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Abstract

Two ensembles are often used to model random graphs subject to constraints: the micro-
canonical ensemble (= hard constraint) and the canonical ensemble (= soft constraint). It is
said that breaking of ensemble equivalence (BEE) occurs when the specific relative entropy of
the two ensembles does not vanish as the size of the graph tends to infinity. The latter means
that it matters for the scaling properties of the graph whether the constraint is met for every
single realisation of the graph or only holds as an ensemble average. Various examples were
analysed in the literature, and the specific relative entropy was computed as a function of the
constraint. It was found that BEE is the rule rather than the exception for two classes: sparse
random graphs when the number of constraints is of the order of the number of vertices and
dense random graphs when there are two or more constraints that are frustrated.

In the present paper we establish BEE for a third class: dense random graphs with a single
constraint, namely, on the density of a given finite simple graph. We show that BEE occurs
only in a certain range of choices for the density and the number of edges of the simple graph,
which we refer to as the BEE-phase. We show that, in part of the BEE-phase, there is a gap
between the scaling limits of the averages of the maximal eigenvalue of the adjacency matrix of
the random graph under the two ensembles, a property that is referred to as spectral signature
of BEE. Proofs are based on an analysis of the variational formula on the space of graphons for
the limiting specific relative entropy derived in [13], in combination with an identification of the
minimising graphons and replica symmetry arguments. We show that in the replica symmetric
region of the BEE-phase, as the size of the graph tends to infinity, the microcanonical ensemble
behaves like an Erdős-Rényi random graph, while the canonical ensemble behaves like a mixture
of two Erdős-Rényi random graphs. In other words, BEE is due to coexistence of two densities.
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1 Introduction and main results

Section 1.1 provides the background and the motivation behind our paper. Section 1.2 states the
definition of the microcanonical and the canonical ensemble in the context of constrained random
graphs, recalls the notion of ensemble equivalence, lists the key definitions of graphons and subgraph
counts, and gives the variational characterisation of the specific relative entropy of the two ensembles
for dense random graphs derived in [13], which is the main tool in our paper. Section 1.3 states
our main theorems. Section 1.4 identifies the typical graphs under the two ensembles. Section 1.5
offers a brief discussion and an outline of the remainder of the paper.

1.1 Background and motivation

In this paper we analyse random graphs that are subject to constraints. Statistical physics pre-
scribes what probability distribution on the set of graphs we should choose when we want to model
a given type of constraint [11]. Two important choices are:

(1) The microcanonical ensemble, where the constraints are hard (i.e., are satisfied by each indi-
vidual graph).

(2) The canonical ensemble, where the constraints are soft (i.e., hold as ensemble averages, while
individual graphs may violate the constraints).

For random graphs that are large but finite, the two ensembles are obviously different and, in
fact, represent different empirical situations. Each ensemble represents the unique probability
distribution with maximal entropy respecting the constraints. In the limit as the size of the graph
diverges, the two ensembles are traditionally assumed to become equivalent as a result of the
expected vanishing of the fluctuations in the soft constraints, i.e., the soft constraints are expected
to behave asymptotically like hard constraints. This assumption of ensemble equivalence is one of
the cornerstones of statistical physics, but it does not hold in general. We refer to [20] for more
background on this phenomenon.

In a series of papers breaking of ensemble equivalence (BEE) for various choices of the constraints
was investigated, including the degree sequence and the total number of subgraphs of a specific
type. Both the sparse regime (where the number of edges per vertex remains bounded) and the
dense regime (where the number of edges per vertex is of the order of the number of vertices)
were considered. Let Sn be the relative entropy of the microcanonical ensemble with respect to
the canonical ensemble when the graph has n vertices. In the sparse regime the relevant quantity
is s∞ = limn→∞ n

−1Sn, because n is the scale of the number of vertices. In the dense regime the
relevant quantity is s∞ = limn→∞ n

−2Sn, because n2 is the scale of the number of edges.

• In [19, 9, 10] it was shown that, in the sparse regime, constraining the degrees of all the
vertices leads to BEE, even when the graph consists of multiple communities. The main
result was an explicit formula for s∞ in terms of the limit of the empirical degree distribution
of the constraint. In [18] a formula was put forward that expresses the specific relative entropy
in terms of a covariance matrix under the canonical ensemble. This formula is a powerful
computational tool.

• In [13] it was shown that, in the dense regime, constraining the densities of a finite number of
subgraphs may lead to BEE. The analysis relied on the large deviation principle for graphons
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associated with the Erdős-Rényi random graph [3, 5]. The main result was a variational
formula for s∞ in the space of graphons. Also this variational formula is a powerful com-
putational tool. In [14], for the special case where the constraint is on the densities of the
edges and triangles, it was shown that s∞ > 0 when the constraints are frustrated, i.e., do not
lie on the ER-line where the density of triangles is the third power of the density of edges.
Moreover, the asymptotics of s∞ near the ER-line was identified, and turns out to depend on
whether the ER-line is approached from above or below. Erdős-Rényi random graphs with
constraints on the number of of edges and triangles have been studied extensively. In [14] this
knowledge was crucial for arriving at a detailed analysis of the variational formula for s∞.

Naively, we might expect that a single constraint cannot lead to BEE because there is no
frustration. The goal of the present paper is to show that this intuition is wrong: we condition on
the density of a given finite simple graph and prove that BEE occurs in a certain range of choices
for the density and the number of edges of the simple graph, which we refer to the BEE-phase. We
analyse how s∞ tends to zero near the curve that borders the BEE-phase.

In [8] the gap ∆n between the averages of the maximal eigenvalue of the adjacency matrix of
a constrained random graph under the two ensembles was considered. A working hypothesis was
put forward, stating that BEE is equivalent to this gap not vanishing in the limit as n→∞. For a
random regular graph with a fixed degree, this equivalence was proved for a range of degrees that
interpolates between the sparse and the dense regime. In the present paper we prove the same for
the single constraint. In particular, we compute δ∞ = limn→∞ n

−1∆n, show that δ∞ 6= 0 if and
only if the density and the number of edges of the simple graph fall in the BEE-phase, and analyse
how δ∞ tends to zero near the curve that borders the BEE-phase.

We will see that the notions of replica symmetry and replica symmetry breaking highlighted in
[16] play an important role. In the regime of replica symmetry we have a complete identification
of s∞ and δ∞, in the regime of replica symmetry breaking some pieces of the characterisation are
missing.

1.2 Definitions and preliminaries

In this section, which is largely lifted from [13], we present the definitions of the main concepts
to be used in the sequel, together with some key results from prior work. We consider general
vector-valued constraints, even though later we will only focus on scalar-valued constraints.

Section 1.2.1 presents the formal definition of the two ensembles we are interested in and gives
our definition of ensemble equivalence in the dense regime. Section 1.2.2 recalls some basic facts
about graphons, while Section 1.2.3 recalls some basic properties of the canonical ensemble. Sec-
tion 1.2.4 looks at convergence of Lagrange multipliers. Section 1.2.5 provides a variational charac-
terisation of ensemble equivalence, proven in [13]. Section 1.2.6 looks at the average of the maximal
eigenvalue value of the adjacency matrix in the two ensembles and recalls a working hypothesis put
forward in [8] that links ensemble equivalence to a vanishing gap between the two averages.
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1.2.1 Microcanonical ensemble, canonical ensemble, relative entropy

For n ∈ N, let Gn denote the set of all 2(n2) simple undirected graphs with n vertices. Any graph
G ∈ Gn can be represented by a symmetric n× n matrix AG with elements

AG(i, j) :=

{
1 if there is an edge between vertex i and vertex j,

0 otherwise.
(1.1)

Let ~C denote a vector-valued function on Gn. We choose a specific vector ~C∗, which we assume to
be graphical, i.e., realisable by at least one graph in Gn. Given ~C∗, the microcanonical ensemble is
the probability distribution Pmic on Gn with hard constraint ~C∗ defined as

Pmic(G) :=

{
1/Ω ~C∗ , if ~C(G) = ~C∗,
0, otherwise,

G ∈ Gn, (1.2)

where
Ω ~C∗ := |{G ∈ Gn : ~C(G) = ~C∗}| (1.3)

is the number of graphs that realise ~C∗. The canonical ensemble Pcan is the unique probability
distribution on Gn that maximises the entropy

Sn(P) := −
∑
G∈Gn

P(G) log P(G) (1.4)

subject to the soft constraint 〈~C〉 = ~C∗, where

〈~C〉 :=
∑
G∈Gn

~C(G) P(G). (1.5)

This gives the formula [15]

Pcan(G) :=
1

Z(~θ∗)
eH(~θ∗, ~C(G)), G ∈ Gn, (1.6)

with
H(~θ∗, ~C(G)) := ~θ∗ · ~C(G), Z(~θ∗ ) :=

∑
G∈Gn

e
~θ∗· ~C(G), (1.7)

denoting the Hamiltonian and the partition function, respectively. In (1.6)–(1.7) the parameter ~θ∗,
which is a real-valued vector whose dimension is equal to the number of constraints, must be set to
the unique value that realises 〈~C〉 = ~C∗. As a Lagrange multiplier, ~θ∗ always exists, but uniqueness
is non-trivial. In the sequel we will only consider examples where the gradients of the constraints
in (1.5) are linearly independent vectors. Consequently, the Hessian matrix of the entropy of the
canonical ensemble in (1.6) is a positive-definite matrix, which implies uniqueness.

The relative entropy of Pmic with respect to Pcan is defined as

Sn(Pmic | Pcan) :=
∑
G∈Gn

Pmic(G) log
Pmic(G)

Pcan(G)
. (1.8)
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For any G1, G2 ∈ Gn, Pcan(G1) = Pcan(G2) whenever ~C(G1) = ~C(G2), i.e., the canonical probability
is the same for all graphs with the same value of the constraint. We may therefore rewrite (1.8) as

Sn(Pmic | Pcan) = log
Pmic(G

∗)

Pcan(G∗)
, (1.9)

where G∗ is any graph in Gn such that ~C(G∗) = ~C∗ (recall that we assumed that ~C∗ is realisable
by at least one graph in Gn). The removal of the sum over Gn constitutes a major simplification.

All the quantities above depend on n. In order not to burden the notation, we exhibit this
n-dependence only in the symbols Gn and Sn(Pmic | Pcan). When we pass to the limit n→∞, we
need to specify how ~C(G), ~C∗ and ~θ∗ are chosen to depend on n. We refer the reader to [13], where
this issue was discussed in detail.

Definition 1.1. [Ensemble equivalence] In the dense regime, if

s∞ := lim
n→∞

n−2Sn(Pmic | Pcan) = 0, (1.10)

then Pmic and Pcan are said to be equivalent.

Remark 1.2. In [19], which was concerned with the sparse regime, the relative entropy was divided
by n (the number of vertices). In the dense regime, however, it is appropriate to divide by n2 (the
order of the number of edges).

1.2.2 Graphons

There is a natural way to embed a simple graph on n vertices in a space of functions called graphons.
Let W be the space of functions h : [0, 1]2 → [0, 1] such that h(x, y) = h(y, x) for all (x, y) ∈ [0, 1]2.
A finite simple graph G on n vertices can be represented as a graphon hG ∈ W in a natural way as
(see Figure 1)

hG(x, y) :=

{
1 if there is an edge between vertex dnxe and vertex dnye,
0 otherwise.

(1.11)
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Figure 1: An example of a graph G and its graphon representation hG.

The space of graphons W is endowed with the cut distance

d�(h1, h2) := sup
S,T⊂[0,1]

∣∣∣∣∫
S×T

dx dy [h1(x, y)− h2(x, y)]

∣∣∣∣ , h1, h2 ∈ W. (1.12)
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OnW there is a natural equivalence relation ∼. Let Σ be the space of measure-preserving bijections
σ : [0, 1]→ [0, 1]. Then h1(x, y) ∼ h2(x, y) if δ�(h1, h2) = 0, where δ� is the cut metric defined by

δ�(h̃1, h̃2) := inf
σ1,σ2∈Σ

d�(hσ11 , hσ22 ), h̃1, h̃2 ∈ W̃, (1.13)

with hσ(x, y) = h(σx, σy). This equivalence relation yields the quotient space (W̃, δ�). As noted
above, we suppress the n-dependence. Thus, by G we denote any simple graph on n vertices, by
hG its image in the graphon space W, and by h̃G its image in the quotient space W̃. For a more
detailed description of the structure of the space (W̃, δ�) we refer to [1, 2, 7].

1.2.3 Subgraph counts

Fix m ∈ N. Let (Fi)
m
i=1 be any collection of finite simple graphs. Let Ci(G) denote the number of

subgraphs Fi in G. In the dense regime, Ci(G) grows like nVi as n → ∞, where Vi is the number
of vertices in Fi. Consider the following scaled vector-valued function on Gn:

~C(G) :=

(
p(Fi)Ci(G)

nVi−2

)m
i=1

= n2

(
p(Fi)Ci(G)

nVi

)m
i=1

. (1.14)

The term p(Fi) counts the edge-preserving permutations of the vertices of Fi. The term Ci(G)/nVi

represents the density of Fi in G. The additional n2 guarantees that the full vector scales like n2,
in line with the scaling of the large deviation principle for graphons in the Erdős-Rényi random
graph derived in [5]. Let hom(Fi, G) be the number of homomorphisms from Fi to G, and define
the homomorphism density as

t(Fi, G) :=
hom(Fi, G)

nVi
=
p(Fi)Ci(G)

nVi
, (1.15)

which does not distinguish between permutations of the vertices. In terms of this quantity, the
Hamiltonian associated with the constraint of the homomorphism densities of (Fi)

m
i=1 becomes

H(~θ, ~T (G)) = n2
m∑
i=1

θi t(Fi, G) = n2(~θ · ~T (G)), G ∈ Gn, (1.16)

where · denotes the inner product for vectors, and

~T (G) := (t(Fi, G))mi=1 . (1.17)

The canonical ensemble with parameter ~θ takes the form

Pcan(G | ~θ ) := en
2
[
~θ·~T (G)−ψn(~θ )

]
, G ∈ Gn, (1.18)

where ψn replaces the partition function Z(~θ):

ψn(~θ) :=
1

n2
log

∑
G∈Gn

en
2(~θ · ~T (G)) =

1

n2
logZ(~θ). (1.19)

In the sequel we take ~θ equal to a specific value ~θ∗ so as to meet the soft constraint, i.e.,

〈~T 〉 =
∑
G∈Gn

~T (G) Pcan(G) = ~T ∗ (1.20)

for some choice of ~T ∗ ∈ [0, 1]m. With this choice, the canonical probability becomes

Pcan(G) = Pcan(G | ~θ∗). (1.21)
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1.2.4 Convergence of Lagrange multipliers

Both the constraint ~T ∗ and the Lagrange multiplier ~θ∗ in general depend on n, i.e., ~T ∗ = ~T ∗n and
~θ∗ = ~θ∗n. We consider constraints that converge when we pass to the limit n→∞, i.e.,

lim
n→∞

~T ∗n =: ~T ∗∞. (1.22)

Consequently, we expect that
lim
n→∞

~θ∗n =: ~θ∗∞. (1.23)

Throughout the paper we assume that (1.23) holds. If convergence fails, then we may still con-
sider subsequential convergence. The subtleties concerning (1.23) were discussed in detail in [13,
Appendix A].

In what follows we need the following lemma, which relates T ∗∞ and ~θ∗∞ without requiring
knowledge of T ∗n and ~θ∗n.

Lemma 1.3. Let ~T : W̃ → Rm be a bounded continuous function. Then, under the assumptions
in (1.22) and (1.23),

~θ∗∞ = arg max
~θ∈Rm

[~θ · ~T ∗∞ − ψ∞(~θ)], (1.24)

where
ψ∞(~θ) := lim

n→∞
ψn(~θ) = sup

h̃∈W̃

[
~θ · ~T (h̃)− I(h̃)

]
. (1.25)

Proof. For every n ∈ N,

~θ∗n = arg max
~θ∈Rm

[n2~θ · ~T ∗n − n2ψn(~θ)] = arg max
~θ∈Rm

[~θ · ~T ∗n − ψn(~θ)]. (1.26)

Let fn(~θ, ~T ∗n) := ~θ · ~T ∗n − ψn(~θ) and f∞(~θ, ~T ∗∞) = ~θ · ~T ∗∞ − ψ∞(~θ). By [13, Theorem 3.2 and Lemma
A.1],

fn(~θ∗n,
~T ∗n) = sup

~θ∈Rm

fn(~θ, ~T ∗n) = [~θ∗n · ~T ∗n − ψn(~θ∗n)]→ [~θ∗∞ · ~T ∗∞ − ψ∞(~θ∗∞)]

= ~θ∗∞ · ~T ∗∞ − sup
h̃∈W̃

[
~θ∗∞ · ~T (h̃)− I(h̃)

]
= f∞(~θ∗∞,

~T ∗∞), n→∞.
(1.27)

(Note that [13, Theorem 3.2 and Lemma A.1] were stated for homomorphism densities, but the
proofs generalise to bounded continuous functions ~T : W̃ → Rm.) Furthermore, for every ~θ ∈
Rm, fn(~θ, ~T ∗n) ≤ fn(~θ∗n,

~T ∗n), and hence f∞(~θ, ~T ∗∞) = limn→∞ fn(~θ, ~T ∗n) ≤ limn→∞ fn(~θ∗n,
~T ∗n) =

f∞(~θ∗∞,
~T ∗∞), so that ~θ∗∞ is a maximiser of f∞(·, ~T ∗∞).

1.2.5 Variational characterisation of ensemble equivalence

For h ∈ W̃ and F a finite simple graph with edge set E(F ), define

t(F, h) :=

∫
[0,1]k

∏
{i,j}∈E(F )

h(xi, xj) dx1 . . . dxk. (1.28)
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Then the homomorphism density of F in G equals

t(F,G) = t(F, hG), (1.29)

where hG is the empirical graphon defined in (1.11). Therefore the Hamiltonian in (1.16) can be
rewritten as

H(~θ, ~T (G)) = n2
m∑
i=1

θi t(Fi, h
G). (1.30)

In order to characterise the asymptotic behaviour of the two ensembles, the entropy function
of a Bernoulli random variable is essential. For u ∈ [0, 1], let

I(u) := 1
2u log u+ 1

2(1− u) log(1− u). (1.31)

Extend the domain of this function to the graphon space W by defining

I(h) :=

∫
[0,1]2

dx dy I(h(x, y)) (1.32)

(with the convention that 0 log 0 := 0). On the quotient space (W̃, δ�), define I(h̃) = I(h), where
h is any element of the equivalence class h̃. Note that I(h) takes values in [−1

2 log 2, 0]. Apart from
a shift by 1

2 log 2, h 7→ I(h) plays the role of the rate function in the large deviation principle for
the empirical graphon associated with the Erdős-Rényi random graph, derived in [5].

The key result in [13] is the following variational formula for s∞, where

W̃∗ := {h̃ ∈ W̃ : ~T (h) = ~T ∗∞} (1.33)

is the subspace of all graphons that meet the constraint ~T ∗∞.

Theorem 1.4. [Variational characterisation of ensemble equivalence] Subject to (1.20),
(1.22) and (1.23),

lim
n→∞

n−2Sn(Pmic | Pcan) =: s∞ (1.34)

with
s∞ = sup

h̃∈W̃

[
~θ∗∞ · ~T (h̃)− I(h̃)

]
− sup
h̃∈W̃∗

[
~θ∗∞ · ~T (h̃)− I(h̃)

]
. (1.35)

Theorem 1.4 and the compactness of W̃∗ give us a variational characterisation of ensemble equiv-
alence: s∞ = 0 if and only if at least one of the maximisers of ~θ∗∞ · ~T (h̃) − I(h̃) in W̃ also lies in
W̃∗ ⊂ W̃, i.e., satisfies the hard constraint.

1.2.6 Maximal eigenvalue of the adjacency matrix

In [8] a working hypothesis was put forward, stating that breaking of ensemble equivalence is
manifested by a gap between the scaling limits of the averages of the maximal eigenvalue of the
adjacency matrix of the random graph under the two ensembles. More precisely, let λn denote the
maximal eigenvalue of the adjacency matrix of G ∈ Gn. Then the working hypothesis is that

limn→∞∆n 6= 0 =⇒ BEE,
BEE =⇒ limn→∞∆n 6= 0 apart from exceptional constraints,

(1.36)
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with
∆n := Ecan[λn]− Emic[λn]. (1.37)

In [8] this equivalence was proven for the specific example where the constraint is on all the degrees
being equal to d(n), with (log n)β ≤ d(n) ≤ n − (log n)β for some β ∈ (6,∞). It turns out that
BEE occurs and that limn→∞∆n = 1 − p when limn→∞ n

−1d(n) = p ∈ [0, 1], i.e., the exceptional
constraints correspond to the ultra-dense regime where p = 1.

For our single constraint in the dense regime, we will be interested in the quantity

δ∞ := lim
n→∞

n−1∆n. (1.38)

1.3 Main results

In what follows, F is any finite simple graph with k edges, and the constraint is on the density of
F being equal to T ∗∞. Henceforth we write T ∗ = T ∗∞ and θ∗ = θ∗∞. In the four theorems below we
allow for k ∈ [1,∞), although k ∈ N is needed to interpret the constraint in terms of a subgraph
density.

1.3.1 Parameter regime

Our first two theorems identify the parameter regime for BEE.

Theorem 1.5. [Computational criterion for ensemble equivalence] For θ ∈ [0,∞) and
k ∈ [1,∞), let u∗(θ, k) be a maximiser of

sup
u∈[0,1]

[
θuk − I(u)

]
. (1.39)

(a) For every T ∗ ∈ [(1
2)k, 1) there is ensemble equivalence if and only if there exists a θ0 =

θ0(T ∗, k) ∈ [0,∞) such that (u∗(θ0, k))k = T ∗. In that case the Lagrange multiplier θ∗ = θ∗(T ∗, k)
equals θ0.
(b) There exists a unique θ̂ = θ̂(k) ∈ [0,∞) such that θ∗(T ∗, k) = θ̂ for all T ∗ for which there is
breaking of ensemble equivalence.

Theorem 1.6. [Phase diagram]
(a) There exists a function kc : (0, 1) → [1,∞) such that for every T ∗ ∈ (0, 1) there is ensemble
equivalence when log2(1/T ∗) ≤ k ≤ kc(T ∗) and breaking of ensemble equivalence when k > kc(T

∗).
(b) T ∗ 7→ kc(T

∗) achieves a unique minimum at the point (T0, k0), with k0 the unique solution of
the equation k0−1

k0
log(k0 − 1) = 1 and T0 = (k0−1

k0
)k0.

(c) T ∗ 7→ kc(T
∗) is analytic on (0, 1) \ {T0}.

(d) (1
2)kc(T ∗) ∼ T ∗ as T ∗ ↓ 0 and kc(T

∗)(1
2)kc(T ∗) ∼ 1− T ∗ as T ∗ ↑ 1.

1.3.2 Replica symmetry

Our last two theorems quantify the specific relative entropy and the spectral gap in the replica
symmetry regime. This regime was first defined in [5] and further studied in [16]. Using the theory
developed in [16], it is possible to quantify the specific relative entropy s∞ and the difference of the
largest eigenvalue ∆∞ for certain T ∗ in the BEE-phase.
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Figure 2: A numerical picture of the phase diagram. The blue and orange lines together form the critical
curve (T ∗, kc(T

∗)). In the figure, T ∗ is denoted by T^* and kc(T
∗) is denoted by k(T^*). The minimum is

achieved at k0 = 4.591 . . . and T0 = 0.3237 . . ..

Definition 1.7. [Replica symmetry] Consider the Erdős-Rényi random graph G on n vertices
with retention probability p ∈ [0, 1] conditioned on t(F,G) ≥ T ∗ for some finite simple graph F . If
G converges in the cut metric to a constant graphon, then we say that T ∗ is in the replica symmetric
region.

From the theory of large deviations for random graphs developed in [5], we know that T ∗ is in
the replica symmetric region if and only if

inf
t(F,f)≥T ∗

Ip(f) (1.40)

is minimised by a constant graphon, with Ip the rate function given by

Ip(f) =

∫
[0,1]2

dx dy

(
f(x, y) log

f(x, y)

p
+ [1− f(x, y)] log

1− f(x, y)

1− p

)
. (1.41)

Note that I(f) = I 1
2
(f)− 1

2 log 2. Hence, if T ∗ is in the replica symmetric region, then there is an

explicit solution for the second supremum in (1.35). In [16], it was shown that T ∗ is in the replica
symmetric region when (T ∗, Ip(T

∗ 1/d)) lies on the convex minorant of the function x 7→ Ip(x
1/d),

with d the maximum degree of the subgraph F . If F is regular, then the converse statement holds
as well.

Fix a subgraph F with k edges and maximum degree d. Let

T ∗1 (k) ∈ ((1
2)k, T0), T ∗2 (k) ∈ (T0, 1), (1.42)

be the two solutions of the equation kc(T
∗(k)) = k, so that

(T ∗1 (k), T ∗2 (k)) = BEE-phase. (1.43)

In Lemma 3.1, we prove that the replica symmetric region is contained in [(1
2)k, T ∗1 (d)]∪ [T ∗2 (d), 1].

Thus, if d < k, then in part of the BEE-phase there is replica symmetry. This allows us to formulate
the following two theorems (which are vacuous for d = k).
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Theorem 1.8. [Specific relative entropy] For every T ∗ in the replica symmetric part of the
phase of breaking of ensemble equivalence,

s∞ =

{
θ̂(k) [T ∗1 (k)− T ∗] +

[
I(T ∗ 1/k)− I(T ∗1 (k)1/k)

]
> 0, T ∗ ∈ (T ∗1 (k), T ∗1 (d)],

θ̂(k) [T ∗2 (k)− T ∗] +
[
I(T ∗ 1/k)− I(T ∗2 (k)1/k)

]
> 0, T ∗ ∈ [T ∗2 (d), T ∗2 (k)).

(1.44)

Consequently,

s∞ =

{
C(T ∗1 (k), k) [T ∗ − T ∗1 (k)]2 +O([T − T ∗1 (k)]3), T ∗ ↓ T ∗1 (k),

C(T ∗2 (k), k) [T ∗ − T ∗2 (k)]2 +O([T − T ∗2 (k)]3), T ∗ ↑ T ∗2 (k),
(1.45)

with

C(T ∗, k) =
T ∗ (1−2k)/k

2k

{
1

k

(
1 +

T ∗ 1/k

1− T ∗ 1/k

)
+

(
1

k
− 1

)
log

(
T ∗ 1/k

1− T ∗ 1/k

)}
. (1.46)

Theorem 1.9. [Spectral signature] For every T ∗ in the replica symmetric part of the phase of
breaking of ensemble equivalence,

δ∞ =
T
∗ 1/k
1 [T ∗2 (k)− T ∗] + T

∗ 1/k
2 [T ∗ − T ∗1 (k)]

T ∗2 (k)− T ∗1 (k)
− T ∗ 1/k < 0,

T ∗ ∈ (T ∗1 (k), T ∗1 (d)] ∪ [T ∗2 (d), T ∗2 (k)).

(1.47)

Consequently,

δ∞ =

{
Ĉ(T ∗1 (k), k) [T ∗ − T ∗1 (k)] +O([T ∗ − T ∗1 (k)]2), T ∗ ↓ T ∗1 (k),

Ĉ(T ∗2 (k), k) [T ∗ − T ∗2 (k)] +O([T ∗ − T ∗2 (k)]2), T ∗ ↑ T ∗2 (k),
(1.48)

with

Ĉ(T ∗, k) =
T
∗ 1/k
2 (k)− T ∗ 1/k

1 (k)

T ∗2 (k)− T ∗1 (k)
− 1

k
T ∗ (1−k)/k. (1.49)

1.4 Typical graph under the microcanonical and canonical ensemble

The BEE-phase can also be characterised through convergence of the random graph drawn from
the two ensembles. In Lemmas 5.1 and 5.3 below we show that the random graph drawn from
the canonical ensemble converges to the maximiser(s) of the first supremum of (1.35), while the
random graph drawn from the microcanonical ensemble converges to the maximiser(s) of the second
supremum of (1.35).

Outside the BEE-phase, both suprema are attained by the constant graphon h ≡ T ∗ 1/k, meaning
that for large n both ensembles behave approximately like the Erdős-Rènyi random graph with
retention probability p = T ∗ 1/k. Inside the BEE-phase, the first supremum is maximised by the
two constant graphons T ∗1 (k)1/k and T ∗2 (k)1/k, neither of which lies in W̃∗. Consequently, the
random graph drawn from the canonical ensemble converges to the random graphon

T ∗2 (k)− T ∗

T ∗2 (k)− T ∗1 (k)
δT ∗1 (k)1/k +

T ∗ − T ∗1 (k)

T ∗2 (k)− T ∗1 (k)
δT ∗2 (k)1/k , (1.50)

11
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Figure 3: A numerical picture of the average largest eigenvalue λ = limn→∞
1
nE[λn] of the adjacency matrix

under the microcanonical ensemble (top curve) and the canonical ensemble (bottom curve), as a function of
T ∗ for a subgraph F with k = 7 edges and maximum degree d = 5. The top curve is shown only for T ∗ in
the replica symmetric region. In the region replica symmetry breaking we have no explicit expression for λ
under the microcanonical ensemble.

meaning that for large n the canonical ensemble behaves approximately like a mixture of two Erdős-
Rényi random graphs. If T ∗ is in the replica symmetric part of the BEE-phase, then the second
supremum is still minimised by the constant graphon h ≡ T ∗ 1/k. Hence, the random graph is
asymptotically deterministic under the microcanonical ensemble and random under the canonical
ensemble. Thus, BEE occurs due to coexistence of two densities. This is similar in spirit to the
coexistence of water and ice at the melting point, at which a first-order phase transition between
water and ice occurs.

In the region of replica symmetry breaking, the maximisers of the second supremum are un-
known, and it is not even known whether or not there is a unique maximiser. In case of non-
uniqueness, also under the microcanonical ensemble the random graph is asymptotically random.

1.5 Discussion and outline

1. Theorem 1.5 reduces the variational formula on W̃ to a variational formula on [0, 1], and is an
application of a reduction principle explained in [4] (see also [3]). The proof relies on the variational
characterisation in Theorem 1.4. The main difficulty lies in computing the tuning parameter θ∗

as a function of the density T ∗, which is resolved through Lemma 1.3. The proof follows from an
analysis of the two variational expressions, for which we rely in part on the results in [17]. From
Theorem 1.5, for each k we can identify the BEE-phase as follows. The expression in (1.39) has
at most two local maximisers u∗1(θ) < u∗2(θ), which are both increasing in θ. For θ < θ̂, u∗1(θ) is
the global maximiser, for θ > θ̂, u∗2(θ) is the global maximiser, and for θ = θ̂, u∗1(θ) and u∗2(θ) are
both global maximisers. Hence, the values u ∈ (u∗1(θ), u∗2(θ)) can never be a global maximiser, and
so the BEE-phase contains (u∗1(θ)k, u∗2(θ)k). Since u∗1(0) = 1

2 and limθ→∞ u
∗
2(θ) = 1, the interval

(u∗1(θ)k, u∗2(θ)k) is the entire BEE-phase.

2. Theorem 1.6 identifies the BEE-phase and captures the main properties of the critical curve

12



bordering this phase. The proof relies on Lemma 3.1 below, which allows us to use results from [16]
and establish a connection between ensemble equivalence and replica symmetry, in the sense that
T ∗ lies in the BEE-phase for a subgraph with k edges if and only if T ∗ lies in the region of replica
symmetry breaking for p = 1

2 and a k-regular subgraph (recall (1.40)–(1.41)). This connection is
purely analytic: it establishes equivalence of variational formulas and implies that the graph in
Figure 2 is a cross-section of the curves in [16, Figure 2] at p = 1

2 . It is not clear, however, how
to probabilistically interpret the relationship between replica symmetry for regular subgraphs and
breaking of ensemble equivalence for general graphs. Note that we do not require any regularity
of the subgraph F , and also the degrees of F do not play any role. It might be easier to use the
variational formula in (1.39) (with Ip instead of I) to analyse replica symmetry, rather than the
convex minorant of x 7→ Ip(x

1/k).

3. Theorem 1.8 gives an explicit formula for the specific relative entropy s∞ in part of the BEE-
phase. The proof exploits the connection with replica symmetry. If a subgraph has more edges
than its maximal degree (i.e., is not a k-star), then the BEE-phase near T ∗1 (k) and T ∗2 (k) is replica
symmetric. This implies that the second supremum in (1.35) also has a constant maximiser, which
allows us to explicitly compute s∞. It turns out that the relative entropy undergoes a second-order
phase transition as T ∗ approaches the critical curve.

4. Theorem 1.9 shows that the working hypothesis put forward in [8] is met in the replica symmetric
part of the BEE-phase. A random graph drawn from the canonical ensemble converges to a constant
graphon who height is a random mixture of the two maximisers u1, u2 of (1.39). The average largest

eigenvalue converges to a value on the line segment connecting (u
1/k
1 , u1) and (u

1/k
2 , u2). In the

region of replica symmetry, a random graph drawn from the microcanonical ensemble converges
to the constant graphon whose height is (T ∗)1/k, as illustrated in Figure 3. Note that the average
largest eigenvalue is larger in the microcanonical ensemble than in the canonical ensemble, contrary
to what was found in [8], where the constraint was on the degree sequence. It turns out that the
relative entropy undergoes a first-order phase transition as T ∗ approaches the critical curve.

5. The numerical picture of the phase diagram in Figure 2 was made using Mathematica. The
computations involve finding an approximate value of θ̂(k) for each k (up to an accuracy of 5 digits),
and computing u∗1(θ̂(k), k) and u∗2(θ̂(k), k). The dotted lines are formed by the points (u∗1(k)k, k)
and (u∗2(k)k, k). This is done for k starting at 4.592 and increasing with increments of 0.002.

6. In [20], BEE for interacting particle systems was studied at three different levels: thermody-
namic, macrostate and measure. It was shown that these levels are in fact equivalent. A general
formalism was put forward, based on an abstract large deviation principle, linking the occurrence
of BEE to non-convexity of the rate function associated with the microcanonical ensemble as a
function of the parameters controlling the constraint. In our context, the large deviation principle
for graphons in [5] provides the conceptual basis for identifying the BEE-phase via the variational
formula derived in [13], and the link with the convex minorant mentioned in item 2 fits in with the
picture provided in [20].

Outline. The remainder of the paper is organised as follows. Theorems 1.5–1.9 are proved in
Sections 2–5, respectively.
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2 Proof of Theorem 1.5

Throughout the proof, we fix k ∈ N, and suppress k from the notation. We analyse the expression

sup
h̃∈W

[θT (h̃)− I(h̃)
]

(2.1)

with θ ∈ [0,∞), and determine for which values of T ∗ a maximiser of this supremum is in the set
W̃∗. Note that it suffices to consider θ ∈ [0,∞), since T ∗ ≥ (1

2)k. This was shown in [13, Lemma
5.1] in the case that F is a triangle, but the proof generalizes to general finite simple graphs.

By [4, Theorem 4.1], the supremum equals the supremum in (1.39), and each maximiser of (2.1)
is a constant function, where the constant is a maximiser of (1.39). Furthermore, by Lemma 1.3,
θ∗ is a maximiser of the supremum

sup
θ≥0

[
θT ∗ − θT (u∗(θ)) + I(u∗(θ))

]
= sup

θ≥0

[
θT ∗ − θ(u∗(θ))k + I(u∗(θ))

]
, (2.2)

where u∗(θ) is a maximiser of (1.39). By [17, Proposition 3.2], lθ(u) := θuk − I(u) has at most
2 maxima and there exists a θ̂ such that, for θ < θ̂, the first local maximum is the unique global
maximum and, for θ > θ̂, the second local maximum is the unique global maximum. Hence, for all
θ 6= θ̂, u∗(θ) is well-defined. For θ = θ̂, both maxima are a global maximum. In that case, we let
u∗(θ) denote either of the two maximisers.

Let m(θ) = θT ∗− lθ(u∗(θ)) = θT ∗− θ(u∗(θ))k + I(u∗(θ)). In Figure 4, plots of lθ are shown for
several values of θ. Write u := u∗(θ∗) and u′ := ∂u

∂θ (θ∗). Then

l′θ(u) = θkuk−1 − 1
2 log u+ 1

2 log(1− u) = 0 (2.3)

and

m′(θ) = T ∗ − uk − θkuk−1u′ + 1
2u
′ log(u)− 1

2u
′ log(1− u)

= T ∗ − uk − u′(1
2 log u− 1

2 log(1− u)− θkuk−1)

= T ∗ − uk.
(2.4)

Hence, if there exists a θ0 ≥ 0 such that (u∗(θ0))k = T ∗, then m′(θ0) = 0, and so θ∗ = θ0. In that
case (u∗(θ∗))k = T ∗, so there is ensemble equivalence. If such a θ0 does not exist, then there is
breaking of ensemble equivalence.

Let u∗1(θ) and u∗2(θ) be the first and second local maximum of lθ, respectively. Then θ 7→ u∗1(θ)
and θ 7→ u∗2(θ) are increasing. Furthermore, for all θ < θ̂, u∗1(θ) is the unique global maximum,
while for all θ > θ̂, u∗2(θ) is the unique global maximum. Hence, if there is breaking of ensemble
equivalence, then m′(θ) > 0 for θ < θ̂ and m′(θ) < 0 for θ > θ̂. We conclude that θ∗ = θ̂.

3 Proof of Theorem 1.6

We first fix some notation. For given k and θ, let u∗1(θ, k) and u∗2(θ, k) be the first and second
local maximum respectively of lθ,k(u) = θuk − I(u). Let θ̂(k) be the unique value of θ such that

u∗1(θ̂(k), k) = u∗2(θ̂(k), k). Define Jk(x) = I(x1/k) and T1(k) = u∗1(θ̂(k), k)k, T2(k) = u∗2(θ̂(k), k)k.
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Figure 4: Three plots of lθ(u) for k = 7 and θ = 0.3, θ = θ̂(7) and θ = 0.4, respectively. For θ = 0.3, u∗1(θ)

is the global maximiser, for θ = θ̂(7), u∗1(θ) and u∗2(θ) are both global maximisers, and for θ = 0.4, u∗2(θ) is
the global maximiser. In the figures, the function lθ(u) is denoted by l(u). The local maximisers u∗1(θ) and

u∗2(θ) are denoted by u1 and u2 respectively. The BEE-phase is (u∗1(θ̂)k, u∗2(θ̂)k).

Existence of kc. Lemmas 3.1–3.2 below establish the existence of the critical curve. Lemma 3.1
shows the connection between replica symmetry and ensemble equivalence as discussed in Section
1.5, since T is in the region of replica symmetry for p = 1

2 if and only if (T, I(T 1/k)) lies on the
convex minorant of Jk

Lemma 3.1. [Connection with replica symmetry] Let k ≥ 1 and T ∈ [(1
2)k, 1). There is

ensemble equivalence for T ∗ = T if and only if (T, I(T 1/k)) lies on the convex minorant of the
function Jk.

Proof. Note that I(x) = I1/2(x)− 1
2 log 2 (recall (1.41)), so (T, I(T 1/k)) lies on the convex minorant

of Jk if and only if (T, I1/2(T 1/k)) lies on the convex minorant of the function x 7→ I1/2(x1/k).

In [16, Appendix A], it is shown that there exist q1, q2 ∈ (0, 1) such that (qk, I(q)) is not on the
convex minorant of J if and only if qk ∈ (qk1 , q

k
2 ). The values q1, q2 are defined as the unique values

in [0, 1] such that the tangent lines of J at qk1 and qk2 are the same, i.e., J ′(qk1 ) = J ′(qk2 ) =: D and
J(qk1 ) +D(qk2 − qk1 ) = J(qk2 ), or equivalently, Dqk1 − J(qk1 ) = Dqk2 − J(qk2 ).

Recall from Section 1.5 that there is breaking of ensemble equivalence for T ∗ = T ∈ [(1
2)k, 1)

if and only if T ∈ (uk1, u
k
2), where u1 = u∗1(θ̂(k), k) and u2 = u∗2(θ̂(k), k). Since u1, u2 are the

maximisers of x 7→ θ̂xk − I(x) and x 7→ xk is monotone, we have that T1 := uk1 and T2 := uk2 are
the maximisers of x 7→ θ̂x− I(x1/k) = θ̂x− J(x). Hence, J ′(T1) = J ′(T2) = θ̂. Furthermore, θ̂ was
defined such that θ̂uk1 − I(u1) = θ̂uk2 − I(u2), so θ̂T1 − J(T1) = θ̂T2 − J(T2).

From the above, we conclude that u1 = q1 and u2 = q2. This completes the proof.

There is ensemble equivalence for T ∗ ≤ T1(k) and T ∗ ≥ T2(k), and ensemble inequivalence for
T ∗ ∈ (T1(k), T2(k)). By [16, Lemma A.5], k 7→ u∗1(θ̂, k) is decreasing and k 7→ u∗2(θ̂, k) is increasing.
Although k 7→ (u∗1(θ̂, k))k is clearly decreasing, it is not a priori obvious whether k 7→ (u∗2(θ̂))k is
increasing. If the latter is the case, then for all k > kc(T

∗) there is breaking of ensemble equivalence,
and for all k ≤ kc(T ∗) there is ensemble equivalence, where kc(T

∗) is chosen such that T ∗ = T1(kc)
or T ∗ = T2(kc). This proves the first part of Theorem 1.6. The following lemma fills in the gap.

Lemma 3.2. [Monotonicity] The function k 7→ T1(k) is decreasing and k 7→ T2(k) is increasing.

Proof. Consider the function J̇k(x) := ∂
∂kJk(x). This is a concave function in x for every k.

Because the line segment connecting (T1(k), Jk(T1(k))) with (T2(k), Jk(T2(k))) lies below the curve
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(x, Jk(x)), we have that, for all α ∈ [0, 1] and k′ ↓ k,

Jk′
(
αT1(k) + (1− α)T2(k)

)
= Jk

(
αT1(k) + (1− α)T2(k)

)
+ (k′ − k)J̇k

(
αT1(k) + (1− α)T2(k)

)
+ o(k′ − k)

≥ αJk(T1(k)) + (1− α)Jk(T2(k)) + (k′ − k)(αJ̇k(T1(k)) + (1− α)J̇k(T2(k))) + o(k′ − k)

= αJk′(T1(k)) + (1− α)Jk′(T2(k)) + o(k′ − k).

(3.1)

Hence, for k′ > k small enough, the line segment connecting the points (T1(k), Jk′(T1(k))) and
(T2(k), Jk′(T2(k))) lies below the curve (x, Jk′(x)), and is not tangent to the curve at any of the
end points. Thus, by [16, Lemma A.3], T1(k′) < T1(k) < T2(k) < T2(k′).

Minimum of kc. By [17, Proposition 3.2], for all k ≤ k0, lθ,k has a unique maximiser for all
θ ≥ 0. For all k > k0, there exist a θ ≥ 0 such that lθ.k has two maximisers. Hence, the minimum

value of kc(T
∗) is k0. In the proof of [17, Proposition 3.2] it is shown that θ̂(k0) =

k
k0−1
0

2(k0−1)k0
, and so

l′
θ̂(k0),k0

(k0−1
k0

) = (k0)k0−1

2(k0−1)k0
k0

(
k0−1
k0

)k0−1
− 1

2 log(k0 − 1) = k0
2(k0−1) −

1
2 log(k0 − 1) = 0. (3.2)

Hence, u∗(θ̂(k0), k0) = k0−1
k0

, and so for T ∗ = (k0−1
k0

)k0 we have kc(T
∗) = k0. We conclude that kc

has a unique minimum at the point ((k0−1
k0

)k0 , k0).

Analyticity of kc. Analyticity of kc follows from a straightforward application of the implicit
function theorem. Let f : (0,∞)× (0, 1)2 → R2 be given by

f(k, x, y) =
(
J ′k(x)− J ′k(y), J ′k(x)x− J ′k(y)y + J(y)− J(x)

)
. (3.3)

Recall from the proof of Lemma 3.1 that, for each k, T1(k) and T2(k) are defined such that
f(k, T1(k), T2(k)) = 0. Note that f is analytic, and its Jacobian(

∂f1
∂x

∂f1
∂y

∂f2
∂x

∂f2
∂y

)
(T1(k), T2(k)) =

(
J ′′k (T1(k)) −J ′′k (T2(k))

T1(k)J ′′k (T1(k)) −T2(k))J ′′k (T2(k))

)
, (3.4)

is invertible if T1(k) 6= T2(k). Hence, for all k > k0, T1 and T2 are analytic functions of k, so kc is
an analytic function of T ∗ outside its minimum.

Next, consider the behaviour of kc near T0, so as T2 − T1 ↓ 0. By implicit differentiation, as
k ↓ k0, the derivative of T1(k) is given by

T ′1(k) =
1

(T1 − T2)J ′′k (T1)J ′′k (T2)

[
(T2 − T1)J ′′k (T2)

∂J ′k
∂k

(T1) + J ′′k (T2)

(
∂Jk
∂k

(T1)− ∂Jk
∂k

(T2)

)]
=

1

J ′′k (T1)

(
∂J ′k
∂k

(T1) +
∂Jk
∂k (T1)− ∂Jk

∂k (T2

T2 − T1

)
=

1

J ′′k (T1)
O(T2 − T1).

(3.5)

It is not difficult to show that, for k = k0, the function J ′′k0 has a zero that is also a minimum at
T = T0. Hence, as k ↓ k0, J ′′k (T1(k)) = O((T2 − T1)2), which implies that the derivative of T ′1(k)
diverges as k ↓ k0. In a similar fashion, we can show that the derivative of T ′2(k) diverges as k ↓ k0.
Hence, at T0, kc is at least differentiable and has derivative zero.
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Scaling of kc near the boundary. In order to identify the asymptotics of kc for T ∗ near the
edges of the interval (0, 1), we first compute the limit of θ̂ as k →∞. In the following, we suppress
the dependence of θ̂ on k. By Taylor expansion,

lθ(u
∗
1) ≤ lθ

(
1
2

)
+
(
u∗1 − 1

2

)
l′θ
(

1
2

)
≤ θ

(
1
2

)k
+ 1

2 log 2 + θk
(

1
2

)k
= θ

(
1
2

)k
(1 + k) + 1

2 log 2,
(3.6)

and lθ(1) = θ < lθ(u
∗
2). This implies that

θ̂ <
log 2

2[1− (1
2)k(1 + k)]

. (3.7)

Also, u∗2(θ, k) ∈ (k−1
k , 1) by [17, Proposition 3.2]. Hence

lθ,k(u
∗
2(θ, k)) ≤ θ − k−1

2k log(k−1
k )− 1

2(1− k−1
k ) log(1− k−1

k )

= θ − 1
2 log(1− 1

k )− 1
2k log( 1

k−1),
(3.8)

and lθ,k(
1
2) = θ(1

2)k + 1
2 log 2 < lθ,k(u

∗
1(θ, k)). This implies that

θ̂ >
log 2 + log(1− 1

k ) + 1
k log( 1

k−1)

2[1− (1
2)k]

. (3.9)

Combining the bounds above, we obtain that θ̂ → 1
2 log 2 as k →∞.

• Scaling for T ∗ ↓ 0. Let y ∈ (1
2 , 1). Then

l′
θ̂,k

(1
2 + yk) = θ̂k(1

2 + yk)k−1 − 1
2 log

(
1+2yk

1−2yk

)
= θ̂k(1

2 + yk)k−1 − 1
2 log

(
1 + 4yk

1−2yk

)
≤ log 2

2[1− (1
2)k(1 + k)]

k
(

1
2

)k−1 − 2yk + o(k
(

1
2

)k
) + o(yk) < 0

(3.10)

as k → ∞. Thus, u∗1(θ̂, k) < 1
2 + yk for all y ∈ (1

2 , 1) and k large enough. Hence (1
2 + ykc)kc ≥ T ∗

for T ∗ small enough. We also have T ∗ ≥ (1
2)k for all k. Since this holds for all y ∈ (1

2 , 1) and
(1

2 + yk)k ∼ (1
2)k, we have T ∗ ∼ (1

2)kc .

• Scaling for T ∗ ↑ 1. Let x ∈ (0, 1). Then

l′
θ̂,k

(1− xk) = k(θ̂(1− xk)k−1 + 1
2 log x)− 1

2 log(1− xk). (3.11)

As k → ∞, (1 − xk)k−1 → 1 and log(1 − xk) → 0. Hence, if −1
2 log x ≥ θ̂, then l′

θ̂,k
(1 − xk) < 0

for k large enough, which implies that u∗2(θ̂, k) < 1 − xk. If −1
2 log x < θ̂, then l′

θ̂,k
(1 − xk) > 0,

which implies that u∗2(θ̂, k) > 1 − xk. Recall that θ̂ → 1
2 log 2. Thus, choosing x = 1

2 , we get
(1− (1

2)kc)kc ∼ T ∗, and so kc(
1
2)kc ∼ 1− T ∗.
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4 Proof of Theorem 1.8

If d = k, then the statement of the theorem is vacuous, so we may assume that d < k. Let T ∗

denote either T ∗1 (k) or T ∗2 (k). Since there is ensemble equivalence for T ∗, (T ∗, I((T ∗)1/k)) lies on
the convex minorant of x 7→ I(x1/k), and so T ∗ 6∈ (q1(k)k, q2(k)k), where q1(k), q2(k) are defined
as in the proof of Lemma 3.1. By [16, Lemma A.5], q1(k) < q1(d) < q2(d) < q2(k), because d < k,
with d the largest degree of H. Hence, for all T ∈ (T ∗1 (k), q1(d)] and T ∈ [q2(d), T ∗2 (k)), (T, I(T 1/d))
lies on the convex minorant of x 7→ I(x1/d), but T is not in the region of ensemble equivalence.
Thus, by [16, Lemma 3.3], T is in the region of replica symmetry for t(H, ·). This implies that
h ≡ T 1/k is the unique minimiser of

inf{I(h̃) : h̃ ∈ W̃, t(H, h̃) ≥ T} = inf{I(h̃) : h̃ ∈ W̃, t(H, h̃) = T} = inf
h̃∈W̃∗

I(h̃). (4.1)

Furthermore, since T is in the BEE-phase, we have θ∗ = θ̂. We conclude that

s∞ = sup
h̃∈W̃

[
θ∗T (h̃)− I(h̃)

]
− sup
h̃∈W̃∗

[
θ∗T (h̃)− I(h̃)

]
= [θ̂T ∗ − I(T ∗ 1/k)]− [θ̂T − I(T 1/k)]

= θ̂(T ∗ − T ) + [I(T 1/k)− I(T ∗ 1/k)]

= [J ′k(T
∗)− θ̂](T − T ∗) + J ′′k (T ∗)(T − T ∗)2 +O((T − T ∗)3)

=
T ∗ 1/k−2

2k

{
1

k

(
1 +

T ∗ 1/k

1− T ∗ 1/k

)
+

(
1

k
− 1

)
log

(
T ∗ 1/k

1− T ∗ 1/k

)}
(T − T ∗)2 +O((T − T ∗)3)

(4.2)

as T → T ∗. The last equality follows from the fact that J ′k(T
∗) = θ̂ (see the proof of Lemma 3.1).

5 Proof of Theorem 1.9

We first show that a graph sampled from the canonical ensemble converges to a probability distri-
bution on a finite set of constant graphons. In [4, Theorem 3.2] this is shown for the exponential
random graph model with a fixed parameter θ∗. We adapt the proof to the case where we have a
sequence of parameters (θ∗n)n∈N converging to some θ∗.

Lemma 5.1. Let Gn be a random graph drawn from the canonical ensemble with parameter θ∗n.
Let U be the set of maximisers of (1.39) with θ = θ∗∞. Then (recall (1.11))

min
u∈U

δ�(h̃Gn , ũ)→ 0. (5.1)

Proof. Let η > 0 and define

Ã(θ∗∞) := {h̃ ∈ W̃ | δ�(h̃, Ũ) ≥ η}. (5.2)

By compactness of W̃ and Ũ , and upper semi-continuity of θ∗∞ − I, it follows that

2γ := sup
h̃∈W̃

[
θ∗∞T (h̃)− I(h̃)

]
sup

h̃∈Ã(θ∗∞)

[
θ∗∞T (h̃)− I(h̃)

]
> 0. (5.3)
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Let ε = γ. Since the θ∗nT are all bounded functions and the sequence (θ∗n)n∈N is bounded, there
exists a finite set R such that the intervals {(a, a+ε) | a ∈ R} cover the range of θ∗nT and θ∗∞ for all
n large enough. For each a ∈ R, let F̃ a(θ∗n) := (θ∗nT )−1([a, a+ ε]). Now define Ãa(θ∗n) analogously
to Ã(θ∗∞) and Ãan(θ∗n) = Ã(θ∗n) ∩ G̃n. Choose δ = 1

2ε. Since θ∗n → θ∗∞ and T is continuous, we have

that (θ∗nT )−1([a, a+ ε]) ⊂ (θ∗∞T )−1([a− δ, a+ ε+ δ]) =: G̃a for all n large enough. Now define B̃a

and B̃a
n analogously to Ãa and Ãan.

We have

Pcan(Gn ∈ Ã) ≤ e−n
2ψn(θ∗n)

∑
a∈R

en
2(a+ε)|Ãan(θ∗n)|

≤ e−n
2ψn(θ∗n)

∑
a∈R

en
2(a+ε+δ)|B̃a

n|

≤ e−n
2ψn(θ∗n)|R| sup

a∈R
en

2(a+ε+δ)|B̃a
n|.

(5.4)

As in the proof of [4, Theorem 3.1], we obtain

lim sup
n→∞

log Pcan(Gn ∈ Ã)

n2
≤ sup

a∈R

[
a+ ε+ δ − inf

h̃∈B̃a
I(h̃)

]
− sup
h̃∈W̃

[θ∗∞T (h)− I(h)] , (5.5)

where for the second supremum, we use that

lim
n→∞

ψn(θ∗n) = ψ∞(θ∗∞) = sup
h̃∈W̃

[θ∗∞T (h)− I(h)] . (5.6)

This was shown in [13, Lemma A.1]. The remainder of the proof now follows exactly as in [4], with
ε replaced by ε+ δ = 3

2ε.

Corollary 5.2. Assume that T ∗ is in the BEE-phase. Let Gn be a random graph drawn from the
canonical ensemble. Then hGn converges in probability to

uk2 − T ∗

uk2 − uk1
δu1 +

T ∗ − uk1
uk2 − uk1

δu2 , (5.7)

with u1 < u2 the two maximisers of (1.39) for θ = θ̂.

Proof. From the lemma above, it is clear that Gn converges in probability to the random graphon
pδu1 +(1−p)δu2 for some p ∈ (0, 1). It remains to determine p. Since the homomorphism density is
continuous, t(H,Gn) converges in probability to pδuk1

+ (1− p)δuk2 . The homomorphism density is
bounded, so the convergence also holds in mean. Hence, by the definition of the canonical ensemble,

T ∗ = lim
n→∞

E[t(H,Gn)] = puk1 + (1− p)uk2. (5.8)

Solving this equation for p we conclude the proof.

We can also show convergence of the microcanonical ensemble.

Lemma 5.3. Let Gn be a random graph drawn from the microcanonical ensemble. Then h̃Gn

converges in probability to F̃ ∗, with F̃ ∗ the set of minimisers in W̃∗ of I.
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Proof. The proof is similar to the proof of [5, Theorem 3.1]. Fix ε > 0 and let

F̃ ε := {h̃ ∈ W̃∗ | δ�(h̃, F̃ ∗) > ε} (5.9)

and
F̃ εn := {h̃ ∈ F̃ε | δ�(h̃, F̃ ∗) > ε, h̃ = G̃ for some G ∈ Gn}. (5.10)

Then, by [13, (3.22) and Corollary 2.9],

lim
n→∞

1

n2
log Pmic(F̃

ε) = lim
n→∞

1

n2
log(|F̃ εn|Pmic(Gn = G∗n))

= inf
h̃∈W̃∗

I(h̃) + lim
n→∞

1

n2
log |F̃ εn|

= inf
h̃∈W̃∗

I(h̃)− inf
h̃∈F̃ ε

I(h̃),

(5.11)

where G∗n is any graph in Gn such that G̃∗n ∈ W̃∗. Since W̃∗ is a compact set and F̃ ε does not
contain any minimisers of inf h̃∈W̃∗ I(h̃), we conclude that the expression above is negative, which
implies that

lim
n→∞

Pmic(F̃
ε) = 0. (5.12)

We next turn our attention to the largest eigenvalue. For a graph Gn on n vertices, n−1λn(Gn)
equals the operator norm ‖hGn‖op of the empirical graphon of Gn. The operator norm is continuous,
so ‖hGn‖op converges to ‖pδu1 +(1−p)δu2‖op = pδu1 +(1−p)δu2 in probability, with p as in Corollary
5.2. Since the operator norm is bounded, we also have

lim
n→∞

n−1Ecan[λn] = pu1 + (1− p)u2 =
T ∗(u2 − u1) + u1u2(uk−1

2 − uk−1
1 )

uk2 − uk1
=: f(T ∗). (5.13)

If T ∗ is in the region of ensemble equivalence for the subgraph H, then h ≡ (T ∗)1/k is the unique
minimiser of I in W̃∗. So, in this case,

lim
n→∞

n−1Emic[λn] = (T ∗)1/k > f(T ∗), (5.14)

since the function x 7→ x1/k is concave, f is affine in T ∗, and we have f(uk1) = u1 = (uk1)1/k and
f(uk2) = u2 = (uk2)1/k.

The second part of the theorem follows from a simple Taylor expansion.
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