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Abstract

We provide a survey of so-called shot-noise queues: queueing models with the special feature
that the server speed is proportional to the amount of work it faces. Several results are derived
for the workload in an M/G/1 shot-noise queue and some of its variants and generalizations.
We also discuss linear stochastic fluid networks, and queues in which the input process is a
shot-noise process.
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1 Introduction
This paper aims to present a survey of queueing models with the special feature that the server
speed is proportional to the amount of work it faces. If the workload in a single server queue
equals x, then the server processes work at speed r x, x > 0. We call such a queue a shot-noise
queue.

The term ‘shot noise’ stems from physics. Campbell [33, 34] pioneered the study of dis-
continuous noise, conveyed by pulses, in continuous-time physical systems. The discontinuous
nature stems from the discreteness of the carriers: electrons in electrical systems, photons in
optical systems. Schottky performed fundamental experiments with ideal vacuum tubes, and
reported in 1918 [94] that he observed two types of noise: the thermal effect (Wärme-effekt)
being the continuously fluctuating thermal white noise, and what he called the shot effect
(Schroteffekt) of discontinuous pulses.

Shot-noise phenomena have received much attention in the physics literature, but were
also treated in several probability textbooks, including the classics by Doob [41], Feller [44]
and Parzen [83]. In the fifties, some leading queueing theorists like Keilson and Takács
(cf. [60,97,99–101]) began the study of shot-noise models for physical phenomena like electron
multiplier counters. In his celebrated book Introduction to the Theory of Queues [102], Takács
devoted a chapter to shot-noise countermodels. He assumed that particles are emitted according
to a Poisson process, and that these particles are detected using an electronmultiplier. To the i-th
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particle corresponds an electronic pulse whose amplitude is a random variable Bi , i = 1, 2, . . . .
These random variables are i.i.d. (independent and identically distributed). Each electronic
pulse has an exponential decay in the RC (Resistance/Capacitance) circuit in which the electron
multiplier is included, with a time constant r = 1/RC: the voltage V(t) decays according
to dV(t)/dt = −V(t)/RC, where R is the resistance and C the capacitance. The measured
voltage process {V(t), t ≥ 0} is the main stochastic process under consideration. If one now
replaces particles by customers, pulse amplitudes by service requirements, decay by service,
and voltage by workload, one has an M/G/1 queue with the special feature that the service
speed is proportional to the workload — the M/G/1 shot-noise queue. This queue and various
generalizations form the subject of our survey.

Motivation. Our motivation for writing this survey is twofold. Firstly, we would like to draw
the reader’s attention to a class of queueing models with some very attractive properties, which
allow one to obtain quite explicit workload results; a class of queueing models, on the other
hand, for which not that many results have been obtained, and for which there are also numerous
interesting open problems. We shall mention some of them at the end of each section; e.g., the
very intriguing problem of obtaining queue length results in shot-noise queues.

Secondly, it is almost invariably assumed in the queueing literature that servers work at
constant speed. However, there are many situations where this assumption does not hold.
We mention four examples. (i) In systems where the server represents a human being, the
amount of work present may directly affect the speed of the server [16]. (ii) Dams, serving
as storage area for water, are often studied as queues. Inflowing water, caused by rainfall,
is temporarily stored, and released according to a release rule that is state-dependent [48].
(iii) TCP, the Transmission Control Protocol, is the dominant protocol used to regulate the
transmission rate of Internet flows. The implementation of TCP’s congestion control uses a
congestion window. That window specifies the maximum number of packets sent by a source
without having received an acknowledgment of receipt. If packets are lost, TCP concludes that
the congestion level is high and reduces the window size. In a queueing formulation, this can
be translated into a queueing model with workload-dependent service speed (cf. Section 1.5
of [13]). TCP has also given rise to various growth-collapse models; see, e.g., [77]. (iv) In
data centers with huge numbers of servers, it is crucial to have mechanisms, like autoscaling
techniques, to balance energy consumption and performance. An autoscaling algorithm adjusts
the processing speed of the processors (servers) according to their workload. At the data center
level, it controls the number of active servers; at the individual computer level, a CPU is able
to adjust the processing speed by either dynamic frequency scaling or dynamic voltage scaling
techniques [105]. The processing speed is scaled up when the workload of the server is high,
and scaled down under a low workload.

Related literature. While focusing on queueing models with workload-dependent service
speed, we would like to briefly point out in this paragraph that there is a much larger literature
on stochastic aspects of shot-noise processes. We refer to [19] for a compact account of
shot-noise processes and shot-noise distributions, and to [53] for a comprehensive overview of
several variants of shot-noise processes. Quite a large number of papers is devoted to the study
of convergence results and scaling limits of Poisson shot-noise processes. After appropriate
centerings and scalings, such processes approximate a Gaussian process, fractional Brownian
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motion or a stable Lévy process; see, e.g., [32, 52, 68, 69, 75, 76]. In [54], that considers limit
theorems for renewal shot-noise processes, various other limiting results are mentioned.

Applications of shot-noise processes are found in many areas besides queueing, covering
e.g. the occurrence of earthquakes [82, 103], water flows [104], financial models [90, 93] and
insurance risk [68]. In the latter case, some results can immediately be translated from the
insurance to the queueing setting by using specific duality relations between the two classes of
models.

Another large bulk of related literature is formed by studies concerning growth-collapse
processes and autoregressive processes, and more generally particular recursive sequences of
stochastic processes. We have tried to keep the focus as much as possible on shot-noise queues,
now and then briefly indicating relations to other stochastic processes – and undoubtedly our
choices were sometimes biased towards models and results that are close to our own research
interests. Throughout the paper we present derivations of a few key results. In presenting
those results and derivations, we aim for accessibility rather than generality and abstraction.
For example, on several occasions one could have generalized from a compound Poisson input
process to a Lévy subordinator, or have considered a multi-class vector version, but we have
mostly refrained from this.

Structure of the paper. Section 2 is devoted to a detailed study of the classical M/G/1
shot-noise queue: an M/G/1 queuewith the special feature that its service speed is proportional
to the workload. In Section 3 we discuss the generalization to the case of a more general service
speed r(x) when the workload equals x. In addition, we allow a workload-dependent arrival
rate. In Section 4 we consider several variants of the M/G/1 shot-noise queue. Linear
stochastic fluid networks are discussed in Section 5. Section 6 focuses on a quite different
aspect of shot noise; it studies queues in which the input process is a shot-noise process.

2 The M/G/1 shot-noise queue
In this section we consider what is perhaps the most basic shot-noise queue: the M/G/1 queue
with the special feature that the server works at a speed which is proportional to the amount
of work present. Let us first specify the model under consideration. Customers arrive at a
single server queue according to a Poisson process {N(t), t ≥ 0} with rate λ. The service
requirements B1, B2, . . . of the arriving customers are i.i.d. random variables with distribution
B(·) and LST (Laplace-Stieltjes transform) β(·). Hence the input process to the single server
queue is a compound Poisson process, which we denote by {J(t), t ≥ 0}. We further introduce
the offered load per time unit ρ := λ E[B]. Let X(t) denote the amount of work in the system at
time t. Contrary to the usual assumption in queueing theory, the server speed is not constant but
proportional to the workload, viz., if X(t) = y then the server speed r(X(t)) at time t satisfies
r(X(t)) = ry, with r > 0 some constant; see Figure 1.

It is readily seen that {X(t), t ≥ 0} is a Markov process (cf. p. 393 of [87]). Considering
this Markov process during an infinitesimal length of time h shows that

X(t + h) = X(t) − r X(t)h + J(t + h) − J(t) + o(h), h ↓ 0. (1)

Dividing by h and letting h ↓ 0 yields

dX(t) = −r X(t)dt + dJ(t). (2)
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Figure 1. Workload process X(t) in the shot-noise case.

Alternatively, one can define the workload process by the following stochastic integral equation:

X(t) = X(0) + J(t) − r
∫ t

0
X(s)ds, t ≥ 0. (3)

It can be shown (see, e.g., Section 4 of [66]) that the unique solution to this integral equation
is given by

X(t) = e−rt X(0) +
∫ t

0
e−r(t−s)dJ(s), t ≥ 0. (4)

Indeed, that X(t) as given in (4) is a solution to (3) follows by integrating both sides of (4)
and changing the order of integration in the resulting double integral. To show the uniqueness,
observe that the difference ∆X(t) of two solutions satisfies ∆X(t) = −r

∫ t

0 ∆X(s)ds with
∆X(0) = 0. It follows that ∆X(t) is continuous and differentiable, and differentiation shows
that it satisfies d∆X(t)/dt = −r∆X(t) with ∆X(0) = 0. Hence ∆X(t) ≡ 0. We refer to [67]
for a general treatment of such uniqueness issues for a more general class of stochastic integral
equations that covers the shot-noise process, as well as related growth-collapse and clearing
processes, as special cases.

Realizing that {J(t), t ≥ 0} is a compound Poisson process, we can rewrite (4) as follows:

X(t) = e−rt X(0) +
N (t)∑
i=1

e−r(t−ti )Bi, t ≥ 0, (5)

where t1, t2, . . . , tN (t) denote the successive arrival epochs of customers in [0, t]. This expression
has an important interpretation, that plays a role of paramount importance in the analysis of
shot-noise queues: During an interval of any length v, each quantum of work that has size ∆
at the beginning of that interval, is at the end of that interval reduced to the amount ∆e−rv ,
independent of any other unit of work. That is of course not what is really happening when,
e.g., customers are served FCFS (actually, we do not specify the service discipline), but it
is a valid interpretation when just considering the workload. The implication is that, for the
analysis of the workload process in a shot-noise queue, one can treat different amounts of work,
and in particular service requirements of different customers, as quantities which are processed
independently of other workload quantities – very much the same as customers in an infinite-
server queue are treated independently of each other. This similarity to the infinite-server queue
was already observed by Kella and Whitt [66]. Moreover, De Graaf et al. [49] argue that the
M/G/1 shot-noise queue can be seen as a limit of a certain class of infinite-server queues; we
get back to this in Remark 2.2.
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Another implication of (5) is that the workload never becomes zero, each contribution to
the workload decreasing exponentially. These two properties of shot-noise queues make the
analysis of their workload relatively easy. In the next theorem, we obtain the LST of X(t); see,
e.g., Ross [87].

Theorem 2.1. The LST of the workload X(t) in the M/G/1 shot-noise queue is, for t ≥ 0,
given by

E[e−sX(t)] = E[e−sX(0)e
−r t

]exp
(
−λ

∫ s

se−r t

1 − β(w)
w

dw
)
. (6)

Proof. Our starting point is the representation (5). Conditioning on N(t) and exploiting the
fact that the jump epochs are uniformly distributed on (0, t) we have

E[e−sX(t)] = E[e−sX(0)e
−r t

]

∞∑
n=0

e−λt
(λt)n

n!
[

∫ t

0
E[e−sBie−r (t−u) ]

du
t
]n

= E[e−sX(0)e
−r t

]

∞∑
n=0

e−λt
(λt)n

n!
[

∫ t

0
β(se−ru)

du
t
]n

= E[e−sX(0)e
−r t

]exp
(
−λ

∫ t

0
(1 − β(se−ru))du

)
. (7)

The substitution w = se−ru yields (6). �

Remark 2.2. We could have obtained the same result by taking Laplace transforms already in
Equation (1), thus arriving at the following partial differential equation for φ(s, t) := E[e−sX(t)]:

∂

∂t
φ(s, t) + rs

∂

∂s
φ(s, t) = −λ(1 − β(s))φ(s, t).

De Graaf et al. [49] have followed this approach for a more general M/G/1 shot-noise queue,
also allowing a time-dependent arrival rate λ(t) and time-dependent service requirement B(t)
for an arrival at t, with LST β(s, t). In the right-hand side of the above PDE, λ(1− β(s)) is then
replaced by λ(t)(1 − β(s, t)), and solving the PDE yields (7) with the exponent in its last line
replaced by−

∫ t

0 λ(u)(1−β(se−r(t−u), u))du. In addition, it is through this PDE that [49] explores
the above mentioned relationship between the M/G/1 shot-noise queue and the infinite-server
queue. More concretely, they introduce a sequence of MHk (t)/M/∞ infinite-server queues,
k = 1, 2, . . . , with batches arriving at rate λ(t) and with size Hk(t) = dkB(t)e; each individual
customer has a service requirement that has an exponential distribution with parameter kµ,
where it turns out that they need to choose µ = r . They derive a PDE for the transform of the
number of customers in the k-th system at time t, and prove convergence of these PDEs, as
k → ∞, to the PDE for the corresponding shot-noise queue. Their approach eventually leads
to a proof of process-level convergence. ^

Remark 2.3. Theorem 2.1 is a special case of the following well-known result:

logE[e−
∫ t

0 h(s)dJ(s)] = −

∫ t

0
η(h(s))ds, (8)

where J(·) is a non-decreasing Lévy process, η(s) = − logE[e−sJ(1)], and h(·) is Borel and
non-negative. The latter result has in fact been further generalized in Subsection 2.3 of the
recent paper [22]. ^
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Remark 2.4. As it turns out, the result of Theorem 2.1 can also be extended in other ways. One
such extension, proven in pp. 44,45 of [72], is the following. If f (·, ·) is piecewise continuous
in its first argument, with at most a countable number of discontinuities, then

E exp
(∫ t

0
f (u, z)X(u)du − sX(t)

)
= exp

(
λ

∫ t

0
(β(se−r(t−v) − erv

∫ t

v

f (u, z)e−rudu) − 1)dv
)
. (9)

This result will be used later in this survey, in the context of infinite-server queues with a
shot-noise arrival rate. ^

The fact that the server speed becomes proportionally higher with increasing workload
makes it intuitively clear that the stationary distribution of the workload exists for all values of
the offered load ρ. This property, proven in [37], concretely means that no condition needs to
be imposed to make the M/G/1 shot-noise queue stable. Letting t tend to infinity in (6), we
obtain the following expression for the LST of the steady-state workload X .

Theorem 2.5. The LST of the steady-state workload X in the M/G/1 shot-noise queue is given
by

E[e−sX ] = exp
(
−
λ

r

∫ s

0

1 − β(w)
w

dw
)
. (10)

This result can already be found in [60]. It is instructive to derive (10) in a different way.
Consider the workload process {X(t), t ≥ 0} as depicted in Figure 1 and apply the level crossing
technique (cf. [29,38]), which uses the fact that, in steady state, each level x > 0 is just as often
crossed from above as from below. This implies that, with v(x) the steady-state density of X ,

r xv(x) = λ
∫ x

0
P(B > x − y)v(y)dy, x > 0. (11)

Here the lefthand side represents the rate of downcrossing x and the righthand side represents
the rate of upcrossing x. Introducing φ(s) := E[e−sX ], multiplying both sides of (11) by e−sx

and integrating over x from zero to infinity yields:

−r
dφ(s)

ds
= ρ

1 − β(s)
E[B]s

φ(s). (12)

Here we have used the following well-known facts: (i) P(B > z)/E[B] is the density of the
residual Bres of a service requirement B, (ii) the integral in the righthand side of (11) (when
divided by E[B]) is a convolution of two densities, (iii) the Laplace transform of such a
convolution is the product of their two Laplace transforms, and (iv) the Laplace transform of
the density P(B > z)/E[B] equals (applying integration by parts)∫ ∞

0
e−sz
P(B > z)
E[B]

dz =
1 − β(s)
E[B]s

.

Solving the first-order differential equation (12), with initial condition φ(0) = 1, immediately
gives (10).

Remark 2.6. The first few moments of X can be easily obtained from (10), by differentiation,
or from (11), by integration:

E[X] =
λ E[B]

r
, E[X2] =

λ E[B2]

2r
+

(
λ E[B]

r

)2
. (13)
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A recursion for the moments can be set up in the standard way.
Also the time-dependent moments can be found. When E[X(0)] < ∞, then E[X(t)]may be

computed in the following way, cf. Lemma 2.1 of [69]. By (3),

E[X(t)] = E[X(0)] + λ E[B]t − r
∫ t

0
E[X(s)]ds, (14)

and the same reasoning that led from (3) to (4) gives

E[X(t)] = e−rt E[X(0)] +
∫ t

0
e−r(t−s)λ E[B]ds = e−rt E[X(0)] +

λ E[B]
r
(1 − e−rt ), (15)

which of course also again yields the above expression for E[X]. Higher time-dependent
moments can be found along similar lines. ^

Remark 2.7. In the special case of exponentially distributed service requirements with param-
eter µ, φ(s) is easily seen to reduce to

φ(s) = E[e−sX ] =
(

µ

µ + s

) λ
r

. (16)

Hence X is in this case Gamma(λ/r, µ) distributed; the density of X now is

v(x) = µ
(µx)

λ
r −1

Γ(λr )
e−µx, x > 0. (17)

Observe that, from the form of (11), it is already clear that λ and r only appear as a ratio in
the expressions for v(x) and its Laplace transform. In the special case λ = r , X turns out to be
exp(µ) distributed. ^

Remark 2.8. Let us take another look at the Gamma(λ/r, µ) result. Because of pasta (Poisson
Arrivals See Time Averages), the density of the workload just before arrivals is also v(·). If
we denote the workload just before the n-th arrival by Wn and the workload just after the n-th
arrival by Yn = Wn + Bn, and the interarrival time between the n-th and (n+ 1)-st arrival by An,
then we can write:

P(Wn+1 < u |Yn = y) = P(ye−r An < u)

= P
(
An >

1
r

log
u
y

)
=

(
u
y

) λ
r

, 0 < u < y. (18)

Now the fact that Wn has a Gamma(λ/r, µ) density makes sense; Yn = Wn + Bn then has a
Gamma(λ/r +1, µ) density, and integrating in (18) with respect to this density is readily seen to
result in a Gamma(λ/r, µ) distribution. In particular, with U(0, x) denoting a random variable
that is uniformly distributed on (0, x), for λ = r one has Wn+1 ∼ U(0,Yn), and in steady state

W d
= U(0,W + B), (19)

where d
= denotes equality in distribution and where W and B are generic random variables

having the same distribution as Wn and Bn, respectively. It is obvious from (19) that W and B
have the same distribution, and hence W is exp(µ) distributed as well (cf. [15]). In this context
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we would like to mention that Chamayou [35] has pointed out that the steady-state workload
can be represented as

X =
∞∑
i=1

KiBi, (20)

where Ki =
∏i

j=1 Ur/λ
j and Uj are i.i.d. Uniform(0, 1) random variables. In [35] also a

procedure is presented to efficiently simulate the workload process. ^

For this same case of the M/M/1 shot-noise queue, Kella and Stadje [62] determined the
LST Ex[e−sTa ] of the hitting time Ta of level a, starting from level x. They distinguished
between the cases a ≤ x and a > x. Using a martingale argument they showed that, for a ≤ x,
one has Ex[e−sTa ] = fs(x)/ fs(a), where fs(x) satisfies the following second order differential
equation, called Kummer’s equation:

r x f ′′s (x) + (λ + s + r − µr x) f ′s (x) − µs fs(x) = 0. (21)

When a > x, the hitting time can be written as the sum of two independent components: the
time until level a is upcrossed (the overshoot of course is exp(µ)), and the subsequent time to
downcross a. With the appropriate boundary conditions to solve (21), this yields the following
result.

Theorem 2.9. For the M/M/1 shot-noise queue,

Ex[e−sTa ] =

∫ ∞
0 e−µxt t(s/r)−1(1 + t)λ/rdt∫ ∞
0 e−µat t(s/r)−1(1 + t)λ/rdt

, (22)

if 0 < a ≤ x and

Ex[e−sTa ] =

∫ 1
0 eµxt t(s/r)−1(1 − t)λ/rdt∫ 1

0 eµat t(s/r)−1(1 − t)(λ/r)−1dt
×

∫ ∞
0 e−µat t(s/r)−1(1 + t)(λ/r)−1dt∫ ∞

0 e−µat t(s/r)−1(1 + t)λ/rdt
, (23)

if 0 < x < a.

Even in this M/M/1 setting, the expression for the mean hitting time turns out to be rather
complicated, as seen from the following result.

Corollary 2.10. For the M/M/1 shot-noise queue,

Ex[Ta] =


∫ ∞

0

e−µat − e−µxt

rt
(1 + t)λ/rdt, if 0 < a ≤ x,∫ 1

0

eµat − eµxt

rt
(1 − t)λ/rdt +

eµaΓ(λ/r)
r(µa)λ/r

, if 0 < x < a.
(24)

We proceed by discussing weak convergence results under a diffusion scaling. Suppose we
work with arrival rate nλ rather than λ, focusing on the steady-state workload, say Xn, then it
can be shown that (Xn − E[Xn])/

√
n converges to a zero-mean normal random variable as n to

∞. Indeed, from (10) and the expression for E[Xn] = nE[X] that follows from (13), we obtain
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as n→∞:

E exp
(
−s

Xn − E[Xn]
√

n

)
= es

√
nE[X]exp

(
−

nλ
r

∫ s/
√
n

0

1 − β(w)
w

dw

)
= es

√
nE[X]exp

(
−
λ

r
√

n
∫ s

0

1 − β(u/
√

n)
u/
√

n
du

)
= es

√
nE[X]exp

(
−
λ

r

∫ s

0

(√
nE[B] − 1

2E[B
2]u

)
du +O

(
n−1/2

))
→ exp

(
1
2
λE[B2]

2r
s2

)
.

Recognize in the limiting LST the expression for the variance Var X that follows from (13)
and the LST of a zero-mean normal random variable, and finally apply the Lévy convergence
theorem. In line with this asymptotic normality, using the martingale central-limit theorem, it
can be proven that the process Xn(t) converges to an Ornstein-Uhlenbeck process.

Such an Ornstein-Uhlenbeck limiting result is also known to hold for the M/G/∞ queue.
This agreement is not surprising: the shot-noise queue and the infinite-server queue exhibit a
very similar so-called mean-reverting behavior, i.e., the further the process is away from its
mean, the stronger, proportionally, is the drift towards that equilibrium – which is the defining
feature of the Ornstein-Uhlenbeck diffusion process. Eliazar and Klafter [42] obtained an
Ornstein-Uhlenbeck limiting process after scaling particular growth-collapse processes, which
in turn are related to shot noise (see also Remark 4.11).

One can readily surmise the tail behavior of X for the following case of heavy-tailed service
times, using a technique that extracts this tail behavior from the behavior of the LST around
zero. Suppose that the service times are regularly varying of index −ν (usually abbreviated to:
B ∈ RV(−ν)), i.e.,

P(B > x) = x−νL(x), (25)

with L(·) a slowly varying function at infinity, i.e., L(bx)/L(x) → 1 when x → ∞, for all
b > 0. In the ordinary M/G/1 queue with constant service speed, it is known that the workload
and waiting time are now regularly varying of index 1− ν, so their tail is one degree heavier. In
the shot-noise case, one can apply the above mentioned relation between the tail behavior of X
and the behavior of its LST near zero, so as to prove that X ∈ RV(−ν) if B ∈ RV(−ν): notably,
for the M/G/1 shot-noise queue the tails of B and X are equally heavy.

In particular, if (25) holds with ν ∈ (1, 2) then, according to Theorem 8.1.6 of [17], with
Γ(·) the Gamma function,

β(s) − 1 + s E[B] ∼ −Γ(1 − ν)sνL(1/s), s ↓ 0,

and hence, using (10) and (13),

E[e−sX ] − 1 + s E[X] ∼ −
λ

r
Γ(−ν)sνL(1/s), s ↓ 0.

Another application of Theorem 8.1.6 of [17] (now in the reverse direction) implies that

P(X > x) ∼
λ

rν
x−νL(x), x →∞. (26)
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Of course, the fact that a very large jump upward results in a very fast service speed is
instrumental in this; and the fact that E[X] only involves the first moment of B already is an
indication that both tails might be equally heavy. The above result was first obtained, in the
dual setting of insurance risk, by Klüppelberg and Stadtmüller [70]. Asmussen [6] has proved,
for the more general case of service speed r(x) and B subexponential, with v(x) the workload
density, that

v(x) ≈
λ

r(x)
P(B > x), x →∞. (27)

We close the section with a number of unsolved problems which could be of considerable
interest.

Open Problem 2.11. One of the most challenging problems which we have encountered in
shot-noise queues is the determination of the queue length distribution. We restrict ourselves
to the FCFS discipline. The M/D/1 shot-noise queue in that case forms an exception, as the
number of customers can immediately be inferred from the workload. But even for the M/M/1
FCFS shot-noise queue hardly any queue length result appears to be known. Koops (pp. 11–12
of [72]) has proven for this queue that the steady-state probability of having N = 1 customer in
the system equals

P(N = 1) =
Γ(λr + 1)
Γ(λr +

1
2 )

√
π

4 λ
r

,

which reduces to P(N = 1) = 1/2 for λ = r . Remarkably, this probability appears not to depend
on the service rate µ.

What makes the queue length problem hard? Although the service requirement is mem-
oryless, this is not the case for the service time. The service time strongly depends on future
arrival intervals and future service requirements, which seems to be the main complication. In
this context, remember that the system never gets empty, so that there is always at least one
customer present. Hence the service time of a customer who is the only customer in the system
will at least be extended until the next arrival. In particular, if λ = 0 and at time zero there is
one customer, then its service time is infinite, regardless of its actual service requirement or its
distribution. ©

Open Problem 2.12. Just like service time is a significantly more complex quantity than
service requirement, waiting (sojourn) time is intrinsically more complex than workload just
before (just after) an arrival epoch. We are not aware of any sojourn time distribution results in
non-trivial shot-noise models. See [31] for sufficient conditions for the delay and the sojourn
time to have a finite k-th moment, in a class of shot-noise queues which is far more general
than the one of the present section; they allow a general service speed function r(x) and work
modulation.

When it comes to sojourn time calculations in shot-noise queues, D/G/1 might be the most
accessible case. Taking the arrival times to be nT , and denoting the amount of work just after
time nT by Yn, the amount of work done at time nT by Dn, n = 1, 2, . . . , and the amount of
work at time 0+ by u, we have

Yn = ue−nrT +
n−1∑
j=0

Bn−je−jrT , Dn = u(1 − e−nrT ) +
n−1∑
j=1

Bn−j(1 − e−jrT ), (28)
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with Yn + Dn = u +
∑n

j=1 Bj . We always have D1 < u, and for n ≥ 2 we have that Dn < u iff

ue−nrT >

n−1∑
j=1

Bn−j(1 − e−jrT ), (29)

or equivalently, with a := e−rT , iff

n−1∑
j=1

Bj(1 − a j) < uan. (30)

If Bj ≡ b (i.e., the D/D/1 shot-noise queue!) we thus have Dn < u iff

u > ba−n
[
(n − 1) −

a − an

1 − a
]
.

Now suppose that

u
b
∈

(
a−n

[
(n − 1) −

a − an

1 − a
]
, a−n−1 [n − a − an+1

1 − a
] )
.

Then Yn − nb work needs to be served until u has been completely served. Starting at Yn this
takes time ∆ := r−1ln[Yn/(nb)]; cf. (31) below, and the sojourn time T(u) to remove the initial
work u equals T(u) = nT + ∆.

If Bj ∼ exp(µ) then the terms Bj(1−a j) in (30) are exponentially distributed with parameter
µ/(1 − a j). Their sum is hypo-exponentially distributed, with a density as given in e.g. Section
5.2 of [88]. So this is another case for which the sojourn time distribution can be obtained. ©

Open Problem 2.13. In terms of workload analysis, the above mentioned D/G/1 shot-noise
queue is a very easy variant of the M/G/1 shot-noise queue. It is readily verified that, with
interarrival time T , the steady-state workload W just before an arrival satisfies

W d
= (W + B)e−rT .

Introducing ω(s) := E[e−sW ], and again taking a = e−rT , this leads to the recursion ω(s) =
β(as)ω(as). Hence, after iteration,

ω(s) =
∞∏
i=1

β(ais).

Here the i-th term in the infinite product represents the contribution to W from an arrival that
occurred i arrivals before the present one. In contrast to this D/G/1 case, and the M/G/1
case, almost any other interarrival time distribution seems to lead to a challenging functional
equation forω(s). The case in which the interarrival time Ai equals one of M different constants
T1, . . . ,TM appears to be tractable [1], adapting an idea of [2]. ©

3 Workload-dependent service speed and arrival rate
In this section we consider a fundamental extension of the M/G/1 shot-noise queue discussed
in the previous section, by allowing a more general service speed function (Section 3.1) and,
in addition, a workload-dependent arrival rate (Section 3.2).

11



3.1 Workload-dependent service speed
Consider the M/G/1 queue with service speed r(x) when the workload equals x. We assume
that r(0) = 0 and that otherwise r(·) is strictly positive; r(·) is further assumed to be left-
continuous and to have a strictly positive right limit on (0,∞). If there is no arrival in (0, t),
then the workload process decreases according to the formula X(t) = X(0) −

∫ t

0 r(X(u))du. It
is readily verified that the time to go from level x to level y < x, in the absence of arrivals, is

R(x, y) :=
∫ x

y

1
r(u)

du. (31)

In particular, it follows that the origin can be reached in finite time if R(x, 0) < ∞. An influential
early paper on dams with content-dependent release rate is the one by Gaver and Miller [48].
They constructed the Kolmogorov forward equations for several model variants. In one of their
variants, the release rate was r1 when X(t) < R and r2 otherwise. For this case they presented
a beautiful approach towards determining the steady-state workload distribution, based on an
idea for the inversion of the product of two Laplace transforms. A second variant was the
shot-noise case r(x) = r x of the previous section, which had already been treated by Keilson
and Mermin [60].

Moran [81] proved that sample paths of the workload process {X(t), t ≥ 0} satisfy the
so-called storage equation (see also (3))

X(t) = X(0) + J(t) −
∫ t

0
r(X(s))ds, (32)

with {J(t), t ≥ 0} the compound Poisson input process. For the special case of constant service
speed, Reich [86] had obtained a similar equation. Çinlar and Pinsky [37] have studied (32)
and proved that, under certain conditions (a finite jump rate and a continuous non-decreasing
r(·)), the sample paths of {X(t), t ≥ 0} are uniquely defined by (32). They also proved that a
limiting distribution exists if supx>0 r(x) > EJ(1).

Harrison and Resnick [50] relaxed the assumption on r(·). Under the assumption that
R(x, 0) < ∞, so that the workload has an atom V(0) at zero, they provided necessary and
sufficient conditions for the existence of a stationary workload distribution. In view of the
importance and general applicability of their study, we provide some details. Starting point is
the following relation for the steady-state workload density which can, for example, be obtained
using the level crossing technique, and which is a straightforward generalization of (11):

r(x)v(x) = λV(0)P(B > x) + λ
∫ x

0
P(B > x − y)v(y)dy, x > 0. (33)

Introducing Q(x) := λ P(B > x) and the kernel K(x, y) := Q(x − y)/r(x) for 0 ≤ y < x < ∞,
we have

v(x) = K(x, 0)V(0) +
∫ x

0
K(x, y)v(y)dy. (34)

Introducing K1(x, y) := K(x, y) and Kn(x, y) :=
∫ x

y
Kn−1(x, z)K(z, y)dz for 0 ≤ y < x < ∞ and

n ≥ 2, the well-known Picard iteration applied to the second-order Volterra integral equation
(34) gives

v(x) = K(x, 0)V(0) +
∫ x

0
K(x, y)[K(y, 0)V(0) +

∫ y

0
K(y, z)v(z)dz]dy = . . .

= V(0)
∞∑
n=1

Kn(x, 0). (35)
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The convergence of the sum follows by observing that

Kn(x, y) ≤
λnR(x, y)n−1

r(x)(n − 1)!
;

hence K∗(x, y) :=
∑∞

n=1 Kn(x, y) is well-defined. Harrison and Resnick [50] concluded that the
workload process has a stationary distribution iff

1
V(0)

= 1 +
∫ ∞

0
K∗(x, 0)dx < ∞. (36)

Brockwell et al. [30] extended the work of [50] in various ways. These extensions include
cases in which level 0 is never reached, so that the workload does not have an atom at zero, as
is for example the case when r(x) = r x. They proved that, if R(x, 0) = ∞ (for any, and hence
for all, x > 0), the workload process is positive recurrent iff

∫ ∞
a

K∗(x, a)dx < ∞ for some
(and then for all) a > 0; see also the exposition in Section XIV.1 of [7]. Kaspi and Perry [59]
considered a storage/production model that is in a sense dual to the model of Harrison and
Resnick: the process level increases gradually in a state-dependent way, in between jumps
downward (demands). They also employed the Picard iteration procedure to determine the
steady-state process level. Miyazawa [80] used rate conservation laws to describe the time-
dependent behavior of storage models with state-dependent release rate and with a stationary
marked point process as input. Asmussen and Kella [9] studied a shot-noise queue in which the
service speed depends both on the workload and on a background state. They used duality with
a risk process to obtain conditions for the existence of a limiting distribution. We conclude this
brief literature overview by mentioning that Eliazar and Klafter [43] have introduced a different
class of non-linear shot-noise models that is amenable to mathematical analysis.

In special cases, like r(x) ≡ r (the classical M/G/1 queue) or exponentially distributed
service times, Formula (35) can be rewritten into a more explicit expression for the steady-state
workload density. Below we follow a more straightforward approach for the latter case. Taking
Bi ∼ exp(µ), (33) reduces to

r(x)v(x) = λV(0)e−µx + λ
∫ x

0
e−µ(x−y)v(y)dy, x > 0. (37)

Introducing z(x) := r(x)v(x)eµx , we obtain by multiplying both sides by eµx that

z(x) = λV(0) + λ
∫ x

0

z(y)
r(y)

dy, x > 0. (38)

Differentiation with respect to x yields

z′(x) = λ
z(x)
r(x)

, x > 0, (39)

and hence
z(x) = exp

(
λ

∫ x 1
r(y)

dy
)
= CeλR(x,1), x > 0. (40)

Remember that R(x, 0) < ∞ is the condition to have an atom at zero. To leave the "no
atom" option open, we wrote R(x, 1) and introduced a constant C. Harrison and Resnick [50]
concluded that, in the “atom at zero” case, and with ρ(x) := λ/(µr(x)), one has

K∗(x, 0) = µρ(x) exp
(
−µ

∫ x

0
(1 − ρ(z))dz

)
,
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and that a necessary and sufficient condition for existence of a stationary workload distribution
is, cf. (36): ∫ ∞

0
ρ(x) exp

(
−µ

∫ x

0
(1 − ρ(z))dz

)
dx < ∞. (41)

If there is no atom at zero, like in the case r(x) = r x, then it follows from (40), using the
normalization condition, that

v(x) =
(r(x))−1 e−µx+λR(x,1)∫ ∞

0 (r(y))
−1 e−µy+λR(y,1)dy

, x > 0. (42)

When r(x) = r x, this simplifies to

v(x) =
µ

λ
r

Γ(λr )
x

λ
r −1e−µx,

in agreement with (17).

3.2 Workload-dependent service speed and arrival rate: Proportionality
relations
Next to the assumptions on the workload-dependent service speed r(·), which were discussed
in the previous subsection, we now also assume the following about the arrival rate. If A
is the time until the next arrival, starting from some initial workload w, then P(A > t) =
exp(−

∫ t

0 λ(X(s))ds), where (as before) X(s) decreases deterministically from level w. We
assume that λ(·) is non-negative, left-continuous, and has a right limit on [0,∞). Of course,
if λ(x) ≡ λ, then the arrival process is the Poisson(λ) process of the previous subsection. In
the present subsection, we assume that the workload process is ergodic and has a stationary
distribution.

The following discussion is based on [15]. Starting point is the following integral equation
for the steady-state workload density – a generalization of (33) to the λ(x) case, that again can
be obtained via the level crossing technique:

r(x)v(x) = λ(0)V(0)P(B > x) +
∫ x

0
P(B > x − y)λ(y)v(y)dy, x > 0. (43)

Alternatively, this relation can be obtained by extending an argument of Takács [98] for
workload-dependent arrival rates to the case in which also the service speed is workload-
dependent.

Let us now consider two model variants, which only differ from each other by having λ1(x)
and r1(x) as rate functions in Model 1, and λ2(x) and r2(x) in Model 2. We use indices 1 and 2
for all quantities in these two model variants. Now assume that

λ1(x)
r1(x)

=
λ2(x)
r2(x)

, ∀x > 0. (44)

We consider both the case
h(x) :=

∫ x

0

λi(y)

ri(y)
dy < ∞

for all 0 < x < ∞ (which here is the condition for having an atom at zero) and the case in which
h(x) is infinite for some 0 < x < ∞. The following theorem is proven in [15].
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Theorem 3.1. For all x > 0,

v1(x)
v2(x)

= C
r2(x)
r1(x)

= C
λ2(x)
λ1(x)

, (45)

with C := λ1(0)V1(0)
λ2(0)V2(0) if h(x) < ∞ for all 0 < x < ∞ and else C := 1.

Proof. This result is proven by defining zi(x) := ri(x)vi(x), i = 1, 2 and applying the Picard
iteration procedure (cf. (35)) to

zi(x) = λi(0)Vi(0)P(B > x) +
∫ x

0
P(B > x − y)

λi(y)

ri(y)
zi(y)dy, i = 1, 2, x > 0. (46)

Because of (44), the resulting kernel

K (i)(x, y) := P(B > x − y)
λi(y)

ri(y)

is the same for both model variants. This directly leads to the conclusion that z1(x) and z2(x)
only differ by a multiplicative constant C, giving (45). More intuitively, switching between
models 1 and 2 is essentially a matter of rescaling time. If in model variant i the speed of time
is 1/ri(x) when the workload is x, for i = 1, 2, then model variants 1 and 2 are equivalent.
Actually we had already seen something similar in the special case of constant rates λ and r:
they only appear in the workload expressions as a ratio. �

One implication of (45) is that it becomes possible to translate results for a particular model
to results for a class of related models. For example, the steady-state workload density for the
M/G/1 shot-noise model of Section 2, with λ(x) ≡ λ and r(x) = r x, immediately gives us
the steady-state workload density when λ(x) becomes λxα and simultaneously r(x) becomes
r xα+1 (divide by xα).

We now turn to the workload W just before an arrival – which would be a waiting time if
r(x) ≡ 1. Denote its steady-state density by w(·) and its atom at zero (if there is one) by W(0);
and for the two model variants, use wi(·) and Wi(0). One has the following recursion for the
workloads at two successive arrival epochs:

Wn+1 = max(0,Wn + Bn − An,Wn+Bn ), n = 1, 2, . . . , (47)

with An,y the workload decrement between the n-th and (n + 1)-st arrival, when the workload
equals y after the n-th arrival. This is a Lindley recursion, but with a dependence structure
between Wn + Bn and An,Wn+Bn . It is readily seen [15] that the distribution of An,Wn+Bn only
depends on λ(·) and r(·) via their ratio; in fact,

P(An,y > v) = exp
(
−

∫ y

y−v

λ(u)
r(u)

du
)
, 0 < v < y. (48)

One thus arrives at the following theorem.

Theorem 3.2.
w1(x) = w2(x), x > 0, (49)

and if there is an atom at zero, then W1(0) = W2(0).

Finally, there is the following relation between w(x) and v(x).
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Theorem 3.3.
w(x) =

λ(x)v(x)
λ̄

, x > 0, (50)

with
λ̄ := λ(0)V(0) +

∫ ∞

0
λ(y)v(y)dy. (51)

Notice that (50) is consistent with (45) and (49). In [15] one finds a rigorous proof of (50),
and also the following intuitive argument:

P(W > x) = lim
∆→0
P(V > x | arrival in next ∆)

= lim
∆→0

P(V > x, arrival in next ∆)
P(arrival in next ∆)

=

∫ ∞
x
λ(y)v(y) dy

λ̄
, x > 0. (52)

Differentiation gives (50). We finally observe that w(x) = v(x) when λ(x) ≡ λ, which is in
agreement with the pasta property; one could view (50) as a generalization of pasta.

In [15] also an alternative method for deriving relations between V and W is outlined,
for the M/G/1 shot-noise queue with general r(·) and λ(·). Based on Palm-theoretic princi-
ples, applying Campbell’s formula (see [11], Sections 1.2 and 1.3), one obtains the following
stochastic mean-value formula:

E[ f (V)] =
1
E[A]

E[

∫ A

t=0
f (Vt )dt], (53)

with A an arbitrary interarrival time and f (·) such that the considered expectations exist and
are finite. In [15] this is shown to imply that, for such functions f (·),

E[ f (V)] =
E[

f (W )
λ(W ) ]

E[ 1
λ(W ) ]

. (54)

Taking f (x) = λ(x) gives

E[λ(V)] =
(
E

[ 1
λ(W)

] )−1
, (55)

and taking f (x) = λ(x)g(x) subsequently implies that

E[g(W)] =
E[λ(V)g(V)]
E[λ(V)]

. (56)

Subsequently taking g(x) = e−sx yields

E[e−sW ] =
E[λ(V)e−sV ]
E[λ(V)]

, (57)

in agreement with (50). In [15], this Palm-theoretic approach is extended to obtain some
relations between V and W in the case of general interarrival intervals.

We finally mention that (i) Browne and Sigman [31] have obtained new and simplified
stability proofs for queueing models with workload-dependent arrival rates and service speeds,
and that (ii) Stadje [96] has also studied the model with state-dependent arrival rate and service
speed, in addition allowing for state-dependent service requirements. He focused on the number
of arrivals, and the number of workload record values, before a certain level x is first reached.
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Open Problem 3.4. From a design point of view, it would be interesting to develop methods
for selecting the service speed r(·) such that the system exhibits certain desirable behavior. One
could think of objective functions that somehow minimize the fluctuations of the workload
level. ©

4 Variants andgeneralizations of the M/G/1 shot-noise queue
This section contains five subsections in which we discuss the following variants and general-
izations of the M/G/1 shot-noise queue:

◦ Subsection 4.1: Insurance risk models with interest rate r when the insurance company
invests its money.

◦ Subsection 4.2: a two-sided shot-noise model of a bloodbank.

◦ Subsection 4.3: shot-noise models with a finite buffer.

◦ Subsection 4.4: shot-noise vacation and polling models.

◦ Subsection 4.5: fluid queues with state-dependent rates.

4.1 Affine storage models and insurance risk models
The main reason for devoting a subsection of this paper to insurance risk models is that an
important connection, a form of duality, has been established between a class of insurance
risk models and a class of queueing and storage models. In its most simple form, it relates the
ordinary M/G/1 queue and the Cramér-Lundbergmodel (which has a Poisson arrival process of
claims, general claim size distribution and in between claims a linear increase of the capital due
to a constant insurance premium rate), under the assumptions that both models feature the same
arrival rates and same jump distributions (of service requirements and of claims, respectively),
and with service speed equalling the insurance premium rate. The duality result then states
that, for any u, the steady-state complementary cumulative workload distribution P(X > u)
in the queueing model equals the ruin probability in the insurance risk model with initial
capital u. Harrison and Resnick [51] have proven that this steady-state duality also holds when
generalizing the service speed (insurance premium rate, respectively) to the level-dependent
function r(x).

We refer to Section III.2 of [8] for a beautiful exposition of the duality concept, based
on sample path arguments, and an extension of the above mentioned duality results to the
time-dependent case (equating the complementary cumulative workload distribution at some
time t, when starting from an empty system, and the probability of ruin before t). See also [10]
for the first proof of that time-dependent duality in the case of service speed (premium rate,
respectively) r(x).

The implication of the above is that several results from queueing, as mentioned in the
present survey, are relevant to the insurance risk community – and vice versa. For the latter,
we mainly refer to Chapter VIII of [8]. In particular, the case r(x) = r x + α is studied in some
detail in its Section VIII.2; importantly, taking α > 0 complicates matters substantially. Here
α can be interpreted as the fixed premium rate, and r as the interest rate when the insurance
company invests its money. This particular case was already studied in [95] and in [84]. The
latter paper not only allowed exponential claim sizes, finding an explicit expression for the ruin
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Figure 2. Sample path of the surplus process X(t) until ruin.

probability in terms of an incomplete gamma function; it also provided the ruin probability
for the cases of Erlang-2 claim sizes (in terms of Bessel functions) and hyperexponential-2
claim sizes (in terms of confluent hypergeometric functions). Albrecher et al. [5] obtained the
finite-time ruin probability in the case of exponential claim sizes and the arrival rate being an
integer times r . Knessl and Peters [71] studied the asymptotic behavior of that finite-time ruin
probability, again in the case of exponential claim sizes. In [4], among other things, special
choices of r(x) were considered for which the ruin probability can be calculated in an explicit
way when the claim sizes are exponentially distributed: r(x) = c(1+ e−x), r(x) = c+ 1/(1+ x)
and r(x) = c + x2. Via duality, this also gives workload results for specific M/M/1 shot-noise
queues; see (42) for a different representation.

In [26] the duality between queueing/storage and insurance risk models with speed/rate
r(x) = r x+α was extended to the case of two-sided jumps: the queueing/storage model and the
risk model both have an additional compound Poisson input process, now with exponentially
distributed downward (upward) jumps in the storage (risk) model. For the risk model the joint
transform of the time to ruin, the capital just before ruin and the loss at ruin was determined.
See the graphical illustration of Figure 2; here τx is the time to ruin given the initial level
X(0) is x. It was also shown how some of the exponentiality assumptions of the paper can be
relaxed. We further point out that Jacobsen and Jensen [55] also have allowed both positive
and negative jumps, for the case r(x) = r x.

Open Problem 4.1. In [25], a reflected autoregressive process of the following form is studied:

Yn+1 = max(Sn(Yn) + Cn, 0),

with Cn the difference of two positive random variables and Sn(t) a sequence of i.i.d. subordi-
nators with E[Sn(1]) < 1, n = 1, 2, . . . ; Sn(Yn) performs a “Lévy thinning” of Yn. The analysis
of this autoregressive process, so as to obtain its steady-state distribution, bears similarities
to that of the above described affine storage process with two-sided jumps, just after the n-th
jump:

Yn+1 = max(e−r AnYn + Cn, 0),

where Cn denotes the size of the n-th jump (up or down). It would be interesting to explore
this relation further, perhaps linking reflected autoregressive processes to generalizations of
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shot-noise queues. See also Remark 4.11 below for relations between shot-noise queues in
which the origin is never reached, growth-collapse processes and autoregressive processes. ©

4.2 A two-sided shot-noise model
In [12] the following model for a blood bank with perishable blood and demand impatience
was studied. Amounts of blood and demands for blood arrive at a blood bank according to
two independent compound Poisson processes with jump rates λb , λd and with the offered
amounts and demanded amounts generically denoted by B and D. If there is enough blood in
inventory for a demand, then that demand is instantaneously satisfied; otherwise it is partially
satisfied, and not at all if the inventory is empty. Blood has a finite expiration date. Because
of this, it was assumed in [12] that blood is discarded at a rate rbx + αb if the amount present
is x. Furthermore, because blood demands have a finite patience, blood disappears from the
inventory at a rate rdx + αd when the total amount of demand is x.

The process {X(t), t ≥ 0} = {(Xb(t), Xd(t)), t ≥ 0} of total amount of blood present and
total amount of blood demand present at time t is a two-sided process. At most one of Xb(t)
and Xd(t) is non-zero at any time t. The level crossing technique was used to show that the
densities vb(·) and vd(·) of amounts of blood in inventory and of demand satisfy the following
two integral equations: firstly, for level x of the amount of blood in inventory:

(rbx + αb)vb(x) + λd

∫ ∞

x

vb(y)P(D > y − x)dy (58)

= λb

∫ x

0
vb(y)P(B > x − y)dy + λb

∫ ∞

0
vd(y)P(B > x + y)dy + π0λb P(B > x),

and a completely symmetrical equation for the total amount of demand. These equations
were solved for the case of Coxian distributed B,D, tackling these two integral equations with
Laplace transforms. For exponentially distributed B,D, and αb = αd = 0, a more explicit
solution was obtained, without resorting to Laplace transforms. A second-order Kummer
differential equation was derived, similarly to (21), where it featured in the case of first-exit
probabilities of an M/M/1 shot-noise queue. The Kummer second-order differential equation
appears to be a natural differential equation for the M/M/1 shot-noise queue, just like a specific
Bessel differential equation is natural for the ordinary M/M/1 queue. Finally, [12] also studied
the model variant with αb = αd = 0 from an asymptotic perspective, obtaining the fluid
and diffusion limits of the blood inventory process. It was shown that the process after an
appropriate centering and scaling converges to an Ornstein-Uhlenbeck process; cf. our account
of the weak convergence results under a diffusion scaling, in Section 2.

Open Problem 4.2. In the above model it is assumed that there is only one type of blood. It
would be interesting to extend the above model and its analysis to the realistic case of several
blood types. ©

4.3 Finite buffer
Bekker [14] has considered a class of M/G/1-type queues with workload-dependent arrival
and service rates, with restricted accessibility. When a customer arrives to find an amount of
work y, this customer is only fully accepted if the sum of y and her service time B does not
exceed a value K . If y+B > K , there are various options. In the case of partial rejection, K − y
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is accepted and the remainder of the service requirement is rejected; in the case of complete
rejection, such a customer is not at all admitted to the system; and in the case of impatience,
it is assumed that the full service requirement is accepted if y < K . Introducing the function
g(y, B,K) as min(y + B,K) for the case of partial rejection, as y + BI(y + B ≤ K) with I(·)
an indicator function for the case of complete rejection, and as y + BI(y ≤ K) for the case of
impatience, Bekker [14] extended (43) to the following integral equation:

r(x)v(x) = λ(0)V(0)P(g(0, B,K) > x) +
∫ x

0
P(g(y, B,K) > x)λ(y)v(y)dy, x > 0. (59)

Subsequently twomodel variants were compared, with arrival rate λi(x) and service speed ri(x)
in model variant i, i = 1, 2, and with λ1(x)/r1(x) = λ2(x)/r2(x), ∀x > 0; cf. (44). Replacing
the kernel K(x, y) = P(B > x − y)λ(y)/r(y) as introduced below (46) by

K(x, y) := P(g(y, B,K) > x)
λ(y)

r(y)
,

a Picard iteration procedure could be used, just as it was applied to (46), thus showing that
Theorems 3.1-3.3 still hold. The implication is that, if one is able to prove a workload result for,
say, a restricted accessibility model variant with constant arrival rate λ and shot-noise service
speed r(x) = r x, then one can easily translate that to a workload result for another model
variant with λ(x)/r(x) = λ/(r x).

One example is the following result, which can also be found in [14]. Consider the partial-
rejection rule, and let XK denote the steady-stateworkload in the M/G/1 queuewith finite buffer
K , arrival rate λ and service speed r(x) = r x. X denotes the workload in the corresponding
model with infinite buffer. The LST of X was derived in Section 2; for B ∼ exp(µ), X was
shown to have a Gamma(λ/r, µ) distribution. Bekker [14] proved that

P(XK ≤ x) =
P(X ≤ x)
P(X ≤ K)

, 0 ≤ x ≤ K . (60)

The proof is based on a sample path argument, in which, in the infinite buffer model, the
parts of the sample path are deleted between each upcrossing of level K and the subsequent
downcrossing of that level.

We finally remark that in [14] also the loss probability of an arbitrary customer is deter-
mined, which is then related to the probability P(Cmax ≥ K) that the cycle maximum in the
corresponding infinite buffer model exceeds K . Furthermore, first-exit probabilities in infinite
buffer queues are obtained, by combining (i) the fact that one may restrict oneself to a model
variant with constant arrival rate λ with (ii) first-exit results from [50] for the latter case, in ad-
dition exploiting a clever relation to finite buffer queues. Another first-exit result was obtained
by Yeo [106]: for the M/D/1 and M/M/1 shot-noise queue he derived the first-passage time
distribution of a barrier K when starting from an empty system.

4.4 Vacation queues and polling
In this subsection we consider an M/G/1 shot-noise queue with workload-dependent speed
r(x) = r x, with the special feature that the server alternately spends a visit time at the queue
and takes a vacation. All visit times and vacation times are independent. C1 denotes a generic
visit time, and C2 a generic vacation time. As before the customer Poisson arrival process has
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intensity λ, and β(s) is the LST of an arbitrary service requirement. We focus on the steady-
state workload Z at the start of a visit. We first consider the case of exponentially distributed
visit times, and then the case of constant visit times. See [89] for another vacation queue with
workload-dependent service speed r(x).

Case 1: C1 ∼ exp(c). We generalize the approach of Subsection 7.1 of [27] from exponential
vacation times to generally distributed vacation times with LST γ(·), and prove the following
theorem.

Theorem 4.3. For C1 ∼ exp(c), the steady-state workload LST at the start of visit periods is
given by

E(e−sZ ) = exp

(
−
λ

r

∫ s

0

1 − β(u)
u

du

)
× exp

(
−

c
r

∫ s

0

1 − γ(λ(1 − β(u)))
u

du

)
γ(λ(1 − β(s))). (61)

Proof. We determine the marginal workload LST in the following four steps.
(i) During a vacation, the workload in the queue increases according to a compound Poisson
process; hence

E(e−sX(C1+C2) |X(C1) = y) = e−syγ(λ(1 − β(s))). (62)

(ii) Using (6),

E(e−sX(C1) | X(0) = x) =
∫ ∞

t=0
ce−ct exp

(
−sxe−rt −

λ

r

∫ s

se−r t

1 − β(u)
u

du
)

dt. (63)

Simplifying the above equation by substituting se−rt = v yields

E(e−sX(C1) | X(0) = x) =
c
r

s−
c
r

∫ s

v=0
v

c
r −1 exp

(
−xv −

λ

r

∫ s

v

1 − β(u)
u

du
)

dv. (64)

(iii) Combining parts (i) and (ii) above, we can look one cycle — consisting of a visit and a
vacation — ahead:

E(e−sX(C1+C2) | X(0) = x)

= γ(λ(1 − β(s)))
c
r

s−
c
r

∫ s

v=0
v

c
r −1 exp

(
−xv −

λ

r

∫ s

v

1 − β(u)
u

du
)

dv. (65)

(iv) Deconditioning on X(0) = x and observing that, in steady state, X(C1 + C2) has the same
distribution as X(0), we conclude that G(s) := E[e−sZ ] = E[e−sX(0)] satisfies the following
relation:

G(s) = γ(λ(1 − β(s)))
c
r

s−
c
r

∫ s

v=0
v

c
r −1 exp

(
−
λ

r

∫ s

v

1 − β(u)
u

du
)

G(v) dv. (66)

Differentiating with respect to s yields

d
ds

G(s) = G(s)
[
γ′(λ(1 − β(s)))
γ(λ(1 − β(s)))

−
c
r

1 − γ(λ(1 − β(s)))
s

−
λ

r
1 − β(s)

s

]
. (67)

The theorem follows by solving this standard first-order differential equation. �
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Remark 4.4. Theorem 4.3 yields the steady-state workload LST in a straightforward way, by
averaging over a visit period and a vacation period with weight factors E[Ci]/(E[C1] + E[C2]),
i = 1, 2. The workload LST at an arbitrary epoch during a visit period is, by pasta, the
same as the workload LST G̃(s) at the end of a visit period, and the latter LST follows from
G(s) = G̃(s)γ(λ(1 − β(s))). Also the workload LST at an arbitrary epoch during a vacation
period can be determined, using a stochastic mean value argument. ^

Remark 4.5. Theorem 4.3 reveals that G(s) is the product of three LST’s of non-negative
random variables. Hence Z can be written as the sum of these, independent, random variables:
Z = Z1 + Z2 + Z3. Z1 is the steady-state amount of work in the shot-noise queue without
vacation periods; cf. (10). With this in mind, it is readily seen that Z2 is the steady-state
amount of work in a shot-noise queue with arrival rate c (corresponding to the occurrence of a
vacation) and service requirement LST γ(λ(1 − β(s))). The latter term denotes the LST of the
amount of service requirement that enters the system during a vacation; and that amount also
equals Z3. This kind of decomposition is reminiscent of the well-known Fuhrmann-Cooper
decompositions [45] for queues with constant service speed. ^

Remark 4.6. In [27], the joint workload LST in a two-queue polling model with exponential
visit times and workload-dependent service speeds at both queues is also studied. A two-
dimensional Volterra integral equation for this LST is formulated, and it is shown that this
equation can be solved by a fixed-point iteration. ^

Case 2: C1 is constant. Assume that the length of each visit time C1 ≡ T , a constant. In that
case we have the following result for the steady-state workload LST at the beginning of visits.

Theorem 4.7. For C1 ≡ T , the steady-state workload LST at the start of visit periods is given
by

E[e−sZ ] = exp
(
−
λ

r

∫ s

0

1 − β(u)
u

du
) ∞∏

j=0
γ(λ(1 − β(se−jrT ))). (68)

Proof. We follow the same steps (i)-(iv) as in the proof of Theorem 4.3.
(i) and (ii) are basically the same, replacing (63) in Step (ii) by

E[e−sX(C1) | X(0) = x] = exp
(
−sxe−rT −

λ

r

∫ s

se−rT

1 − β(u)
u

du
)
. (69)

(iii) Combining (i) and (ii) we can again look one cycle ahead:

E[e−sX(C1+C2) | X(0) = x)

= γ(λ(1 − β(s))) exp
(
−sxe−rT −

λ

r

∫ s

se−rT

1 − β(u)
u

du
)
. (70)

(iv) Just like in the proof of Theorem 4.3, we now decondition on X(0) = x and observe that, in
steady state, X(C1+C2) has the same distribution as X(0). Hence H(s) := E[e−sZ ] = E[e−sX(0)]
satisfies the following relation:

H(s) = γ(λ(1 − β(s))) exp
(
−
λ

r

∫ s

se−rT

1 − β(u)
u

du
)

H(se−rT ). (71)

The theorem follows by iterating the above relation; in [27] it is shown that this iteration
converges. �
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Remark 4.8. It is readily seen that Theorems 4.3 and 4.7 can be generalized to the case in
which the compound Poisson input process is replaced by a Lévy subordinator. In the final
expressions, just replace λ(1 − β(·)) everywhere by the Laplace exponent η(·) of the Lévy
process. ^

Remark 4.9. In the infinite product in Theorem 4.7, the j-th term gives the contribution to the
LST of Z from j + 1 vacations ago. Furthermore, observe that actually

exp
(
−
λ

r

∫ s

0

1 − β(u)
u

du
)
=

∞∏
j=1

exp

(
−
λ

r

∫ se−( j−1)rT

se− jrT

1 − β(u)
u

du

)
;

again an infinite product. The j-th term gives the contribution to the LST of Z from j visits
ago. ^

Let us now make the step from vacation queues to polling, i.e., we assume that a single
server cyclically visits N queues, with constant visit time Ti at Qi , and with independent
compound Poisson input processes (λi, βi(s)) at Qi , and with workload-dependent service
speed ri(x) = ri x at Qi , i = 1, . . . , N . A little thought will convince the reader that, at visit
completion epochs, all N workloads are independent, and the LST of the steady-state workload
at Qi at the start of its visit can be obtained via Theorem 4.7. At an arbitrary epoch, the various
workloads are not independent, because the length of time since the start of the present visit
affects all N queues; but it is easy to determine the steady-state joint workload LST from the
workload LST at a visit completion epoch [27]. This is a rare example of an N-queue polling
system for which the joint workload can be determined, even though the service discipline is
not of so-called branching type. Crucial for this are the constant visit periods and the attractive
features of shot noise that we stressed before, viz., no queue can ever become empty, and each
quantity of work ∆i at Qi reduces to ∆ie−rTi during a visit to that queue.

Open Problem 4.10. It would be highly interesting to provide an analytic solution to the two-
dimensional Volterra integral equation for the joint workload LST in the case of the polling
model of Remark 4.6. An other open problem concerns the extension of the Fuhrmann-Cooper
decompositions to shot-noise queues. ©

4.5 Fluid queues with state-dependent rates
So far we have focused on systems with jumps, which mostly represent an instantaneous input
of work. However, both in communication systems and in production/storage settings, it is
often natural to have a gradual input. There is a sizable literature on such models, in which the
content of a buffer (of fluid, or stored material, or data bits) increases during off periods and
decreases during on periods of the server. We mention some studies in which that decrease is
level-dependent. Kaspi, Kella and Perry [58] have considered an on/off model with generally
distributed on- and off periods, and level-dependent release rates as well as level-dependent
production rates. Theymainly focused on stability issues, and also considered themodel variant
in which the off periods are compressed to a point, replacing the total increment during an off
period by a state-dependent jump. In [23], that compression idea was applied to a fluid queue in
which the content level decreases in a level-dependent way during exponentially distributed on
periods. During off periods, an underlying Markov process moves between K different states,
and the content level increases at rate aj when the state is j. By compressing the off periods and
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replacing the total increment in an off period by a jump, one arrives at the model of Harrison
and Resnick [50], and for r(x) = r x one has the M/G/1 shot-noise queue.

In [21] an on/off model is studied with not only level-dependent (r0(x)) gradual increase
during off periods and level dependent (r1(x)) decrease during on periods; the lengths of the
off- and on periods are also dependent on the content level. The system switches from off
to on with rate λ0(x), and from on to off with rate λ1(x). The stationary distribution of the
two-dimensional process {(X(t), I(t)), t ≥ 0} and conditions for its existence and uniqueness
were determined, where X(t) denotes the buffer content and I(t) the state of a background
process (on or off). If, for some ε > 0,∫ ε

0

(
λ0(u)
r0(u)

−
λ1(u)
r1(u)

)
du < ∞,

then the stationary densities g0(x), g1(x) (respectively conditioned on being off and on) are
given by

gi(x) =
Ci

ri(x)
exp

(
−

∫ x

0

(λ0(u)
r0(u)

−
λ1(u)
r1(u)

)
du

)
, i = 0, 1, (72)

with C0,C1 constants, while there is also an atom at zero. The similarity with (42) should be
noticed. If the above finiteness condition does not hold, then there is no atom at zero, but the
gi(x) take a very similar form. We remark in passing that the proportionality of r0(x)g0(x) and
r1(x)g1(x) immediately follows via a level crossing argument.

The above model is called a Markov modulated feedback fluid queue. In feedback fluid
queues, not only is the buffer content determined by the state of a background process, but also
the background process is influenced by the content process. Feedback fluid queues are also
studied in [78, 79, 92]. In [92] the object of study was a fluid queue with a finite buffer and
a background process governed by a continuous-time Markov chain whose generator, and the
traffic rates, depend continuously on the buffer level. For the case of two background states, an
explicit solution for the stationary buffer content distribution was derived.

Remark 4.11. The idea of compressing off periods to a single instant and replacing the
increment by a jump can also be applied to on periods, and then gives rise to so-called growth-
collapse models. These are models where, after a certain period of growth of the process, its
level jumps downward with the jump size being dependent on the level just before the jump.
Kella [61] considered the case in which, at the n-th collapse, for n = 1, 2, . . . , the process
level Yn is reduced by a random factor Xn ∈ [0, 1] to Wn = XnYn, while between the (n − 1)-st
and n-th collapse the process increases with Bn. Hence Yn = (Yn−1 + Bn)Xn, representing an
autoregressive process with random coefficients. Iteration yields

Yn = Y0

n∏
j=1

Xj +

n∑
i=1

Bi

n∏
j=i

Xj . (73)

The latter relation should be compared with (20) for the M/G/1 shot-noise queue. In fact,
Kella [61] explicitly pointed out the relation to shot-noise models, stating the following: if Xn

does not have an atom at zero, and −E logXn < ∞, then the above-described growth-collapse
process and the G/G/1 shot-noise queue with interarrival intervals ξn = −r−1 logXn have
the same dynamics just before, and just after, jump epochs. The relation between growth-
collapse processes and shot-noise queues is further explored in [24, 28]. In the latter paper
the intervals between collapses have a general distribution, and the random reduction factor at
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collapses has a minus-log phase-type distribution, i.e., minus its natural logarithm has a phase-
type distribution. This corresponds to a G/G/1 shot-noise queue with phase-type distributed
intervals Ai between generally distributed jumps. ^

Open Problem 4.12. An interesting research direction concerns the extension of the results
of [21] to the case of more than two background states. ©

5 Linear stochastic fluid networks
In this section we discuss the network version of the M/G/1 shot-noise queue that was analyzed
in Section 2. Such networks are usually called linear stochastic fluid networks. In this brief
discussion we mainly focus on deriving the transient and stationary joint workload distribution,
providing network counterparts of Theorems 2.1 and 2.5. We refer to Chapter 7 of [36] for a
more extensive discussion of linear stochastic fluid networks, to [57,65] for stability discussions,
to [64, 66] for calculations in the stationary regime, to [63] for a Markov-modulated network
and to [85] for moment calculations.

We begin with a model description. Now there are m resources, rather than just one,
whose evolutions are recorded by the m-dimensional Markov process {X(t), t ≥ 0}. Customers
arrive at the network according to a Poisson process {N(t), t ≥ 0} with rate λ. The service
requirements, denoted by B1, B2, . . . are m-dimensional vectors now: the i-th component of
these vectors is instantaneously fed into resource i. We let β(·) be the corresponding LST,
whose argument, say s, is an element of Rm+ . The corresponding vector-valued input process
is called {J(t), t ≥ 0}. We work with proportional service speeds given by the m-dimensional
vector r , in that the service rate of resource i at time t is riy if Xi(t) = y. When being
served at resource i, a fraction pi j of the output is fed into resource j. We throughout assume
the matrix P = (pi j)mi, j=1 to be substochastic, with Pn → 0 as n → ∞. As a consequence
(I − P)−1 is well-defined, and can be represented by

∑∞
n=0 Pn. We call the resulting system a

linear stochastic fluid network, which can be seen as the genuine multivariate extension of the
single-dimensional shot-noise model discussed before.

Observe that the setup introduced above is rather general. It in particular covers cases in
which there are, for subsets S of {1, . . . ,m}, Poisson arrival streams of customers (with arrival
rate, say, λS) at the resources in S only. For instance, the setup covers the case that with rate
λi work arrives at resource i only, for i = 1, . . . ,m; then we have to pick λ := λ1 + . . . + λm,
while Bi equals with probability λi/λ an m-dimensional vector with a positive entry on the i-th
position and zeroes elsewhere.

This system’s time-dependent and stationary distribution can be found, as was argued in
Sections 4 and 5 of [66]. It is noted that [66] considers various generalizations and ramifications,
e.g. one in which our driving compound Poisson process has been replaced by a non-decreasing
Lévy process.

As a first step in the analysis, observe that the counterpart of (1) becomes, with R = diag(r),
as h ↓ 0,

X(t + h) = X(t) − Rh X(t) + RP>h X(t) + J(t + h) − J(t) + o(h),

leading to the differential form

dX(t) = −Q> X(t) dt + dJ(t),
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where Q = R(I − P). This equation can be written in the corresponding integral form:

X(t) = X(0) + J(t) −Q>
∫ t

0
X(u) du,

which, cf. (4), is solved by

X(t) = e−Q
>tX(0) +

∫ t

0
e−Q

>(t−u)dJ(u), (74)

where it is noted that the two terms on the right-hand side are independent. This representation
allows us to state and prove the counterpart of Theorem 2.1, i.e., the multivariate version of (7).

Theorem 5.1. The LST of the workload X(t) in the M/G/1 shot-noise network is, for t ≥ 0,
given by

E[e−s
>X(t)] = E[e−s

>e−Q> tX(0)] exp
(
−λ

∫ t

0
(1 − β(e−Qu s))du

)
.

Proof. First consider a non-negative m-dimensional ‘pulse’ x0 that is fed into the system at
time 0. Our objective is to describe how it has evolved at time t ≥ 0, which we call x(t).
Observe that, as h ↓ 0,

xi(t + h) = xi(t)(1 − rih) +
m∑
j=1

xj(t)rjpjih + o(h),

so that x(t) = e−Q>t x0; cf. (74).
Now follow the line of the proof of Theorem 2.1; see also Section 3.1 of [20]. The number

of ‘pulses’ N(t) arriving in (0, t] is Poisson distributed with parameter λt, and each of them has
an arrival epoch that is uniformly distributed over (0, t].

E[e−s
>X(t)] = E[e−s

>e−Q> tX(0)]

∞∑
n=0

e−λt
(λt)n

n!
[

∫ t

0
E[e−s

>e−Q>(t−u)Bi ]
du
t
]n

= E[e−s
>e−Q> tX(0)]

∞∑
n=0

e−λt
(λt)n

n!
[

∫ t

0
β(e−Qu s)

du
t
]n

= E[e−s
>e−Q> tX(0)]exp

(
−λ

∫ t

0
(1 − β(e−Qu s))du

)
. (75)

This completes the proof. �

We also have the counterpart of Theorem 2.5, found by letting t grow large in the result of
Theorem 5.1. As before, to guarantee stability no additional assumptions need to be imposed.

Theorem 5.2. The LST of the steady-state workload X in the M/G/1 shot-noise network is
given by

E[e−s
>X ] = exp

(
−λ

∫ ∞

0
(1 − β(e−Qu s))du

)
. (76)

Remark 5.3. The setting considered lends itself well for performing rare event analysis, as
discussed in great detail in [20]. Suppose that, for some scaling parameter n, the arrival rate is
λn and that X(0) = nx0. Then X(t) ≡ Xn(t) can be seen as the sum of n i.i.d. contributions. As a
consequence, standard large deviations techniques can be used to compute, for any set A ⊂ Rm,
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the corresponding logarithmic tail asymptotics. Indeed, under mild regularity conditions, we
have that as a direct consequence of the multivariate version of Cramér’s theorem,

lim
n→∞

1
n

logP(Xn(t) ∈ nA) = − inf
a∈A

I(a),

where, applying Theorem 5.1 to find the cumulant generating function logE[eθ>X(t)],

I(a) = sup
θ

(
θ>a − θ>e−Q

>t x0 + λ

∫ t

0
(1 − β(−e−Quθ))du

)
denotes the corresponding Legendre transform. In [20] it is also pointed out how insights from
large deviations theory can be used to efficiently estimate the probability P(Xn(t) ∈ nA) by
importance sampling based simulation. More concretely, a logarithmically efficient algorithm
is proposed, meaning that the number of runs required to obtain an estimate with a given
precision (defined as the ratio of the width of the confidence interval and the estimate) grows
subexponentially in the scaling parameter n, whereas this number would grow exponentially
when using conventional simulation. ^

Remark 5.4. Another topic covered in [20,64] concerns the extension of the model to a setting
in which the arrival rate, the service requirement vector and the routing matrix are modulated
by an external, autonomously evolving Markov process (often referred to as the background
process). In the first place, with techniques similar to the ones we have applied above, the
Laplace transform of X(t) can be characterized, jointly with the state of the background
process, in terms of a system of partial differential equations. It allows the evaluation of
moments as well; these require intricate matrix multiplications, involving various types of
Kronecker matrices. In [20] an algorithm is presented that can estimate rare-event probabilities
in a logarithmically efficient manner. ^

Open Problem 5.5. It is tempting to believe that under the scaling of Remark 5.3 the pro-
cess converges, after centering and normalizing by

√
n, to a multivariate Ornstein-Uhlenbeck

process; cf. the discussion above (25). This is likely to carry over to the modulated setting
of Remark 5.4, when also speeding up the background process, in line with results found for
networks of modulated infinite-server queues in [18, 56]. In more general terms, it would also
be interesting to further explore the relationship between linear stochastic fluid networks and
infinite-server queueing networks; see already e.g. [49, 66]. ©

6 Infinite-server queues with shot-noise arrival rates
This last section has a different flavor than the previous ones: shot noise here does not enter the
picture in the form of workload-dependent service speed, but in the form of an arrival rate that
evolves as shot noise. In insurance mathematics, a claim arrival process with a stochastically
varying intensity given by a shot-noise process was introduced in [68], see also [3, 39]. A
shot up in the shot-noise process is viewed as a disaster that triggers a number of claims,
with decaying intensity. The main object of study in [3] was the asymptotic behavior of the
ruin probability. In [82], a shot-noise arrival process was used to model the occurrence of
earthquakes. Ganesh et al. [46] have studied sample path large deviations for Poisson shot-
noise processes, with a view towards applications in queueing and teletraffic theory. Their
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results include the identification of the most likely path to exceedance of a large buffer level in
a single server queue fed by Poisson shot-noise.

In the present section we primarily focus on networks of infinite-server queues, with the
distinguishing feature that the arrival rates are not constant but rather evolve as shot noise;
i.e., the arrival process is a Poisson process with the stochastic arrival rate Λ(t) at time t, with
{Λ(t), t ≥ 0} a shot-noise process. Such an arrival process is called a shot-noise Cox process.
We start with just one infinite-server queue. Customers arrive according to a shot-noise Cox
process that is characterized by the shot rate ν, the jump size LST β(·) and the decay rate
r . The customer service requirements are i.i.d., and distributed as a generic non-negative
random variable S. We first present an analysis for the time-dependent and stationary number
of customers in the system, based on Section 3 of [73].

Our first objective is to find the distribution of the number of customers in the system at time
t, in the sequel denoted by M(t). This can be found in several ways; because of the appealing
underlying intuition, we here provide a limiting argument. The idea is that we approximate the
arrival rate on intervals of length ∆ by a constant, and then let ∆ ↓ 0, as follows. Consider an
arbitrary sample path Λ(t) of the driving shot-noise process. Given this Λ(t), the number of
customers that arrived in the interval [k∆, (k + 1)∆) and are still in the system at time t, has a
Poisson distribution with parameter P(S > t−(k∆+∆Uk))·∆Λ(k∆)+o(∆), whereU1,U2, . . . are
i.i.d. standard uniform random variables. Summing over k yields that the number of customers
in the system at time t has a Poisson distribution with parameter

t/∆∑
k=1
P(S > t − (k∆ + ∆Uk)) · ∆Λ(k∆) + o(∆),

which converges, as ∆ ↓ 0, to ∫ t

0
Λ(u)P(S > t − u)du. (77)

Since Λ(·) is actually a stochastic process, we conclude that the number of customers has a
mixed Poisson distribution, i.e., Poisson with a random parameter, viz. the expression in Eqn.
(77). As a consequence, we find by conditioning on the filtration Ft to which Λ(t) is adapted,

ξ(t, z, s) := E zM(t)e−sΛ(t) = E
(
e−sΛ(t) E

(
zM(t) | Ft

))
= E exp

(∫ t

0
Ξ(t − u, z)Λ(u)du − sΛ(t)

)
; (78)

here Ξ(t, z) := (z − 1)P(S > t). We have found the following result.

Theorem 6.1. Let Λ(·) be a shot-noise process with Λ(0) = 0. Then

log ξ(t, z, s) = ν
∫ t

0

(
β

(
(1 − z)erv

∫ t

v

P(S > t − u)e−rudu + se−r(t−v)
)
− 1

)
dv. (79)

Proof. The result follows directly from Eqns. (9) and (78). �

This result allows the evaluation of moments of M(t). In particular, it is easily verified that
the mean satisfies the intuitively appealing expression

EM(t) =
∫ t

0
EΛ(u)P(S > t − u)du. (80)
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Higher moments can be found as well. By the law of total variance,

Var(M(t)) = Var
∫ t

0
Λ(u)P(S > t − u)du + E

∫ t

0
Λ(u)P(S > t − u)du. (81)

The latter expression we can further evaluate: as pointed out in [73],

Var
∫ t

0
Λ(u)P(S > t − u)du

= 2
∫ t

0

∫ t

v

Cov(Λ(u),Λ(v))P(S > t − u)P(S > t − v)dudv,

where, for u ≥ v, Cov(Λ(u),Λ(v)) = e−r(u−v) VarΛ(v). It thus follows that (81) equals

2
∫ t

0

∫ t

v

e−r(u−v) VarΛ(v)P(J > t − u)P(J > t − v)dudv +∫ t

0
EΛ(u)P(J > t − u)du.

We can make this more explicit using the closed-form formulas for EΛ(u) and VarΛ(v). For
the special case of S being exponentially distributed, Example 3.2 in [73] presents expressions
for EM(t) and Var M(t).

Under a specific scaling, and again assuming that the service durations are exponentially
distributed, it can be shown that an appropriately centered and normalized version of the queue
length process M(t) converges to a Gaussian limit. More concretely, after blowing up the shot-
rate of the driving shot-noise process by a factor n, the queue length process M(t), which now
depends on n, subtracted by its mean and divided by

√
n converges to an Ornstein-Uhlenbeck

process with the appropriate parameters. This functional central-limit theorem extends to non-
exponential service durations. In that case, however, the (non-Markovian) limiting process, a
so-called Kiefer process, is considerably more involved.

Our setting with just a single infinite-server queue can be directly generalized to various
types of networks. In Section 4.1 of [73] tandem networks are treated. Below we focus on
the two-node tandem case, but the underlying principle carries over to tandem networks of any
length. Let S1 be the generic service duration at node 1, and S2 its counterpart at node 2, and
let M1(t), M2(t) be the queue lengths in the two nodes at time t. Above we established that
M1(t) is mixed Poisson, with the random parameter given by (77), but M2(t) is mixed Poisson
as well, with the random parameter corresponding to M2(t) being∫ t

0
Λ(u)P(S1 ≤ t − u, S1 + S2 > t − u) du.

This formula has an appealing intuition: a job that arrives at node 1 at time u, should have left
node 1 at time t (hence its duration should be shorter than t − u), but should still be present at
node 2 (hence the duration of both service times together should be longer than t − u). Also
the joint distribution of all queue lengths in the system can be explicitly characterized through
its joint probability generating function.

Various more involved types of networks can be handled as well; notably, general feed-
forward networks are covered by Theorem 4.6 of [73]. In addition, [22] provides a detailed
account of networks of infinite-server queues in which the arrival rate is a vector-valued linear
transformation of a multivariate generalized shot-noise process (i.e., being driven by a general
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subordinator Lévy process rather than a compound Poisson process); cf. Remark 4.8. Moments
and asymptotic results for such a network are derived in [91]. In another branch of the literature,
the shot-noise arrival rate process is replaced by a Hawkes arrival rate process, a ‘self-exciting’
process that bears some similarity with shot noise; see the studies on (infinite-server) queues
fed by a Hawkes driven arrival process [40, 47, 74].

Open Problem 6.2. Coxian and Hawkes arrival processes offer interesting possibilities for
modeling overdispersed input to a queue. In this section we have mentioned some results in
this area for infinite-server queues. In terms of open problems, there is the embarrassment of
choice: for the single server queue we only mentioned a few asymptotic results, because exact
results seem lacking, even for the single server queue with exponential service times. ©
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