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METASTABILITY FOR GLAUBER DYNAMICS ON
THE COMPLETE GRAPH WITH COUPLING DISORDER

A. BOVIER, F. DEN HOLLANDER, AND S. MARELLO

ABsTRACT. Consider the complete graph on n vertices. To each vertex assign an Ising
spin that can take the values —1 or +1. Each spin ¢ € [n] = {1,2,...,n} interacts
with a magnetic field h € [0,00), while each pair of spins 4,j € [n] interact with each
other at coupling strength n~'J(i)J(j), where J = (J(i));e[n) are ii.d. non-negative
random variables drawn from a prescribed probability distribution P. Spins flip according
to a Metropolis dynamics at inverse temperature 8 € (0,00). We show that there are
critical thresholds S. and h.(8) such that, in the limit as n — oo, the system exhibits
metastable behaviour if and only if 8 € (8.,00) and h € [0, hc(8)). Our main result are
sharp asymptotics, up to a multiplicative error 1 4 0,(1), of the average crossover time
from any metastable state to the set of states with lower free energy. We use standard
techniques of the potential-theoretic approach to metastability. The leading order term in
the asymptotics does not depend on the realisation of J, while the correction terms do. The
leading order of the correction term is \/n times a centred Gaussian random variable with
a complicated variance that depends on £, h, P and on the metastable state. The critical
thresholds S. and h¢(3) depend on P, and so does the number of metastable states. We
derive an explicit formula for 8. and identify some properties of 8 — h.(3). Interestingly,
the latter is not necessarily monotone, meaning that the metastable crossover may be
re-entrant.

1. INTRODUCTION AND MAIN RESULTS

1.1. Background. Interacting particle systems evolving according to a Metropolis dynam-
ics associated with an energy functional called the Hamiltonian, may be trapped for a long
time near a state that is a local minimum of the free energy, but not a global minimum. The
deepest local minima are called metastable states, the global minimum is called the stable
state. The transition from a metastable state to the stable state marks the relaxation of the
system to equilibrium. To describe this relaxation, one needs to identify the set of critical
configurations the system must attain in order to achieve this transition and to compute the
crossover time. These critical configurations correspond to saddle points in the free energy
landscape.
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Metastability for interacting particle systems on lattices has been studied intensively in
the past. For a summary, we refer the reader to the monographs by Olivieri and Vares [12],
and Bovier and den Hollander [7]. Successful attempts towards understanding metastable
behaviour in random environments were made for the random field Curie-Weiss model,
first by Bovier and Gayrard [6] and later by Bianchi, Bovier and Toffe [1, 2]. Recently,
there has been interest in metastability for interacting particle systems on random graphs.
This is challenging, because the crossover times typically depend on the realisation of the
graph. In den Hollander and Jovanovksi [11] and Bovier, Marello and Pulvirenti [8], Glauber
dynamics on dense Erdds-Rényi random graphs was analysed. Earlier work on metastability
for Glauber dynamics on sparse random graphs can be found in Dommers [9] (random
regular graph) and Dommers, den Hollander, Jovanovski and Nardi [I0] (configuration
model). The present paper is a first step towards the study of metastability for Glauber
dynamics on Chung-Lu random graphs.

1.2. Glauber dynamics on the complete graph with coupling disorder. Let C,
be the complete graph on n vertices. Each vertex carries an Ising spin that can take the
values —1 or +1. Let S, = {—1,+1}[" denote the set of spin configurations on K,, where
[n] ={1,2,...,n}. Let P denote a probability measure that is supported on a finite subset
of [0,00). Let J = (J(i))ic[n be ii.d. random variables with common law P, and let
H,: S, — R be defined by

1 N TN N .
(1.1) Hn(0) = —— Y J@) () o)) —h Y oi), o €S,
1,j€[n] i€[n]
1<)
where h € [0, 00) is the magnetic field. We consider Glauber dynamics on S, defined as the
continuous-time Markov process with transition rates

/ {e,@[Hn(JI)H”(U)]+, if U/ ~ 0,
Tn(aa o ) =

(1.2) |
0, otherwise,

/
o,0 €8y,

where 8 € (0,00) is the inverse temperature, 0’ ~ o means that ¢’ differs from o by a single
spin-flip and []+ is the positive part. This dynamics is reversible with respect to the Gibbs
measure

(1.3) (o) = e 0, g,

where the normalising constant Z,, is called the partition sum. Note that the reference
measure for ([1.3)) is the counting measure on S,,. We write

(1.4) (Ut)t207 ot € Sn,

to denote a path of the Glauber dynamics on S, and P, and E, to denote probability and

expectation on path space given og = o (we suppress J, h, 8 and n from the notation).
For fixed n, the Hamiltonian in achieves a global minimum at ¢ = +1 and a local

minimum at ¢ = —1. The latter is the deepest local minimum not equal to the global
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minimum (at least for A small enough). However, in the limit as n — oo, these do not form
a metastable pair of configurations because entropy comes into play.

1.3. Metastability on the complete graph with coupling disorder. In this section
we state our main results.

1.3.1. Empirical magnetisations. The relevant quantity to monitor in order to characterise
the metastable behaviour is the disorder weighted magnetisation

1 N
(1.5) Kn(0) =~ > J(i)o(i), o €S
i€[n]
Since P has finite support, we have
(1.6) P =) wida,
Le(k]

for some k € N, (ag)pepy € [0,00)" distinct, and (w)epy € (0,1)% such that > repmwe =1.
The following quantities will be essential for coarse-graining. Define the level sets

(1.7) App={ien]: J(i) = ar}, ¢ e [kl

and the level magnetisations

(1.8) min(0)= —— 3 o), Le[k], 0 €S
’Ae’n| 1€A

Put

(1.9) my (o) = (mm(a))ee[k] e [-1,1]%, o €Sy,

and note that K, (o) = 2 >tk @ |Aen| mepn(o) depends on o only through my (o). Thus,
with abuse of notation, we may define

1
(110) Kn(m) = n(z[;] ag |A€,n| my, m= (mé)ée[k] € [*17 1]ka
S

so that K, (o) = K,(my,(0)).

1.3.2. Thermodynamic limit. With P"-probability tending to 1 as n — oo, the random
function K, converges to a deterministic function K given by

(1.11) K(m) = agwemy,  m=(mg)ep € [~1,1]".
Le(k]

Similarly, the random free energy function F, converges to a deterministic function Fg
(see (2.15)) and (2.26]) below for explicit formulas). In Section [3] we show that the stationary
points of Fj, are given by m = (my)c[), where

(1.12) my = tanh(B[a,K (m) + h]), ¢ < [k].
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Note that, via (1.12), the k-dimensional vector m is fully determined by the real number
K (m). Therefore, finding the stationary points of Fj} reduces to finding the solutions of
the equation

(1.13) K =Tgpp(K),  Tonp(K) =) acw tanh(BlacK + h]).
Lek]

1.3.3. Metastable regime. It turns out that the critical inverse temperature 3. is given by
-1

(1.14) Be= | ajwy
Le(k]

Namely, if 8 € (0, B¢], then the system is not in the metastable regime for any h € [0, c0),
while if 5 € (8., 00), then, for h € [0, 00) small enough, it is in the metastable regime (i.e.,
has more than one solution at which T4 p is not tangent to the diagonal). Given
B € (B¢, ), the critical magnetic field h.(53) is the minimal value of h for which the system
is not metastable. The metastable regime is thus

(1.15) B € (Be,o0),  he0,he(B)).

In Section [3| we show that 8 +— he(8) is continuous on (S, o), with
1.16 lim h.(8) =0, lim h.(B8) = C € (0,00),
(1.16) lim he(B) Jim_he() (0,00)

where the explicit value of C' is given in below. Interestingly, 5 — h¢((3) is not
necessarily monotone, i.e., the metastable crossover may be re-entrant.

It turns out that there exists an ¢ € [k] (depending on 3, h, P), such that Fjg ), has 2041
stationary points.

1.3.4. Metastable crossover. Let M, be the set of minima of F},. Given m € M,,, define
(1.17) M,(m) ={m e M,\m: F,(m) < F,(m)}.

Let G(A, B) be the gate between two disjoint subsets A and B of M,,. We refer to [T,
Section 10.1] for a precise definition of the gate.

Fix m, € M,, as the initial magnetisation. Throughout the paper we assume that the
following hypotheses hold for m,,.

Hypothesis 1.

(1) My (my,) is non-empty.

(2) The Hessian of F,, has only non-zero eigenvalues at m, and at all the points in
G(my, My (my,)).

(3) There is a unique point t,, in G(m,, M, (my,)), which will often be called simply
saddle point.

(4) The saddle point t,, is such that r¢[|Agy| (1 — tzn)]*1 takes distinct values for dif-
ferent ¢ € [k|, where 1y is defined in below.
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Hypothesis and are made to avoid complications. Hypothesis is needed in
the proof of Lemma below (as in [7, Lemma 14.9]). Neither is very restrictive: if for
some parameter choice they fail, then after an infinitesimal parameter change they hold.
Moreover, if Hypothesis fails, it is sufficient to compute separately the contribution to
the crossover time of the various saddle points in the gate.

Let S, [m,] and S,[M,,(m,,)] denote the sets of configurations in S,, for which the level
magnetisations are m,, and are contained in M, (m,,), respectively. Let A, (-) be the k x k
Hessian matrix defined in below, and -, the unique negative solution of the equation
in below. For A C S,,, write

(1.18) TA={t>0: 0y € A oy ¢ A}

to denote the first hitting time or return time of A.

We next state our main results for the crossover time. Theorem provides a sharp
asymptotics for the average crossover time from any metastable state to the set of states with
lower free energy. Theorem shows that asymptotically the crossover time is exponential
on the scale of its mean, a property that is standard for metastable behaviour.

Theorem 1.1 (Average crossover time with coupling disorder).
For every my, € M,, satisfying Hypothesis |1 and within the metastable regime (1.15)), uni-
formly in o € S,,[my|, and with P"-probability tending to 1,

(119) B, [rs, e o] = [1+ 0n(1)] ¢ - edte&f(f:ff] (%(i%)) I IF ()~ Fom)]

Theorem 1.2 (Exponential law with coupling disorder).
For every my, € M,, satisfying Hypothesis |1 and within the metastable regime (1.15)), uni-
formly in o € S,[my,] and with P™-probability tending to 1,

(1.20) P, (TSn[M'n(mn)] > tE, [TSn[Mn(mn)]]) = [1 + On(l)] e_t, t>0.

As the average crossover time estimated in Theorem is a random variable, we next
provide more information on the randomness of the quantity in the right-hand side of
, which depends on the realisation of the random variable J. The prefactor in (|1.19)
converges with P™-probability tending to 1 to a deterministic limit, which depends on P
but not on the realisation of J. However, the exponent does not converge to a deterministic
limit. In Theorem we compute the exponent up to order O(1). Recall that F,, — Fpp,
m, — m and t,, — t as n — oo.

Theorem 1.3 (Randomness of the exponent).
For every my, € M,, satisfying Hypothesis |1 and within the metastable regime (1.15)), in
distribution under the law P",

(1.21) n[Fn(tn) — Fo(my)] = n[Fpn(t) — Fpp(m)] + Zv/n + O(1),

where Z is a normal random variable with mean zero and variance in (0, 00).
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The variance of Z turns out to be a complicated function of 8, h and P. We refer to
Section for further details. Computing the exponent up to order 1 is in principle pos-
sible, but the formulas become rather complicated. Without this precision the prefactor is
asymptotically negligible.

1.4. Techniques and outline. In order to prove Theorems we use the potential-
theoretic approach to metastability developed in Bovier, Eckhoff, Gayrard and Klein [3] 4]
5]. More specifically, we first find a sharp approximation of the Dirichlet form associated with
the coarse-grained dynamics. We use these results, together with lumpability properties and
well-known variation principles, to obtain sharp capacity estimates that are key quantities
in the proof. For a more detailed overview of the methods, we refer the reader to the
monograph by Bovier and den Hollander [7].

The remainder of the paper is organised as follows. Section 2| provides quantities and
notations that are needed throughout the paper. Section [3|identifies the metastable regime.
Section [] provides a sharp approximation of the Dirichlet form associated with the Glauber
dynamics in the presence of the disorder. Section [5| provides estimates on capacity and on
the metastable valley measure. Section [ proves Theorems Appendix [A] contains
a brief overview on known results for the standard CW model, which corresponds to the
setting without disorder. Appendix [B] gives numerical evidence for the presence of multiple
metastable states for suitable choices of 8, h and P. Appendix [C] contains an example
in which 8 +— h.(f) is not increasing, implying the possibility of a re-entrant metastable
crossover. Appendix @] provides the limit as n — oo of the prefactor in (|1.19)).

2. PREPARATIONS

Section introduces further notation and writes the Hamiltonian in terms of the level
magnetisations. Section introduces the Dirichlet form associated with the Glauber dy-
namics and rewrites this in terms of the level magnetisations. Section computes gradients
and Hessians of the free energy as a function of the level magnetisations. Section closes
with an approximation of the free energy that will be needed later on.

2.1. Hamiltonian. Recall (1.7)). Abbreviate

_ ’Af,n|

(2.1) Wen -

Since (we,n)reir) — (We)eepr) € (0, o0)¥ as n — oo with P"-probability tending to 1, we may
and will assume that Ay, # () for all ¢ € [k] and all n large enough. Recall (1.8)—(L.9). Note
that my (o) takes values in the set

_ 2 2
Hence m,, (o) takes values in the set

(2.3) I7 = X Ty
Lek]



The configurations corresponding to M C I'? are denoted by

(2.4) SpM] ={0c€S,: my(o) € M}.
For singletons M = {m} we write S,[m] instead of S, [{m}].
Let
1 .
(2.5) Hn(0) = = ZE[:] J(i)J () —h ;} o €Sy,
VAR i€n

which is the Hamiltonian in (L.I)), except for the diagonal term —5- Dicin) J 2(i), which is
a constant shift. Using the notation above, we can write the Hamiltonian in (2.5) as
2

1
(26) Hp(o)=-n 3 Z agwenmyn(o) | +h Z Wen My (0) | = nEp(my(o)),
L[k Le[k]

where we abbreviate
2

1 P
(2.7) E,(m) = ~5 Z agwgnme | —h Z Wep Mg, m = (mg)eep €17
Le[k] Le(k]

2.2. Dirichlet form and mesoscopic dynamics. By (1.2)—(1.3), the Dirichlet form as-
sociated with the Glauber dynamics equals

5sn(hah)=% S (@), 0") h(o) — h(o')]?

o0,0'€Sy,

Z Z e~ BHn(0)o=BHn(o )*Hn(a)]+[h(g)_h(a')]27

n 0€ESh o 6577,7

o' ~o

(2.8)

where h is a test function on S,, taking values in [0, 1]. Because of (2.6), for any h such that
h(c) = h(my, (o)), with h a test function on I'?’, we have

Es, Z Z e~ BnEn(m), —Bn[En(m')—En(m)]+
meFPmGFP

x [h(m) = h(m"]* Y oo

0€Sn, o'€Sp,0'~ao,
mn(o)=m my(c')=m’

(2.9)

where m = (my) ey If 0’ ~ o, then o’ = o' for some i € [n], with ¢* obtained from o by
flipping the spin with label i. Let ¢ € [k] be such that i € Ap,. If 0(i) = £1 = —0'(i),
then

(2.10) Mon(0) = {

My n ( ):F |Ae/n’ E:E/’
myn(0), £,



8

For m,m’ € I'P | we write m ~ m/ when there exists an ¢ € [k] such that m/ = m‘* or

/_
m' =mt—,

2 U
, me + 12—, L=/,

(2.11) my* = A
me, (#1,

where

Moreover, for ¢ € [k] and o € S,, with m,,(c) = m, the cardinality of the set {0’ € S,: ¢’ ~
o, mp(0') = mb*} equals 7| Ay, |, namely, the number of (F1)-spins in o with index in
Ay . Furthermore,

Ao
(2.12) {o € Sn: mn(0) =m}| = ] (HLJ:J |), meTlP,
5 |An

Lelk]

as is seen by counting the number of (—1)-spins with label in A, ,, of a configuration with
(-th level magnetisation my. Using these observations, we can rewrite (2.9) as
(2.13)

1 / _ _
anEn —Bn[En(m')—Ep(m)] . n12
Es, (h,h) = o7 P> e +[h(m) — h(m')]
mell m'el'’
’Aé,n| 1+my _
x H <1+mz| Z| €n| L(m "= Z’—’_)"— 9 1( '=m" )
ek N 2 Lefk]
Next, abbreviate
1 A n
(2.14) L(m)=—~1log | [] <1+,’mf" > . meTl?,
" detg N2 [Aenl
and put
(2.15)
2
1
F,(m) = E,(m)+ - I Z Qg We My —hz wenme+ —In(m), me Ff,

s

where E,(m) is defined in (2.7)). Moreover, define

fn(m, m/) = e*ﬁn[En(m’)fEn(m)]_F
2.16 1
( ) X Z ‘Af,n’ |:
Le(k]

With this notation, we can write the mesoscopic measure Q,(-) = pi, om; 1(-) on T'Y . with
i, defined in (1.3)), as

B

Le(k]

14+ my

my ]l(m/ _ m£’+) + 5

1(m' =m"")

(2.17) Qn(m) = pn(Sum)) = e PrEnlm) oy e TP



and so the Dirichlet form in (2.13)) becomes

(2.18) &s,(h.h) = % Z Qn(m) Z P (m,m') [ R(m) — B(m/)]2

mel'l m/el'?

2.3. Gradients and Hessians. Denote the Cramér entropy by

1—2 1—2 1+ 1+=x
(2.19) Ic(x) = 5 log< 5 >+ 5 Iog< 5 >
Define
(2.20) In(m) =) wynlc(my).

Since |Ag | = [1+ 0n(1)] wen, we can use Stirling’s formula N! = [1+oy(1)] NVe V21N
to obtain

(2.21) In(m) = I,(m +Zlog( 1_725)‘A£"|>+o(n‘1)=f( )+O(n"'logn),

where the error term is uniform in m € I';. For ¢, ¢ € [k], we compute

oI, (m) W 14+ my
(2.22) omy 2 log <1—m£
and
-
TInm) o, gz
(2 23) 8mg8m5
' O*I,(m)  win
om?2 11— mi’

Recalling (2.7)), we compute

En
(2.24) aanizn) = —arwey, Z apwp nmp | —wenh.
velk]
Define
2
_ 1- 1 1-
(2.25) Fn(m) = En(m)+ zIn(m) === | Y apwppme | —h Y wppme + 5 1n(m).
B 2 0 elk] 0 elk] B

Remark 2.1. By (2.21), F,(
For m € [~1, 1], define

F,(m) 4+ O(n~tlogn), where F, is defined in (2.15)). &

1
(2.26) Fgp(m) = —3 dagweme | =B wime+ = > wilc(my),
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which corresponds to Fj ,(m) = limy,—00 Fy,(m) for m € T, Compute

OF,(m) 1 1+my
2.2 —_— = 71 - / ! U - h
(2.27) Dmy “en | 55 og (1 — ay g%%] agr Wer p My
and
-
O Fn(m) = —awinap Wy,  LFL,
(2 28) amg 8mgl ’ ’
. 32Fn(m) _wen 1 202
ome?? 61— m? ¢ *ne

The same formulas apply for I,,, F},, with an error term O(n™!).

2.4. Additional computation. We conclude with a computation that will be useful later

on. Recalling (2.11))), we write
n[fn(mé’i) — I (m)]

14+ my 2 1—my 2 1 .
- log (14 log (1F———)+-4
(2.29) ”“’47“[ p % ( n(l+ mg)> T es < = mz)) no o

1 1 1
=nwiy [:I: F-+0n =+ A;tn} = A;tn +0(n™Y),
n o n n )

where

2my £ &

2.30 AF —log |14+ "1 _
(2.30) tn Og<+1—mz$i

+ +
> ’ Aé,n = wév”Aﬁ,n’
and we use that wy,, — wy > 0. The same formula applies for I, with an error term of order
O(n~1), and hence
(2.31) n[Iy(m"%) — I(m)] = AF, + O(n™").

Note that Afn = O(1) because wy,, and Afn are order 1. Therefore, using (2.7)), we get
1
0 [En(m") = Eo(m)] = n [Fa(m") - Fy(m)] + 5" (1 (%) = L (m)|

= n [Fa(m"*) — Bu(m)] + ;Ajfn + o).

(2.32)

3. METASTABLE REGIME

Section identifies the stationary points of F,. Section identifies the metastable
regime. Section provides details on the 1-dimensional metastable landscape.
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3.1. Stationary points of F,, and Fj . By (2.27), the critical points m = () pepr) of
F, solve the system of equations (with wepn 7 0)

OF,(m) 1 1+my
(3.1) 0= By = Wen % lo T— —ay Z agwppame | —h|, L€ [k].
efk]
Hence
1 14+ my
(3.2) 5 log <1 — mg> =08 |ay Z ag Wy pme | +h
' elk]
Since arctanh x = %log %f—i, z € (—1,41), (3.2) can be rewritten as
(3.3) my =tanh | B |ay Z ap Wer g | +h , le [/{]

ek

Similarly, the critical points m = (mg)secr) of Fj solve the deterministic equation

(3.4) my =tanh | 8 |ay Z apwpme | +h| |, l € [k].

velk]
Note that this can also be obtained directly from (3.3)) after replacing w,, by its mean
value wy.

3.2. Metastable regime. We are interested in identifying the metastable regime, i.e., the
set of pairs (3, h) for which Fpj has more than one minimum. Put

(3.5) K =K(m)= Z ap Wy My
Lek]
From the characterisation of the critical points of Fjgp, in (3.4) it follows that
(3.6) K=Tsnp(K), Tanp(K)=_ arw tanh(BlacK + h)).
Le(k]

Note that any critical point m = (myg)ecp € [1, 1]¥ of Fp, is uniquely determined by
K(m) € R. Consequently, the problem of solving the k-dimensional system in can be
reduced to solving the 1-dimensional equation . Recalling Hypothesis , the system
is in the metastable regime if and only if (3.6) has more than one solution that is not
tangent to the diagonal.

Compute

Thpp(K) =B ajw, (1 — tanh?(B[a K + h])),
Lek]

T4 p(K) = =282 af wy tanh(BlacK + h]) (1 — tanh®(BlaK + h))).
Le(k]

(3.7)
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For h = 0, the system is metastable when

1
(3.8) >3
D eel) a7 we
in which case T, » has a unique inflection point at K = 0, implying that (3.6)) has three
solutions K € {—K*,0,+K"*} with K* > 0. Otherwise (3.6) has only one solution K = 0.
We proceed with the more interesting case h > 0.

3.2.1. Number of solutions.

Lemma 3.1 (Number of solutions). For h > 0, the number of critical points of Fgp,
i.e., solutions of (3.6, varies in {1,3,...,20 4+ 1}, where { € [k] and 2¢ — 1 is the number
of inflection points of Fgp,.

Proof. For h > 0, limg o0 Tg,hP(K) < 0 and limpg_y_ o TgﬁP(K) > 0. This implies that
T3 p,p has at least one inflection point and that the number of inflection points of Tz, p
cannot be even: it takes values in {1,3,...,2k—1} depending on 8, h and P. Consequently,
if 20 — 1 (¢ € [k]) is the number of inflection points, then the cardinality of the solutions of

(3.6) takes values in {1,3,...,2¢ + 1} depending on 3, h and P. O
We conjecture that for any finite &k there exist 8, h and P such that (3.6) has any number
of solutions in the set {1,3,...,2k 4+ 1}. We found numerical evidence for this fact for

k€ {2,3,4}. See Appendix

Lemma 3.2 (Unique strictly positive solution). For every 8 > 0 and h > 0, (3.6)
has ezxactly one strictly positive solution.

Proof. Put W(K) = T p(K) — K. The solutions of are the roots of W. Clearly,
W (0) > 0. Moreover, limg o W(K) = —o0 because limg o0 T np(K) = ZZe[k] agwe >0
is finite. Therefore, by continuity, a root of W (K) exists in (0, c0).

Let K be the smaller positive root of W. We prove that this root is unique. Indeed,
W(K)" < 0 when K € [0,00), meaning that K — W(K)' is strictly decreasing. By conti-
nuity, since W(K) > 0 for all K € [0, K), we have W(K)' < 0 and limg_,oo W(K) = —1.
Therefore, W(K)' < 0 for all K € (K,00), and so W is strictly decreasing. Moreover,
W(K) < W(K) =0 for all K € (K,0c0). Thus, K is the only positive root of W O

3.2.2. Metastable regime.

Lemma 3.3 (Characterisation of the metastable regime). B
(3.6) has at least three solutions not tangent lo the diagonal if and only if there exists K < 0

such that K > Ty, p(K), i.e.,
(3.9) K > gz[];] aywe tanh(BlagK + h)).
€

Proof. Using Lemma we see that (3.6) has at least three solutions if and only if it has
at least two strictly negative solutions. As above, we define W(K) = T 5 p(K) — K. The
solutions of (3.6) are the roots of W. Now, assume that there exists a K < 0 such that K >
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Ts.np(K). Since W(K) < 0 and W(0) > 0, W(K) has a root in (K, 0), implying that
has at least one solution in (K',0). Moreover, since limg—,—oc Tg,n,p(K) = = -y aewe is
finite, we have limg_, o, W(K) = oco. Because W(K) < 0, it follows that W has at least
one root in (—oo, K). With the same argument it can be shown that the negative roots of
W are always even. The opposite implication is trivial. O

Remark 3.4. Applying the intermediate value theorem to the derivative of W(K) =
T pnp(K) — K, we get that if the condition in Lemma is satisfied, then there exists a

K < 0 such that TﬁhP(K)—landK>T5h7>(K) ®
Theorem 3.5 (Metastable regime). Define, as in (1.14)),
1
(3.10) [ —
‘ Zée[k] aj we

The metastable regime s

(3.11) B € (Be, 0), h € [07 hC(ﬁ))7

with B +— Bhe(B) non-decreasing on [Be,00). Furthermore, if the support of P is put into
imcreasing order, i.e., a; < ag < --- < ay, then

k /-1
(312) Bh—>nc}o hc(ﬂ) = Zlél[}g]l* (Z Ay Qpr Wyr — Z Qy Qypr wg/> R

0=t =1
where the minimum is over all £ € [k] such that the quantily between brackets is positive.
Proof. Recalling Lemma we look for conditions for the existence of a K < 0 satisfying

(3.9). If such a K exists, then by Remark there exists a K < 0 satisfying (3.9) such
that 7% ;, p(K) = 1, which reads

3.13 aZ wy tanh2 BlagK + h]) ajwy — —
o1 > POLEE
Since the right-hand side of (3.13)) is positive, it admits solutions only if

1 1
(3.14) 3 < a?wy = 3
ek ¢

Therefore, (3.14) is a necessary condition for the metastable regime.
Now assume (3.14). Since tanhz ~ z, 2 — 0, for |K| < S(maxep ag) " and h | 0, we

have

(3.15) K =Tspp(K)=_ apw tanh(BlagK + h]) ~ > agwy BlacK + I,
L€k Ce[K]

which reads

(3.16) K~— > aw <1—1)_1h
Be B
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and proves the existence of a negative solution. A positive solution is guaranteed by Lemma
The existence of a third (strictly negative) solution of (3.4), for every g > . and for
h | 0, follows as in the proof of Lemma Therefore, the lower bound on (. is sharp.

Since h +— T, p(K) is strictly increasing for every fixed § > 0 and K € R, there exists
a unique critical curve 3 +— h.(f) such that the system is metastable for 0 < h < h.(3)
and not metastable for h > h.(8). We know that h.(8) > 0 for 8 > .. By passing to the
parametrisation g = hf3, we get that 5+ Tp 4 p(K) is strictly decreasing for every g and
for every K € R, from which it follows that 5+ g.(8) = Bhc(/) is non-decreasing.

We next focus on the limit of h.(8) as B — co. By Lemma [3.3] we may focus on the
existence of K satisfying (3.9). In the limit as 8 — oo, tanh(B[a,K +h]) — 20_} /4, (K)—1,
where ©,(-) is the Heaviside function centred in z. Thus, for all ¢ € [k + 1],

(3.17)

-1
h h

li ' wpr tanh 7.4 h ’ Wy ’ Wt K -

Jim Eé[k] ap wy tanh(Blay K + § ap wy ;_lae wer, € < : ) :

and, for all ¢ € [k],

h
3.18 lim ap wp tanh(Blap K + h]) apr wer + apr Wy, K=——,
(3.18)  lim Z;f] (6 25;1 ; o
where we set —a% = —oo and —aklil = oo. Thus, for K € (—%,—a%), can be
written as
k (-1
(3.19) K > —Zag/ wyr + Zag/ wyr .
=4 =1

Therefore, (3.9) has a solution if and only if there exists an ¢ € [k] such that

(3.20) — Z Qg wyr + Z ap wWpr < ——

in which case a solution K of exists in

(3.21) ( Zag/ wpr + Zag/ wyr —>

=1

Note that the quantity between brackets in (3.12)) is always positive for £ = 1. Thus, the
minimum is always finite. -
The proof is complete after we show why we may drop the case where K = —a% for some

¢ € [k]. In this case the condition for K to satisfy (3.9) is

(3.22) Z ap wer + Z ap wpr < ——

=(+1 =1
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which implies (3.20). Thus, if K = ;—? satisfies (3.9)), then also some other K in (3.21))
satisfies (3.9)). Therefore, the condition in (3.20) is equivalent to having metastability. O

Lemma 3.6 (Re-entrant crossover). The function 8 — h.(8) is not necessarily non-
decreasing.

Proof. In Appendix [C| we provide an example of S+ h.(3) that is not increasing. O
3.2.3. Bounds on the inflection points and on the critical curve.

Lemma 3.7 (Bounds on inflection points). All solutions of T, »(K) = 0 are contained
in the interval
h h

(3.23) —— ,— .
MiNye[k] G¢  MaAXpe[g) Qr

In particular, they are all strictly negative.

Proof. It K > —W, then tanh(Bla;K + h]) > 0 for all ¢ € [k], which implies
Tgnp(K) < 0. If K < —m, then tanh(S[a,K + h]) < 0 for all ¢ € [k]|, which
implies T}, p(K) > 0. O

Lemma 3.8 (Upper bound on h¢). supge (g, o0) he(8) < (maxe ar) > tek] @ We-

Proof. Use Lemma to characterise the metastable regime and Remark We claim
that if a solution K of with T[{},hﬂ; (K) = 1 exists, then it must be negative and strictly
less than an inflection point. Using this fact, together with Lemma [3.7| and the inequality
in , we obtain a necessary upper bound on h:

(3.24) > " agw tanh(BlagK + h]) < —
Le(k]
Using that tanh(B[a;K + h]) > —1, we conclude the proof.

We are left to prove the claim. By Lemma [3.7] all inflection points are negative, and
T5,p(K) < 0for K > 0. Assume, by contradiction, that T, »(K) < Ofor all K € (K, ).
Then T, p is strictly decreasing. Therefore, T}, p(K) < 1 for all K € (K, 00), which
implies T4, »(K) — Tp.5.p(0) < K. Since Tj 5, p(0) > 0, there exists a K € (K,0) such that
Tsnp(K) >0 > K. Thus, T pp(K) — Tspp(0) > K, which contradicts what we have
proved for all K € (K, 00). O

h

maXye|k) ar

3.3. Quasi 1-dimensional landscape. Given K € R, by standard saddle point approxi-
mation, the leading order of

_ /Bln log Mn({g: Kn<mn(a)) = K})

turns out to be the function Gy, : R — R defined by

2 n(K)=  inf  Fy(m).
(3.26) Cn(K) = = inf  En(m)

(3.25)
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Recalling definitions (2.25)) and (3.5)), using Lagrange multipliers and integrating the con-
dition K, (m) = K, we obtain

_ 1 9 log2 . Wen B
(3.27) Gn(K) = —5 K 5 inf Kt+ Y 5 log cosh [B(h — tay)]

Le(k]

Lemma 3.9 (Alternative characterisation for the critical points).
(1) If m* is a (not maximal) critical point for F,, then K,(m") is a critical point for
Ghp.
(2) If K is a critical point for Gy, then m* = (my)se with mj = tanh (8 [a,K + h])
(recall (3.3)) is a critical point for F,.
(3) Fo(m*) = Gp(Kn(m™)) for any (not mazimal) critical point m*.

Proof. Similar to 3| Lemma 7.4]. O

We have already seen that K,(m) fully determines any critical value m of F,,, and is
useful to order them. Lemma [3.9] exhibits the one-dimensional structure underlying the
metastable landscape and provides a tool to describe the nature of the critical points of F,.

Remark 3.10. The above results extend to the limit n — oo: replace Fj, by Fpj and Gy,
by Gg g, obtained after replacing wy,, by w in (3.27)), and K,(-) by K(-). [

4. APPROXIMATION OF THE DIRICHLET FORM NEAR THE SADDLE POINT

In this section we approximate the Dirichlet form associated with the coarse-grained
dynamics near the saddle point. This is a key step to obtain capacity estimates in the
following section. Further details and examples on the techniques we use here can be found
in [7, Chapters 9, 10 and 14].

Section introduces some key quantities that are needed to express the mesoscopic
measure. Section introduces an approximate mesoscopic measure that leads to an ap-
proximate dynamics. Section approximates the harmonic functions associated with this
dynamics. Section computes an approximate Dirichlet form. Section uses the latter
to approximate the full Dirichlet form.

4.1. Key quantities. Let m,, = (my,)pe) and tn, = (tg5)eep) in I}y be a local minimum
of F,, and the correspondent saddle point, respectively, as defined in Section Note
that both m,, and t,, satisty (3.3). Consider the neighbourhood of t,, defined by

(4.1) D, = {m eT?: d(m,t,) < C'n~1/? logl/zn} ,

where d is the Euclidean distance and C’ € (0, 00) is a constant. Abbreviate the Hessian of
Fy

(4.2) An(m) = (V2F,)(m), meTy,

and put

(4.3) A, = Ay (ty).
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By (£29),

(An(m))ep = —agwepap we , + O™, LE£L,

(44) Wen 1 — 18[ _
(nlm))es = 2 — e, + 0 = S g o
14

Moreover,

1 wep 1 wep _
dettnm) =3 | T 7% ) (G770 —aeda) + 007

oe[k] Z/e[k},é’;ééﬁl My

1 wp 1 —m? _
(@5) S z@wwf@%%mw>
Z’e[kz] telk] tn
2 2 1 wen
= 1—Zﬁaewz,n[1—me] Hﬁl—m 1+0(m )]
e[k v elk] v

4.2. Approximate dynamics and Dirichlet form. For m € D,,, define

. 1 .
(4.6) O (m) = 5= exp [~ [m ], [m — tu])] exp [=BnFu(t)]
and
Tn (tna t££+)7 m' = mf,-l-’
(4.7) o (m,m') = Q7 (b, t0) ég’(l;;), m' =mb~,
0, else,

where 7, is defined in (2.16)). The transition rates 7, define a random dynamics on D,, that
is reversible with respect to the mesoscopic measure Q,,. The corresponding Dirichlet form
is

2
(4.8) Ep, (u,u) Z Qn(m Z fn(m,m““) [u(m) —u(mbh)|

meDy, Lelk]
where u is a test function on D,,. Put

(4.9) Te=Tn (m7m€’+) =Tn (tn7tfi+)-

Using (2.7) and (2.16)), we get

I—t ag
(4.10) re = |Agy " exp | =28 [ —h — ay —+ > apwp pten

ek 4
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4.2.1. Approzimation estimates. Next we estimate how close the pairs (7, 7,) and (Q,,, On)
are. By Taylor expansion around t,, we have

(4.11) Fo(m) — Fy(ty) = %<[m ], Anlm — tn]> +0(d(m, t,)?).
In particular,
1 4

Fn(tfii) - Fn(tn) = *ﬁ(An)M + O( |A€,n‘_3 )
2 |Af,n‘
(4 12) = 22 i ! a? w%n +o0 ((n Wf,n)il) + O(nw&n)ig)
. n Wen 61— t '

2 1 _

where the second equality uses (4.4). Moreover, for m € D,, (e is the unitary vector in R
whose ¢-th component is non-zero),

(4.13)
Fn(mg’i) — Fy(m)

([t i gl sz e] roumay

2 2
] (An)ee(me —to ) + ——(An)ee + O(d(m, t,)?)
e :

2 2 win 1 ) o .
=+ —t
( ”We,n(me Z’n)+”2wen> ( B 1-tg, ot o)
2

nwe p

==

+ (—agwep ap we ) (Mo — ter ) + O(n2log®? n)

vek], 0'£0

2 2(m€ —t n)
= F— Qg Qg Wy, (mg/ — ty ) + -
n é/ze[;ﬁ] " " Bn(l - tzn)

where the third equality uses (#.4)). For m € D,, we have d(m,t,)> = O(n=3/2 log®/? n).
Therefore, combining (2.17), (4.6) and (4.11), we have
for some C” € (0,00) constant. Using (2.16]) and (2.32)), we can write

+ O (n_3/2 log3/2 )

—_

(4.14) <C'"nY210g*?n,  m e D,,

439 oo [ o - ] 0 01] 152

where A;tn is defined in (2.31).
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Using (4.7), (4.12), (4.13)) and (4.15), we find that, for all m € D,,

Tn (m, m€’+) Tn (m, m£’+)

P (b, t57)
(1 —my) exp {_ [Il +0(n"210g*? n) + Af" +on(l )L}

_ 1
(4.16) (1 —tg,) exp { [IQ +O(n—2 wzn) + Agn + On(l)} +}

P (m, mbt) B

(1 —my) exp {— [Il + AL+ 0”(1>L}

_ —1l< C///n—1/2 10g1/2n
(1- t@,n) eXp {_ [AE%” + On(l)} +}

where C" € (0,00) is a constant and we abbreviate

2(mg —toy)

Li=-28) aapwpn(me —ton) + 1—t2
n

U elk]

2 1
L=="—————8a2].
n <w£,n(1 —t2,) f)

Equations (4.14) and (4.16]) are relevant for the following approximation.

)

(4.17)

4.3. Approximate harmonic function. Let B, be the k¥ X k matrix defined by

(4.18) Bu)er = —2 (M),

NWenWe n

where A,, is defined in (4.3). Note that

(4.19) det B, = (detAn) ] —5-

nw
telk] T bn

Let %(L ), ¢ € [k], be the eigenvalues of B,,, ordered in increasing order. Let ,, = ( ) denote

the unique negative eigenvalue of B,,, and v the corresponding unitary eigenvector. Define

v = (UZ)EG[ k] by Vyp = @gwl\;—\[

Remark 4.1. As in [7, Remark 10.4], it follows by Hypothesis [1| that A, has all strictly
positive eigenvalues but one strictly negative. It can be seen that the same property holds
for the eigenvalues of B,,. [

Lemma 4.2 (Eigenvalue). The eigenvalue v, s the unique solution of the equation

(4.20) - Z . i —=1+0(n").

" elk) nBwen( nBwen(1-t7,) ¢
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Proof. We follow the line of proof of |7, Lemma 14.9]|, using the last point in Hypothesis
In our case, [7, Eq. (14.7.12)] reads
(4.21)
1 1
- ﬁaé\/ﬁ Z Qpr+/ToUp + < - %> u+O0(n™") =0, € [k].

Ty — B}
velk] nﬁwﬂ,n(l tﬁ,n)

0

Remark 4.3. As in [7, Lemma 14.9], since the left-hand side of (4.20) is increasing in 7,
for v, > 0, a negative solution of (4.20)) exists if and only if

(4.22) B> ajwen(l—t7,)>1.
Lek]

Using (4.5)), (4.22)) holds if and only if det A,, < 0. By Remark the latter holds true. &
Define f: R — [0,1] as

(4.23) f(z) = w ’ e*%(*'yn)ﬁmﬂdu

and g: R¥ —[0,1] as
(4'24) g(m) = f((U, m— tn>)

Recall the definition of M,,(my,) given in (1.17).
Let Wy be a strip in I'? of width Cn~1/2 logl/2 n such that t, € Wy, M, (m,) N Wy is
empty and W consists in two non-neighbouring parts: W; containing m,, and W5 containing

M, (m,,). Moreover, we require that, for some fixed constant ¢ > 1, Wy N DS C {m €
I7: Fo(m) > Fu(t,) + cn~tlogn}. Define

0, m € Wy,
1, m € W,
g(z), me WynND,,
0, m € WyNDs.

(4.25) §(m) =

By choosing Wy and D, suitably we have, for m ~m/ (i.e., 7,(m,m’) > 0) and ¢ € (0, o0)
large enough (coming from the definition of W),

(4.26)  Qn(m) < Qultn)n~ <", m € Wy N D,
(4.27)  (G(m) — g(m"))? Pp(m, m’) Qu(m) < Qu(tn)n™ %, m € WoNDy,m' € Wg.

4.4. Computation of the approximate Dirichlet form. In this section we follow 7
Sections 10.2.2-10.2.3] to approximate &p,(g,¢g) defined in {.8). As in [7, Eq. (10.2.24)],
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for m € D,, and ¢ € [k] such that m%* € D,,, compute
(4.28)

g(m"")

—g(m)
2 / 2 2
= vef ({(v,m —t,)) +

e« D aen?

=g w exp <—B2n(—%) {v,m — tn>2>

ﬂ-nwﬁ,n

+ V3 " (v, 1 — ty,
S = )

x (1 — () o m ) + Ol logm) -

‘n

Recalling (4.8)—(4.9)), we have

(4.29)

€p,(9.:9)= > Oulm) 3 re[gm"*) — g(m)]

meDy, Le(k]

B Zi Z P {—%%(m = tn), A (m — tn)>] o Pnkn(tn)

2

X Z ’r’[Ul% 27_‘(_;:3;)6 exp <_Bn(_7n) <U7 m — tn>2)

X <1 — (=) B (v,m — t,) + O(w[ﬁ n~!log n)>2
1 2(—vn n —Bn
= Z ( ;/ )B m; €xp [_%«m - tn)aAn (m - tn)>} e BnFn(tn)

X exp (—6n(—’yn) (v,m — tn)2> [1 +0 (we_ﬁ n~1210g'/? n)]

_ Zl2( ] Yn)B [1+O( 1/210g1/2n)] o B () (H Aén)

" e€(k)

X / dm exp [—%%(m —tn), Ay (M — tn)>} exp <—ﬁn(_’7n) (v,m — tn>2)

n

k
1 (—vn)n mm\2 " 1
— o~ BnFu(tn) | I —-1/2 1/2
Zne [_ det An] (2ﬁ> (elk] Wen |:]- + O <w£ n log n)] )

where we use [7, Eq. (10.2.33)] with ¢ = 5%1 and d = k. Here 1 |Ay,| is the inverse of the
step in the ¢—direction, while in [7, Eq. (10.2.33)] the step is e.

Remark 4.4. Note that
(4.30) p,(9,9) = €p,(3,9) [1 + o(1)]
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because g(m) = g(m) [1 + o(1)] for all m € W§ N D,,. The latter can be proved by approxi-
mating the Gaussian integral by 0 or 1 when (v, m — t,,) is proportional to —n~1/2 logl/2 n
or n~Y21log'/?n, respectively. [
4.5. Final Dirichlet form approximation. We are now ready to compare g, with gpn.
Let h: S, — [0,1] be such that h(c) = g(my(0)), o € S,,. We split the sum in into
four subsets of I x T?”: m €¢ Won DS, m' € I'7; m € WonD,,, m € Wi; m € Wy ND,,
m' € Wa; m € Wo N Dy, m' € Wy N Dy,. Then, using {.25)—-([.27)), we obtain

@31) Es.(nm) =0 +1 S Qulm)ralmm) [3m) — gm)]

meWoNDy, m'eWoND,,

Using (4.14) and (4.16)), we obtain

(4.32)
£, () =0~ 4 2 3 [1+0(n 108 n)| Gu(m)
meWpNDy,
X Z (1 + O(nfl/2 log'/? n)) n(m,m) [g(m) — g(m/)}2
m'eWoNDy,

= [1 + O(n*1/2 log!/? n)} % Z QO (m)y, (m,m') [g(m) — g(m’)]2
m,m’'eWoNDy,

= [+ 0@ 1082 m)] 5 37 Qum)fam,m) [30m) — 30
m,m’' €Dy,

— &p.(5,9) [1 +0(n"21og/? n)}

o (1 e [ gn (ey] i (m\E 1
=L on(D] Z-exp [=hnkn(tn)] —7=2== <25> zg:] won

where the third equality follows from (4.25)—(4.27) together with (4.14)), and the last equality
follows from (4.29)—(4.30]).

5. CAPACITY AND VALLEY ESTIMATES

Section provides sharp asymptotic upper bounds and lower bounds on the capacity
of the metastable pair between which the crossover is being considered. These estimates use
the results of the Section {] together with the Dirichlet Principle and the Berman-Konsowa
Principle, which are variational representations of capacity. Section provides a sharp
asymptotic estimate for the mesoscopic measure of the valleys of the minima of F),, which
leads to a sharp asymptotic estimate for F;, inside this valley.

5.1. Capacity estimates. Given a Markov process (x;);>0 with state space S, a key quan-
tity in the potential-theoretic approach to metastability is the capacity cap(A, B) of two
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disjoint subsets A, B of S. This is defined by (see [7, Eq. (7.1.39)])
(5.1) cap(A, B) = Y u(z)Po(r8 < 7a),
€A

where p is the invariant measure and P, is the probability distribution of the Markov
process starting in x.
Recall that M., is the set of local minima of F,.

Proposition 5.1 (Asymptotics of the capacity). Let m, = (my,),cpp) € Mn and
My, C My\my,, such that the gate G(my, My) consists of a unique point t, = (ton)ecir)-
Suppose that 8 € (B.,00) and h € [0,h.(8)). Then, as n — o,

cap(Sy[my], Sn[M,))

(52) o (1)] Lot (Com)n <m) m-L

Zn \/[— det(An(tn))] 25 =0 Wen
Remark 5.2. Proposition holds for any subset M,, C M,,\m,, separated from m,, by
t,,, independently on the values of Fj, on M,,. [

5.1.1. Upper bound: Dirichlet Principle. An important characterisation of the capacity be-
tween two disjoint sets is given by the Dirichlet principle. For our quantity of interest this
states that

(5.3) cap(Sy[my), Sp[M,)) = ;g?f:l Es, (u,u),

where H is the set of functions from S,, to [0,1] that are equal to 1 on S,[m,] and 0 on
Sn[M,).

Given that, by assumption, G(m,, M,,) = {t,}, we use the Dirichlet principle in (5.3)
to obtain an upper bound on the capacity. We take as test function h € H defined in

Section and, using (4.32), we obtain
Cap(sn[mn]a Sn [Mn]) <¢&s, (ha h)

(5.4) o (1)] e BnFa(tn) (=) n it L
= [1+ o,(1)] Z \/[_ det (A, (t,))] <2ﬂ> =D Wen

5.1.2. Lower bound: Berman-Konsowa Principle. We first note that the process (o¢)¢>0 is
lumpable. Indeed, the process (my(o¢))i>0 is Markovian because the Hamiltonian H, (o)
depends on my (o) only (see (2.6)). Therefore, for A = S,[A] and B = S,[B] with A and
B disjoint subsets of T,

(5.5) cap(A,B) = capp(4, B),

where capr denotes the capacity for the process (my(o¢))i>0, i.e., the projection of the
process (07 )10 on the magnetisation space I'). We write P! to denote the law of (my,(0¢))i>0
induced by the law P of (0¢)¢>0. By the lumpability, we can focus on the dynamics on T'.
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Following the line of argument in [7, Section 10.3| (with e = 2 and d = k), we obtain
the lower bound

ap(Safmal, Sa[Ma)) = capp(ma, M) = Ep, (7,) [1+O(n "2 10g 2 n)

(5:6) _ L Rt (=m)n )2 1
= Z—ne \/[7 et (An (6] (25> Zg} J,n (14 o0n(1)],

where we use (4.29) and (4.30)).

We sketch the proof. The main idea is to use the Berman-Konsowa Principle for a suitable
defective flow. More precisely, given disjoint subsets A, B of the state space, for any defective
loop-free unit flow fap from A to B with defect function ¢ (as defined in |7, Definition
9.2]), we can estimate (see [7, Lemma 9.4|, and notation therein)

-1

M 5(y) -1 fas fA,B((xvy))
6.7 cap(A,B>z£[l(1+[;%i’§f<y>D LN 2 e ) |

where [-]1 denotes the positive part and - is a self-avoiding path from A to B. It turns out
that, with a suitable choice of the flow f, the product in the right-hand side of
is bounded from below by 1 + O(n~1/? log!/? n), and the sum over v from below by
Ep, (3,3)[1 + 0,(1)]. This proves (5.6).

We give a sketch of the test flow definition in our setting. Here A = {m,,} and B = M,,.
Let v* be the eigenvector corresponding to the unique negative eigenvalue of the Hessian of
F,, at the saddle point t, (unique gate point in G({m,}, M,,)). Let G,, be the cylinder in
R* intersected with I'?, centred at t,,, with axis v*, radius p = Cn~1/? logl/2 n and length
P =C'n1/?2 logl/2 n. We will denote by dpG,, the base facing B and by 041G, the central
part of radius C” n=Y/21log'/? n of the base facing A, with C” < C. Choose the constants
so that G, is contained in D,, defined in (4.1)).

We define a defective flow f4 g from A to B consisting of three parts: f4, a unitary flow
from A to 0aG,; f, a defective loop-free unit flow from 004G, to 0pG,, inside G,; fp, a
unitary flow from dgG, to B. This choice implies that the sum over  in is relevant
only on the paths entering G,, in 94G,, exiting G,, in dgG,, and afterwards reaching B
without going back to G,,. For this purpose we choose f4 and fp such that f4((z,y)) and
fB((x,y)) are proportional to Q,(x). For m € G,, such that m“* € G,,, define

Qn(m)re [g(m"T) — g(m)] ,
N(g) ’
where g is defined in (#24)), Q, in (6], r, in (£.9) and

(5.9) N = > 3 Qulmne [g(m") - g(m)]

MEDAGn L [k]:
mbteG,

(5.8) F((m,m")) =

N .
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The contribution to the sum in brackets in (5.7) turns out to be negligible outside Gy,.
Therefore, no further conditions on the flows f4 and fp are necessary, provided the total
flow out of A is 1 and the total flow f4 p is defective and loop-free.

5.2. Measure of the valley. In order to prove Theorem we need the following esti-
mate on the measure of the valley of the minima of Fj,. For m,, € M, let A(m,,) C T'” be
the valley of m,, as defined in [7, Eq. (8.2.10)].

Lemma 5.3 (Gibbs weight of the valley). Given m,, € M,
(5.10)

Qn(A(my,)) =

_ 14 0(n"Y210g%2 )] ,
Zn /det(By, () 1+ 02 10g" 2 n)

1embﬁMMmM)C£>§
Y4

w
e[k] ‘n

where Q,, is the mesoscopic measure defined in (2.17)), and A, (m,) is the k x k Hessian
matriz defined in (4.2)).

Proof. The proof follows that of [7, Lemma 10.12 and (10.2.33)]. The relevant contribution
to Qn(A(my,)) is given by the measure of a ball B, of radius p = Cn~1/2 log!/? n centred
in m,,, with C constant, contained in A(m,,). Indeed, if y € A(m,,) and d(m,,y) > p, then
by Taylor expansion of F}, around m,, we have

Qn(y) = — expl—BnFa(y)] = — exp [~An[Fa(my) + cd(mn, y)?]]

Zn Zn
(5.11) | e
< 5 exp [—Bn[F,(m,) + cp?]] = 7 XD [—pnE,(m,)],

where c¢ is a constant. The condition y € A(my,,) is needed to ensure that F,(y) > F,(m,),
implying that c¢ is positive. Therefore, we obtain the rough estimate

—BcC?

(5.12) Q,(A(m,)\B,) < nF—

7 exp [—fOnF,(my,)],

where we use that [I'7| < n*. The bound in (5.12) is sufficient to show that Q,,(A(m,,)\B,)
is negligible in Q,,(A(m,,)).
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Compute
ZnQn(A(mn) N Bp) = ZnQn(Bp) - Zn Z Qn(y) = Z efﬁnFn(y)
yEB) yEB,
— e m) 5 x|~ (= ()~ ) + O
yeB,
= L4 0] 3 exp [~y = () 5~ )
yeB,
Arn
R )
Le(k]
< [ vesn -5t = m (homa)) o — m)|
anmm (V[T L ap(2r\E [
=e (5) };&] wry, | LT O] <n5> dot (A ()

g~ AnEn(mn) (mr) 2 1 3
- nr — | 1+ 0mp?),
Jdet(A, (my)) \ 25 ele_[% Wi [ (np”)]

where we use the Taylor expansion

(614)  Fuly) = Falmy) + 5 (v~ mo, (VE)(ma)(y — m)) +O(),  ye B,

and the approximation of the sum by an integral is correct up to an error 1+0O(p). In the last
lines we approximated the Gaussian integral on intervals [—p, p] by the Gaussian integral
on R, with an error 1 + O(n™¢). We conclude by looking at and (5.13)), and noting
that for C large enough Q,(A(m,)\B,) is negligible compared to Q,(A(m,) N B,). O

6. PROOF OF THE THEOREMS

In this section we prove Theorems Section uses the asymptotics for the
capacity of the metastable pair from Section and the asymptotics for the mesoscopic
measure from Section[5.2]to prove Theorem Section[6.2| proves Theorem Section
proves Theorem [I.3]

6.1. Average crossover time. Let us return to the notation of Theorem [I.1], where m,, €
My, and My, (my,) = {m € M,\m,,: F,(m) < F,(my)}. To prove Theorem 1.1 we use the

relation

p(A(my))

(6.1) B, (Mot ) = (L4 on (D] o 0 oy
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Because F,(m) < F,(m,,) for all m € My (m,,), (6.1)) follows from |7, Theorem 8.15] after
proving that M, is a set of metastable pomts is the sense of [7, Definition 8.2]. The latter
follows along the lines of the proof of [7, Theorem 10.6], where similar values of capacities
and invariant measures occur.

Using (6.1) in combination with Proposition and Lemma [5.3] we obtain that, for all
o € Sy[my),

(6.2)

Qn(A(my))
capr(my,, M, (my))

B 0, (A(m,))
= [+ o) o T, Sl Mo )

ot (35) (T o)

k
1 _ G (m)z ! L
7 exp [—OnF,(t,)] ot (An(6))] <25> (Hée[kz] wm)

Eo (T8, Mn(mp)) = 1+ 0n(D] B (Tat, () =

= [1+ 0, (1)]

where we use that the dynamics depends on the starting configuration o € S,,[m,] only,
through its level magnetisations m,, (o) = m,, (see (2.6)), and also use the lumpability.

6.2. Exponential law. In this section we prove Theorem [I.2] Since the dynamics depends
on the starting configuration o € S,,[m,,| through its level magnetisation my,(c) = m,, only

(see (2.6])), we have

(6.3)
nh_{réo P, (TSn[Mn(mn)] > tE, [TSn[Mn(mn)]]) = nh_g.lop (%Mn(mn) > tEIr;ln [%Mn(mn)]) )

where 7 is the hitting time of the process projected on I'”. Given the non-degeneracy
hypothesis (Hypothesis [I|in Section [1.3.4])) and the one-dimensional landscape analysis (in

Section [3.3), we can apply [7, Theorem 8.45] to the right-hand side of (6.3) and conclude
the proof.

6.3. Randomness of the exponent. In this section we prove Theorem In particular,
we compute Fy(t,) — F,(m,) — [Fan(t) — Fj,(m)] to leading order.
Recalling definitions (2.26)) and (3.5]), we have

(6.4) Fpp(m) = —§K(m)2 —h Y wme+ = > wilc(my).

Let m = (mg)epr), t = (be)eep € [—1, 1]* be the critical points of Fj closest to my,, b,
(i.e., the critical points of F,, defined above), respectively. Note that m and t satisfy (3.4),
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while m,, and t,, satisty (3.3). Using (2.21)), we get
1

Fo(bn) = Fon(tn) = =5 [Kn(tn)® = K(60)?] = h Y [wen —wilten
Lek]
(6.5)
+3 {Z (wen — willc(ten) + 2, log (2 Wi = 5+ 0 (n7")
ek te(k]
and
1 1
(6.6) Fan(tn) = Fan(t) = —5 [K(ta)* - K(t)?] + 3 > willc(ten) — Ic(te)].
Lelk]

By , we have

1 1+ts,

5 log < . ) = Baekn(tn) + ],

2 1—ty,
(6.7 1 1 +£

K J—
3oe (14 ) = Slaekc(®)+ 1
Thus,
Ic(ten) — Ic(te) = (b — 60) 1 (t0) + O((bon — te)?)
1 1+¢
(68) = (té,n — tg)§ log <1 tz) + O((tgm - tg)2)
-t
= (tg,n — tg)ﬁ [agK(t) + h] + O((tg’n — t4)2).
Moreover,
K(tn)’ —K(t)*= Y arapwowpltente n — tete]
0,0 €[k]
(6.9)
= > agapwiwp (belben — te] + o [bon — te] + [bon — tel[ten — to])
00 lk]
and
Kn(tn)? = K(tn)® = Y arap [wenwen — wewelbente
0,0 €[k]

(6.10)

— Z Qayg Qg tg,ntgljn (u}g [CL)g/’n — (,Ugl] -+ wyr [wf,n — (.Ug] + [w[,n — wg] [welm — w@’]) .
L0 e[k]
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Similar equalities hold after we replace t by m and t,, by m,,. Using the previous com-
putations, we obtain

(6.11)
Fo(tn) — Fr(my,) — [FB,h(t) - Fﬁvh(m)}
= Fu(tn) — Fpn(tn) + Fpn(tn) — Fan(t) — [Fr(my) — Fgp(my,) + Fgp(my,) — Fgp(m)]
1
LS e
0,0 €[k]
X [benben — mynmy ] (welwe n — wer] + welwen — we] + [wen — willwe n — wir])
1
-5 Z agap wewe [teate n — tete +mmp —mg,my ]
00Elk]

—h Z (W — wel [te, —my ]
Le(k]

L ! 1 -,
+ = Z wen — wel [Ie(ten) — Ic(mey)] + 8 Z %log <1mg)

126 k] e[k] &n

+5 Z we [Ic(ten) — Ic(te) + Ic(my) — Ic(myy,)] +o (n71).
Le(k]

Using(6.8), we find

[F(tn) — Fo(my)] — [Fpn(t) — Fpp(m)]

1
= 9 Z Qg Gy [tf,nté’,n - mé,nmﬁ’m]

0,0'€lk)

X (welwe 5 — wer] + werlwen — we] + [wen — wel[we n — we))

1
-3 Z ag ap wywy [tepte n — tety + mmy —my,my |

.0 €[k]
—h [(,dg’n — CU@] [tf,n — mgm]
(6.12) e%;]
1—t

5szn—we][-fc(tzn) Ic(my,)] leg< M)
<l Z,n

; Z [ (ton — to)BlacK (t) + h] + O((ten — t0)?)
€[k]

— (my,, —my)p [aeK(m) + h} +O((my, — mz)Q)}
+o(n7!).
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Since

(6.13) tonte n — tetpy = (tg[tglvn — tg/] + ty [tgm — tg] + [tf,n — tg] [tg/m — tg/]) ,

we focus on estimating ty, — t,.
From Taylor expansion, we get

(6.14)
ty, —tg=tanh [ 8 |ay Z Bagwpy pten,+h —tanh [ B |ay Z ap we ty +h

'€k] V' elk]
2_

= Bay Z aplwe pton —wete] [1—tanh | B |ag Z ap we ty +h
ek ek ]

2
— ﬁQ a% Z Qg [Wg/m ty n — wer te] | tanh | 8 |ay Z ap wWe ty +h
2 elk] U ek]
2

X |1 —tanh | 8 azZag/Wg/tgl—l-h

velk]
3
+O | a} | Y avlwenten —wpte]
ek
Since
(615) W' m té’,n —wy ty = (Wf’,n - (,U@/) ty + wf/,n(tf’,n - tf’)a
we have
tf,n - tg = Bag [1 - t%] Z af’[(wf/,n — W[/) t[/ —+ w5/7n(te/7n — tgl)]
ek
2
(6.16) — B%ajty [1 - t7] Z apl(wen —we) te +wep(ten —te)]

velk]
3

+0 | a} | Y avl(wen —we)te +wen(ben —te)]
ek
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t
Suppose that ty, —t, ~ % By the Central Limit Theorem, wy, —w; ~ \/—%, where Zy is
the normal random variable N (0, wy(1 — wy)). Hence
L;:ﬁa [1_1:2]2&/ Zélt n ZE,"—W Y’és
Vo PR S T T e ) e
2

t
—ﬁ2aé tg[ t%] Z Qg [\Z/atg/ + (\Z/g» —i—wg/) \};%]

0 elk]
3
Lo T Yt
(617) +O a3 Z a |: 4 t + < 5 + ) f’:|
¢ e V4 wyr
= vn Vi
1
= ﬁﬁ ay [1 — t%] Z Qg (tg/Ze/ + wg,}/;)
' elk]

1 2 t t -1
+ Eﬂ ay [1 — tg] Z ag/Z@ -Yél — ﬂ aptoty Z ag//cL)g//YW + O(TL )
Uelk] 2" e k]

and so

D e wte Ze 1
2

(618) =fa [ ] - B ZZ’E[IC] az,(,g)g/ [1 — t?/]

where the denominator does not vanish because of Remark . Thus, up to a factor O(n_%),
Y} is a normal random variable with mean 0 and variance

ZZ/E[H a%/t%/wgl(l — (A)@l>

5.
(1 = B X e apwe [1- tz%])

(6.19) 82a2 [1—t3]?

Similar results hold after we replace t by m.
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Going back to , using (6.13)) and (6.18)), and inserting ty ,, —t; ~ T and my,—my ~
}/em
T and wy, — wp ~ f’ we obtain

(6.20)
[F(tn) — Fn(my)] — [Fpn(t) — Fpp(m)]

() e ) (s ) (o )

L0 (k]
y Zu N Z N ZoZp
w Wyt
fwi “nn
1 Yt Yt vty ym ym ymym
- , , t 7( t lig M _ 04 —_ ’ 4 _ 67
QZ%k]awgww <e\/ﬁ+ e\/ﬁJr n me\/ﬁ mz\/ﬁ "

Y

-0 3 2 (b G mm—F)

3 e lre (w ) e (me- )] 4
+727 Ic|ty+—= | —Ic|my+ — + = —log S
B \/ﬁ \/ﬁ \/ﬁ ﬁfe[k}Qn 1—(mg+%)

(WV>_”Pmmﬁm+M+O<@FFH

b Le[k] v '
+o (nil)
1 Ze Z
- _QMZ:[ }ae ap [tety — mymy] <w\/% +we \/%>
- Z Qg Qg Wy W <tht +t€/ Yt —me}/grln _mE’Yem>
2 2.0/ €[k \/> f \/ﬁ \/ﬁ
Yt Yym
—hz tz—me\f /J’Z [ (tH\/%)_IC(mH\%ﬂ

Le(k]

m

+Zw€ |:\F agK( )+h]—§ﬁ[a5K(m)+h]] +O(n_1).

Since the random variables Ygt, Y™, Z, are centred normal, this concludes the proof of

Theorem
From ([6.20]) it is possible to compute explicitly the variance of Z defined in Theorem

because the variances of all the random variables involved are known (at least to leading

order).
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APPENDIX A. METASTABILITY ON THE COMPLETE GRAPH WITHOUT DISORDER

We give a brief overview of well-known results for the standard Curie-Weiss model. We
refer to [7, Chapter 13] for more details.

The Glauber dynamics is defined as in Section but with J = 1. For convenience we
write the Curie-Weiss Hamiltonian as

(A1) H(o) = —% S o) —h Y oli),  oeSa
1,J€[n] 1€[n]

which is as (2.5) when J = 1. What makes this case easier than the one with disorder is
that the interaction is mean-field. Indeed, we may write

(A.2) H,(0) =n[— %mn(a)2 — hmy(0)],
with

1 .
(A.3) ma(0) = > o(i) € [-1,1]

i€[n]

the magnetisation. In this case the magnetisation process (my(t)):>0, defined by
(A.4) my(t) = my (o),
is Markovian. More specifically, it is a nearest-neighbour random walk on the grid
(A5) Lp={-1,-1+2 ... +1—2 +1}.

In the limit as n — oo, (A.4) converges to a Brownian motion on [—1,+1] in the potential
Fg p, given by

1 1
(A.6) Fgp(m) = —§m2 — hm + El(m),
with
1-m 1-m 1+m 1+m
(A7) I(m) = 5 log ( 5 ) + 5 log <2>

the relative entropy of the Bernoulli measure on {—1,+41} with parameter m with respect
to the counting measure on {—1,+1}. Fgp(m) is the free energy at magnetisation m,
consisting of an energy term —3m? — hm and an entropy term %I(m). See [7, Chapter 13]

2
for more details.

Since
1 14+m 1 m
/ _ /" _
the stationary points of Fgj are the solutions to the equation
(A.9) m =Tgp(m),  Tgp(m)=tanh[5(m + h)].
Since

(A.10) T, (m) = B[1 = T5,(m)],
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T, is strictly increasing and has a unique inflection point at m = —h. Consequently, (A.9)
has either one or three solutions. The latter occurs if and only if

(A11) Be(Be,o0) and  he(0,h(B)),

where 3. = 1 is the critical inverse temperature and he(3) is the critical magnetic field,
i.e., the unique value of h for which T}, touches the diagonal at a unique value of the

magnetisation, say —m(3). Clearly, 1 = B(1 — m?(3)), i.e.,

(A.12) m(B) =v1-p"",

and so h.(f3) solves the equation T h.(3)(—m(B)) = —m(B). Hence (see Fig.

(A.13) he(B) = m(B) — 21610g (%) . B>1.
he(B)
1 .
! B

FIGURE 1. Plot of 8+ h(3).

The range of parameters in (A.11) represents the metastable regime in which Fpj has
a double-well shape and, in the limit as n — oo, the Gibbs measure pu, in has two
phases given by the two minima of Fj;: the metastable phase with magnetisation m < 0
and the stable phase with magnetisation s > 0. The unique saddle point in the gate G(m, s)
has magnetisation t < 0 (see Fig. [2)).

Fg n(m)

-IN]/ ¢

FIGURE 2. Plot of m — Fgp(m) for 3, h in the metastable regime.
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Theorems can be found in Bovier and den Hollander |7, Chapter 13|. Here the
notation is the same as the one in Section[l] Let S,,[m], S,,[s] denote the sets of configurations
in S, for which the magnetisation is closest to m, s, respectively.

Theorem A.1 (Average crossover time).

Subject to (A.11), uniformly in o € S,,[m

I,
0 1—t2 " _ m
(A14) E, [rs,] = [1+ 0n(1)] 1_{3\/7 : m——le O
\/F )=F5,(t)]

Theorem A.2 (Exponential law).

Subject to (A.11)), uniformly in o € S,[m],

(A.15) Py (75,5 > tEo [Tsn[s]]) =[1+o0,(1)]e ", t>0.

Fig. [2|illustrates the setting: the average crossover time from S,[m] to S,[s| depends on the

energy barrier Fg(t) — Fj,(m) and on the curvature of Fjgj at m and t. The crossover
time is exponential on the scale of its average.

APPENDIX B. EXAMPLES WITH MULTIPLE METASTABLE STATES

We provide examples of distributions and parameter choices (in the metastable regime)
for which the model with disorder has multiple critical points. More specifically, we provide
numerical evidence that, for k € {2, 3,4}, can have any number of solutions in the set
{3,5...,2k + 1}. The cases with strictly more than 3 solutions present multiple minimal
critical points, i.e. multiple metastable states.

TiK) L)

AT = | w
/ / _J[__J

B
(A) 8 critical points. (B) 5 critical points.
FIGURE 3. Tgpp, k= 2.
1. Case k=2.
e Figure 3 critical points, parameters a; = 77, as = 45, w1 = 0.688, h = 1740,
5 =113 3..

e Figure [Bb} 5 critical points, parameters a; = 774, ag = 36.84, w1 = 0.59, h = 1740,
6 =1310..
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>

(A) 8 critical points.

B.2. Case k=3.

(B) & critical points.

(c) 7 critical points.

FIGURE 4. Tgpp, k= 3.

e Figure fal 3 critical points, parameters a; = 77, az = 45, ag = 33.5, w; = 0.688,
wg = 0.15, h = 1740, 8 = 113 S,.

e Figure [Ab} 5 critical points, parameters ay = 77, ag = 45, ag = 27, wy

wy = 0.15, h = 1740, B = 113 ...

e Figure [dct 7 critical points, parameters a; = 77, as = 45, a3 = 33.5, wy
g

wy = 0.15, h = 1740, B = 113 ..

B.3. Case k=—4.

e Figure : 3 critical points, parameters a1 = 12, as = 16, ag = 139.5, a4

wp = 0474, we = 0.22, w3 = 0.111, h =178, 5 = 3.8 ...
e Figure pb} 5 critical points, parameters a; = 14, ag = 27, ag = 57, ag = 24.5,
wi = 0.366, wy = 0.1, w3 = 0.13, h = 262, 5 = 38.4 3.
e Figure fd 7 critical points, parameters a; = 2.32, ag = 4.92, ag = 5, ag = 11.32,
wi = 0.6, we = 0.096, w3 = 0.033, h = 7.6, 8 = 95.2 G..

= 0.59,

= 0.59,

= 24.5,



T(K)

2 K

T(K)

—40

(A) 8 critical points.

TK)

(B) &5 critical points.

T(K)
20

(¢) 7 critical points.

FIGURE 5. Tgpp, k = 4.

(D) 9 critical points.
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e Figure pd} 9 critical points, parameters a3 = 12, ag = 16, ag = 50.5, ay = 24.5,
w1 = 0.474, wy = 0.22, w3 = 0.111, h = 178, 8 = 63.2 ..

ApPENDIX C. EXAMPLE OF h.() NOT INCREASING

We provide here an example of choice of P for which the critical threshold g — h.(5) is
not monotone increasing. This implies the possibility of a re-entrant metastable crossover.

For k = 4, pick a1 = 12, as = 16, ag = 50.5, a4 = 24.5 and w; = 0.474, we = 0.22,
w3 = 0.111. Take h = 100, and plot the function K — Tpp p(K) varying . For f; =
4 3. = 0.00762336 the system is metastable: T j, p intersects the diagonal three times (see
Figure , which implies that h < h.(f1). For 8y = 21 8. = 0,04002264 > (3 the system
is not metastable: T3, p intersects the diagonal only once (see Figure , which implies

that h > h.(B2). This shows that h.(8) is not necessarily an increasing function of 3.
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(A) h =100, 8 = 0.00762336. (B) h =100, 3 = 0,04002264.

F1GURE 6. Tgp, p, fixed h and P, varying 3.

APPENDIX D. LIMIT OF THE PREFACTOR

Below Theorem we stated that the prefactor in (1.19)) converges. For completeness,
in this Appendix we compute its limit, although, as we mentioned after Theorem it is
negligible because of the order of approximation of the exponent.

We focus first on 7,. Recall notation in (1.10), (1.11) and (2.1)). Then (4.20) can be

written as
aZwp (1 —tpn) exp |—28 (—ae L+ Kn(tn) —h
1o -y 20 o+ falt) 1),
te[k] exp[_26(_a£(7+Kn(tn))_h)+] _9
(Dl) ﬁ(l‘i'té,n) "}/n
02w, (1 — tanh (B [ag K (t,) + b)) exp [—25 (—ap (% + K, () — h)+]
= expl 23S (en) ), |

B ranh(BlarKn (e) L))~ 2

In the first equality we use for t,, i.e., the approximation of the stationary points of
F,, by the stationary points of F},. This makes ty,, independent of ¢, so that we can use the
law of large numbers in the limit as n — oo. Thus, we obtain that 7, converges to =, the
solution of the equation

02) . (J(1)2(1 + tanh U) e_2U+> .

1 _
B(1—tanh U) e Vs — 2y

where ¢ denotes expectation with respect to P, the law of the components of J, and
U = —B[J(1) K(t)+ h], with t solving (3.4). Note that (D.2) is similar to [7, Eq. (14.4.14)].
We are left to find the limit of the determinants ratio. By (4.5)),

W' n

(D3)  detAn(m) = (13 BaZwenll — me)?] | ] ;[H()(n—l)}.
‘e

1— (me)?
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Using (3.3) for m € {t,,, m;}, we have

Z Bag wenll — (Men)?]
Lek]
(D.4)

= Z Ba? Wen |1 — tanh? [ 3 | as Z Qg Wty Myt g + I
ec(k] velk]

Using the law of large numbers as above and with the same notation, we find

1— (my)?
Il 5= (te)*”

Velk]

[~ det(An(tn))]  —14€(B8J(1)? [1— tanh*[U(t)]])

(D:3) 2% det(An(mn)  1— € (8J(1)? [1 — tanh? [U(m)]])

where U(x) = —((J(1)K(x) + h).
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