
in the formulas in this subsection, we would simply have to replace λ(1 − γ(s)) by τ(s),
and λE[G] by τ ′(0).

Remark 6. One could extend the model of Section 4 by allowing not only level-proportional
jumps downward, but also jumps downward whose size does not depend on the current
cash level. Such jumps could represent withdrawals by lenders. Below we roughly sketch
how this case could be analyzed. If we assume that such jumps downward occur according
to a Poisson process with rate ψ and that they are independent, exponentially distributed

11



with rate ω, then (17) becomes

λ

∫ ∞
x=0

e−sx
∫ x

w=0
P (G > x− w)f(w)dwdx+ F (0)λ

∫ ∞
0

e−sx(1−G(x))dx

= η

∫ ∞
x=0

e−sx
∫ ∞
w=x

(
x

w
)af(w)dwdx+ ψ

∫ ∞
x=0

e−sx
∫ ∞
w=x

e−ω(w−x)f(w)dwdx. (39)

Here F (0) is the probability that the process is at level 0. In the case of non-proportional
downward jumps, that probability no longer is zero. Using the same steps as in (19) and
(20), it follows that

λ
1− γ(s)

s
[φ(s) + F (0)] = η(1− φ(s)− F (0))

− a

s

∫ s

0
[λ

1− γ(v)

v
(φ(v) + F (0))− ψ

ω − v
[φ(v)− φ(ω)]]dv

+
ψ

ω − s
[φ(s)− φ(ω)]. (40)

Introducing E[e−sVe ] = φ∗(s) = φ(s) + F (0), we can rewrite this into

λ
1− γ(s)

s
φ∗(s) = η(1− φ∗(s))

− a

s

∫ s

0
[λ

1− γ(v)

v
φ∗(v)− ψ

ω − v
[φ∗(v)− φ∗(ω)]]dv

+
ψ

ω − s
[φ∗(s)− φ∗(ω)]. (41)

Via differentiation we obtain a first-order linear differential equation in φ∗(s), which is
similar to (23) but has an inhomogeneous part (involving the unknown φ∗(ω)). Its solution
is reasonably straightforward; see, e.g., Case II.b below for another example in which
a first-order linear nonhomogeneous differential equation with an unknown constant is
treated.

4.2 Case II.b

In this subsection we assume that R(x) = r−1

x , as in special case (ii) at the end of Section 3.

We furthermore take h(x) ≡ x, and as before we introduce z(x) = η(x)
x f(x). The level

crossing equation (1) now translates into∫ x

w=0
wR(w)P (G > x− w)z(w)dw = x

∫ ∞
w=x

z(w)dw. (42)

Denote the Laplace transform of z(·) by ζ(·). Taking transforms in (42) gives:

r−1
1− γ(s)

s
ζ(s) = − d

ds

∫ ∞
w=0

z(w)

∫ w

x=0
e−sxdxdw

= − d

ds

∫∞
0 z(w)dw − ζ(s)

s

=
ζ ′(s)

s
+

∫∞
0 z(w)dw − ζ(s)

s2
=
ζ ′(s)

s
+
ζ(0)− ζ(s)

s2
. (43)

12



We end up with the differential equation

ζ ′(s) = [
1

s
+ r−1(1− γ(s))]ζ(s)− ζ(0)

s
. (44)

The solution of this first-order linear nonhomogeneous differential equation is routinely
found, using the method of variation of constants:

ζ(s) = s exp
( ∫ s

0
r−1(1− γ(v))dv

)[
C∗ − ζ(0)

∫ s exp
(
−
∫ y
0 r−1(1− γ(v))dv

)
y2

dy
]
. (45)

It should be noticed that we have not yet specified the lower integration bound of the
integral inside the square brackets. The reason is that the behavior of the expression
on the righthand side of (45) when s ↓ 0 is somewhat delicate. A careful study of this
behavior will now allow us to determine the still unknown constant C∗ – and also the
remaining unknown ζ(0). We first observe that the term in front of the square brackets,
on the righthand side of (45), behaves as s for s ↓ 0. Hence the term in square brackets
should go to infinity when s ↓ 0. We now show that

lims↓0 s exp
( ∫ s

0
r−1(1− γ(v))dv

)
ζ(0)

∫ ∞
s

exp
(
−
∫ y
0 r−1(1− γ(v))dv

)
y2

dy

= lims↓0

∫∞
s

e−
∫ y
0 r−1(1−γ(v))dv

y2
dy

1
s

= 1. (46)

The last equality follows by using l’Hôpital’s rule. This determines the choice of C∗; the

term in square brackets in (45) should be ζ(0)
∫∞
s

e−
∫ y
0 r−1(1−γ(v))dv

y2
dy, and hence we can

rewrite (45) into

ζ(s) = ζ(0) s exp
( ∫ s

0
r−1(1− γ(v))dv

) ∫ ∞
s

exp
(
−
∫ y
0 r−1(1− γ(v))dv

)
y2

dy

= ζ(0) s

∫ ∞
s

exp
(∫ s
y r−1(1− γ(v))dv

)
y2

dy. (47)

It remains to determine ζ(0). This constant is computed by using the normalizing con-
dition

∫∞
0 f(x)dx =

∫∞
0

x
η(x)z(x)dx = 1. To obtain explicit results, we now assume that

η(x) ≡ η (so that λ(x) = r−1η
x ; we could also, e.g., have taken η(x) ≡ ηx, which would

immediately have given that ζ(0) = η). It follows that
∫∞
0 xz(x)dx = η, and hence

ζ ′(0) = −η. Differentiating (47) yields

ζ ′(0) = lims↓0(−
ζ(0)

s
+ ζ(0)

∫ ∞
s

e−
∫ y
0 r−1(1−γ(v))dv

y2
dy

× [e
∫ s
0 r−1(1−γ(v))dv + sr−1(1− γ(s))e

∫ s
0 r−1(1−γ(v))dv]). (48)

Using that 1
s =

∫∞
s

1
y2

dy, we can rewrite the above formula as

ζ ′(0) = ζ(0)lims↓0

∫ ∞
s

e−
∫ y
0 r−1(1−γ(v))dv − 1

y2
dy (49)

+ ζ(0)lims↓0

∫ ∞
s

e−
∫ y
0 r−1(1−γ(v))dv

y2
dy
[
e
∫ s
0 r−1(1−γ(v))dv − 1 + sr−1(1− γ(s))e

∫ s
0 r−1(1−γ(v))dv

]
.
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The term between square brackets in (49) is readily seen to be O(s2), while the integral
in front of it behaves like 1/s for s ↓ 0 according to (46). Hence,

ζ ′(0) = ζ(0)lims↓0

∫ ∞
s

e−
∫ y
0 r−1(1−γ(v))dv − 1

y2
dy. (50)

While both parts of the outer integral behave like 1/s, the integral is clearly negative and
finite; notice that the integrand is approximately −1

2r−1E[G] for very small y. Using the
above-mentioned fact that ζ ′(0) = −η we finally obtain ζ(0):

ζ(0) =
η∫∞

0
1−e−

∫ y
0 r−1(1−γ(v))dv

y2
dy
. (51)

Combining (47) and (51) we have determined ζ(s):

ζ(s) =

∫ ∞
0

e−sxz(x)dx =
ηse

∫ s
0 r−1(1−γ(v))dv

∫∞
s

e−
∫ y
0 r−1(1−γ(v))dv

y2
dy∫∞

0
1−e−

∫ y
0 r−1(1−γ(v))dv

y2
dy

. (52)

Theorem 4.2. The steady-state cash level LST for Case II.b, with η(x) = η, is given by

E[e−sVe ] =
ζ(0)

ηs
− 1

η
[
1

s
+ r−1(1− γ(s))]ζ(s), (53)

with ζ(s) given by (52) and ζ(0) by (51).

Proof. Observe that E[e−sVe ] =
∫∞
0 e−sxf(x)dx =

∫∞
0 e−sx xz(x)η dx = − 1

η ζ
′(s). Now use

Expression (44) for ζ ′(s).

Remark 7. Remembering that z(x) = η
xf(x), it is seen that

E[Ve] =

∫ ∞
0

xf(x)dx = ηζ ′′(0). (54)

Remark 8. In (14) f(x) is given for the case in which h(x) = xa, λ(x)/η(x) = r−1/x and

G(x) = 1− e−µx. Taking a = 1 in (14) and remembering that z(x) = η(x)
x f(x), we have

z(x) = C(x+
1

µ
)(x+ r−1)

µr−1−2e−µx, (55)

where C is not the same constant as the normalizing constant in (14). Let us now check
that, indeed, its Laplace transform,∫ ∞

0
e−sxz(x)dx = C

∫ ∞
0

(x+
1

µ
)(x+ r−1)

µr−1−2e−(s+µ)xdx, (56)

agrees with ζ(s) as given in (52). When G(x) = 1 − e−µx, so γ(s) = µ
µ+s , we have

e−
∫ y
0 r−1(1−γ(v))dv = (µ+yµ )r−1µe−r−1y. Hence we can rewrite the transform in (56), taking

y = s+ u, into

ζ(s) = ζ(0)s

∫ ∞
u=0

(µ+ u+ s)µr−1

(µ+ s)µr−1

1

(u+ s)2
e−r−1udu. (57)
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Partial integration yields

ζ(s) = ζ(0)− ζ(0)s

∫ ∞
u=0

r−1
(µ+ u+ s)µr−1−1

(µ+ s)µr−1
e−r−1udu. (58)

Taking, on the other hand, (s+ µ)x = r−1u in (56) changes that Laplace transform after
some straightforward calculations into

ζ(s) =
C∗∗

(µ+ s)µr−1
[

∫ ∞
0

(µ+ s+ u)µr−1−2(µ+ s)(1− µr−1)e−r−1udu

+

∫ ∞
0

(µ+ s+ u)µr−1−1µr−1e
−r−1udu], (59)

with C∗∗ some constant. Via a partial integration of the second integral and subsequently
taking s = 0, it can be readily verified that C∗∗ = ζ(0). We want to show that the
expressions for ζ(s) in (58) and (59) coincide. By performing one partial integration with
respect to the integral in (58), viz.,∫ ∞
u=0

r−1(µ+u+s)µr−1−1e−r−1udu = (µ+s)µr−1−1−(1−µr−1)
∫ ∞
0

(µ+s+u)µr−1−2e−r−1udu,

(60)
we conclude that, indeed, (52) and (45) are in agreement.

5 A second P2P model: up and down periods, i.i.d. jumps
up, shot noise down

In this section we shall study a slightly different cash management model. We assume that
there is a background process for the cash level process; that background process alternates
between up and down periods. During up periods, the cash level grows according to
some compound Poisson process, and stays constant otherwise. During down periods, the
cash level process grows according to another compound Poisson process, but in between
upward jumps it decreases at a rate that is proportional to its level. The down periods
represent recessions.
We would like to point out that the above-described model bears a strong resemblance to
a polling model that was recently studied in [9]. A polling model is a queueing model in
which a single server cyclically visits a number of queues, serving the customers of a visited
queue for a certain time period. If one were to focus on one particular queue Q, then its
workload increases during all the periods in which it is not visited (this corresponds to the
up periods in the model of the present section). During visit periods of Q, the workload
also increases because of customer arrivals, but in addition it decreases because the server
is serving the queue. Both in [9] (during visit periods) and in the present section (during
down periods), the process level decreases at a speed that is proportional to that level.
Contrary to [9], the input processes during up and down periods may be different in the
present model, and the up periods may have a general distribution.
The model is described in Subsection 5.1, and the steady-state analysis of the cash level
is presented in Subsection 5.2.
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5.1 Model description

We assume that the cash level process {V(t), t ≥ 0} alternately goes through up periods
and down periods. The up period lengths U1,U2, ... are i.i.d. with distribution function
U(·), density υ(·) and LST φU (s), while the down period lengths D1,D2, ... are i.i.d.
with distribution function D(·), density δ(·) and LST φD(s). All up periods are also
independent of all down periods. During up periods, V(t) is increasing according to a
compound Poisson process (we could generalize this to a Lévy subordinator) with jump
rate λU and i.i.d. jumps, generically denoted by GU , with jump size LST G∗U (s). During
down periods, V(t) is decreasing according to a shot noise process; when V(t) = x, the
process decreases at rate rx, x > 0 (notice that the process never can reach zero). But
in addition, during down periods we allow increments according to a compound Poisson
process with jump rate λD and i.i.d. jumps, generically denoted by GD, with jump size
LST G∗D(s). The two compound Poisson processes are also assumed to be independent of
everything else.

5.2 Steady-state analysis

In this subsection we study the steady-state distribution of the process {V(t), t ≥ 0} –
which always exists if r > 0 and the mean up periods and upward jumps are finite. Let V
denote a random variable with that steady-state distribution, and let VU and VD denote
the steady-state capital level at the end of an up, respectively down, period. Our first
observation is that

E[e−sVU ] = φU (λU (1−G∗U (s)))E[e−sVD ], Re s ≥ 0. (61)

Our second observation (see, e.g., [9]) is that, during a down period that starts at time 0,
V(t) evolves as follows:

V(t) = V(0)e−rt +

A(t)∑
i=1

GD,ie
−r(t−ti), t ≥ 0; (62)

here A(t) denotes the number of Poisson arrivals in [0, t], and the sizes of successive upward
jumps are denoted by GD,1,GD,2, . . . . It readily follows from this relation (see also [9])
that

E[e−sV(t)] = exp(−sV(0)e−rt)exp(−λD
r

∫ s

se−rt

1−G∗D(v)

v
dv), Re s ≥ 0. (63)

Expressing the LST of VD into the preceding VU , it follows from (63) that

E[e−sVD |VU = x] =

∫ ∞
t=0

e−se
−rtxe−

λD
r

∫ s
se−rt

1−G∗D(v)

v
dvdD(t), (64)

and hence

E[e−sVD ] =

∫ ∞
t=0

E[e−se
−rtVU ]e−

λD
r

∫ s
se−rt

1−G∗D(v)

v
dvdD(t). (65)

Combining (61) and (65) we obtain a functional equation for the LST of VU :

E[e−sVU ] = φU (λU (1−G∗U (s)))

∫ ∞
t=0

E[e−se
−rtVU ]e−

λD
r

∫ s
se−rt

1−G∗D(v)

v
dvdD(t). (66)
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The transformation se−rt = y reduces this equation to

E[e−sVU ] = φU (λU (1−G∗U (s)))

∫ s

y=0
E[e−yVU ]e−

λD
r

∫ s
y

1−G∗D(v)

v
dv 1

ry
δ(−1

r
ln
y

s
)dy. (67)

As mentioned in the beginning of this section, the model of this section is closely related
to polling models studied in [9]. In Section 6 of [9], the case of constant down periods is
treated, and in Section 7 of [9] the case of exponentially distributed down periods, with
also exponential up periods, is studied. In both cases, the compound Poisson processes
during up and down periods are the same. Below we briefly indicate how (67) can be
solved in these two cases (but allowing different compound Poisson processes, and gener-
ally distributed up periods).

Remark 9. Differentiating (66) with respect to s we obtain E[VU ]:

E[VU ] = λUE[GU ]E[U] + E[VU ]

∫ ∞
t=0

e−rtdD(t) +
λD
r

∫ ∞
t=0

(1− e−rt)E[GD]dD(t),

so

E[VU ] =
λUE[GU ]E[U]

1− E[e−rD]
+
λDE[GD]

r
. (68)

In combination with (61) this yields

E[VD] =
E[e−rD]

1− E[e−rD]
λUE[GU ]E[U] +

λDE[GD]

r
. (69)

Remark 10. Once we have the LST of VU , the LST of VD follows from (61); it is sub-
sequently not hard to obtain the capital level LST’s at arbitrary epochs in down and up
periods via a stochastic mean value theorem; and finally one averages over the two peri-
ods to obtain the LST of V. Below we discuss this for the case of exponential down periods.

Example 1: The case of exponential down periods.
For exp(ξD) down periods, the density δ(−1

r lnys ) = ξD(ys )ξD/r, and (67) simplifies consid-
erably:

E[e−sVU ] = φU (λU (1−G∗U (s)))

∫ s

y=0
E[e−yVU ]e−

λD
r

∫ s
y

1−G∗D(v)

v
dv ξD
ry

(
y

s
)ξD/rdy. (70)

Differentiation w.r.t. s leads, after some calculations, to the following first-order linear
differential equation in FU (s) := E[e−sVU ]:

F ′U (s) =
d
dsφU (λU (1−G∗U (s)))

φU (λU (1−G∗U (s)))
FU (s)

+
ξD
r

φU (λU (1−G∗U (s)))

s
FU (s)− λD

r

1−G∗D(s)

s
FU (s)− ξD

r

1

s
FU (s), (71)

and hence

FU (s) = E[e−sVU ] = φU (λU (1−G∗U (s)))e−
ξD
r

∫ s
0

1−φU (λU (1−G∗U (v)))

v
dve−

λD
r

∫ s
0

1−G∗D(v)

v
dv, (72)
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and, using (61),

E[e−sVD ] = e−
ξD
r

∫ s
0

1−φU (λU (1−G∗U (v)))

v
dve−

λD
r

∫ s
0

1−G∗D(v)

v
dv. (73)

Notice that both exponential terms have the form of the LST of the workload in a shot
noise model; see also Remark 3. The last exponential is the workload LST in a shot noise
model that exactly corresponds to the down periods in our model. The first exponential
is the workload LST in a shot noise model with arrival rate ξD of shots, and with shot
(jump) sizes corresponding to the total amount of work/capital arriving during an up
period. Also notice that the first two terms of (72) correspond to the cash level LST in
Theorem 4.1, in case φU (s) = η

η+s .
We close this example by determining the LST of the steady-state workload Ve at an
arbitrary epoch; cf. Remark 10. In steady state, we can restrict ourselves to considering
an arbitrary sequence of one down period followed by one up period. Denoting the steady-
state amount of work in an arbitrary down (respectively up) period by VD

e (respectively
VU
e ), we can write:

E[e−sVe ] =
ED

EU + ED
E[e−sV

D
e ] +

EU

EU + ED
E[e−sV

U
e ]. (74)

It immediately follows by PASTA that VD
e has the same distribution as VD. During

the subsequent up period, the workload grows from VD according to a compound Poisson
process. At an arbitrary time epoch during this up period, the workload VU

e equals the sum
of VD and, independently, the compound Poisson increment during the past part of the
U period. Hence, observing that the length of that past part has density P (U > t)/EU:

E[e−sV
U
e ] = E[e−sVD ]

∫ ∞
t=0

e−λU (1−G
∗
U (s))t

P (U > t)

EU
dt = E[e−sVD ]

1− φU (λU (1−G∗U (s)))

EUλU (1−G∗U (s))
.

(75)
Combining (74) and (75) we obtain the LST of the steady-state workload, for the case of
exponential down periods:

E[e−sVe ] = E[e−sVD [
ED

EU + ED
+

EU

EU + ED

1− φU (λU (1−G∗U (s)))

EUλU (1−G∗U (s))
]. (76)

Example 2: The case of constant down periods.
For constant down periods of length T , (66) reduces to

FU (s) = φU (λU (1−G∗U (s)))FU (se−rT )e−
λD
r

∫ s
se−rT

1−G∗D(v)

v
dv. (77)

This equation can easily be solved by iteration, resulting in an infinite product. Observing
that FU (0) = 1, we get:

FU (s) = e−
λD
r

∫ s
0

1−G∗D(v)

v
dv
∞∏
j=0

φU (λU (1−G∗U (se−jrT ))). (78)

It is readily verified that the infinite product converges, which is equivalent with conver-
gence of

∑∞
j=0[1 − φU (λU (1 − G∗U (se−jrT )))]. The latter sum exhibits geometric conver-
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gence, as is seen by twice using 1− e−x ≤ x for x > 0:

|1− φU (λU (1−G∗U (se−jrT )))| = |
∫ ∞
0

(1− e−λU (1−G
∗
U (se

−jrT ))t)dU(t)|

≤ λUE[U]|1−G∗U (se−jrT )|

≤ λUE[U]

∫ ∞
0
|1− e−se

−jrT x|dGU (x)

≤ λUE[U]E[GU ]se−jrT . (79)

Finally, we briefly consider the case in which down periods are equal to the constant T1
with probability p1 and equal to the constant T2 with probability p2, with 0 < p1 < 1
and p2 = 1 − p1. Our approach seems of independent interest, and can be extended in a
rather straightforward way to handle the case of M ≥ 3 different constant down periods.
Equation (66) reduces to

FU (s) = φU (λU (1−G∗U (s)))
2∑
i=1

piFU (se−rTi)e−
λD
r

∫ s
se−rTi

1−G∗D(v)

v
dv. (80)

This generalizes (77), that considered the workload at the end of an arbitrary down period
of constant length T . Just like for the latter equation, we attempt an iteration. This
approach bears some similarity to the approach of Adan et al. [1] of the following recursion,
with ψ(s) the unknown LST: ψ(s) = p0 +

∑2
i=1Hi(s)ψ(s + θi). To keep the overview in

our somewhat complicated iteration, we introduce the following shorthand notation.

ei := e−rTi , i = 1, 2, (81)

k(s) := φU (λU (1−G∗U (s))), l(b, s) := e−
λD
r

∫ s
b

1−G∗D(v)

v
dv. (82)

Equation(80) can now be rewritten as

FU (s) = k(s)
2∑
i=1

pil(eis, s)FU (eis). (83)

After n− 1 iterations, one gets

FU (s) =
n∑
k=0

pk1p
n−k
2 l(ek1e

n−k
2 s, s)Kk,n−k(s)FU (ek1e

n−k
2 s), (84)

where Kk,n−k(s) are recursively defined as follows (with K−1,·(s) = K·,−1(s) ≡ 0):

K1,0(s) := k(s), K0,1(s) := k(s),

Kk+1,n−k(s) = Kk,n−k(s)k(ek1e
n−k
2 s) +Kk+1,n−1−k(s)k(ek+1

1 en−1−k2 s),

Kk,n+1−k(s) = Kk−1,n+1−k(s)k(ek−11 en+1−k
2 s) +Kk,n−k(s)k(ek1e

n−k
2 s). (85)

One can verify that Kk,n−k(s) is a sum of
(
n
k

)
terms. All these terms correspond to having

k periods of length T1 and n − k periods of length T2 in the last n down periods. There
are

(
n
k

)
ways to order those n periods.

19



We now claim that one can approximate FU (s) quite accurately by the following expression:

FU (s) ≈ l(0, s)
n∑
k=0

pk1p
n−k
2 Kk,n−k(s), (86)

for n sufficiently large (but actually quite small). Indeed, comparing (84) and (86), the
error thus made equals

n∑
k=0

pk1p
n−k
2 l(ek1e

n−k
2 s, s)Kk,n−k(s)(FU (ek1e

n−k
2 s)− 1)

+
n∑
k=0

pk1p
n−k
2 (l(ek1e

n−k
2 s, s)− l(0, s))Kk,n−k(s). (87)

Introducing
e∗ = max(e1, e2),

and observing that
1−G∗D(v)

E[GD]v is the LST of the residual of a jump during a down period, and
hence bounded by one, one has the following bounds for terms appearing in the righthand
side of (87):

|FU (ek1e
n−k
2 s)− 1| ≤

∫ ∞
0
|1− e−e

n
∗ st|dP (VU < t) ≤ E[VU ]|s|en∗ ; (88)

|l(ek1en−k2 s, s)− l(0, s)| ≤ |1− l(0, ek1en−k2 s)|

= |1− e−
λD
r

∫ ek1en−k2 s

0

1−G∗d(v)
v

dv| ≤ λD
r
E[GD]|s|en∗ . (89)

Note that 0 < e∗ < 1 and that

n∑
k=0

pk1p
n−k
2 Kk,n−k(s) ≤ 1,

because Kk,n−k(s) contains
(
n
k

)
products of k(·) terms while k(·) is the LST of a nonneg-

ative random variable. Hence we have shown that FU (s) converges geometrically fast to
the expression in the righthand side of (86).
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