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1 Introduction and main results

Section 1.1 provides a brief introduction to the parabolic Anderson model. Section 1.2 intro-
duces basic notation and key assumptions. Section 1.3 states the main theorem and gives an
outline of the remainder of the paper.

1.1 The PAM and intermittency

The parabolic Anderson model (PAM) is the Cauchy problem

∂tu(x, t) = ∆X u(x, t) + ξ(x)u(x, t), t > 0, x ∈X , (1.1)

where X is an ambient space, ∆X is a Laplace operator acting on functions on X , and ξ
is a random potential on X . Most of the literature considers the setting where X is either
Zd or Rd with d ≥ 1 (for mathematical surveys we refer the reader to [3], [9]). More recently,
other choices for X have been considered as well: the complete graph [5], the hypercube [2],
Galton-Watson trees [1], and random graphs with prescribed degrees [1].

The main target for the PAM is a description of intermittency : for large t the solution
u(·, t) of (1.1) concentrates on well-separated regions in X , called intermittent islands. Much
of the literature has focussed on a detailed description of the size, shape and location of these
islands, and the profiles of the potential ξ(·) and the solution u(·, t) on them. A special role
is played by the case where ξ is an i.i.d. random potential with a double-exponential marginal
distribution

P(ξ(0) > u) = e−eu/% , u ∈ R, (1.2)

where % ∈ (0,∞) is a parameter. This distribution turns out to be critical, in the sense that
the intermittent islands neither grow nor shrink with time, and therefore represents a class of
its own.

The analysis of intermittency typically starts with a computation of the large-time asymp-
totics of the total mass, encapsulated in what are called Lyapunov exponents. There is an
important distinction between the annealed setting (i.e., averaged over the random potential)
and the quenched setting (i.e., almost surely with respect to the random potential). Often
both types of Lyapunov exponents admit explicit descriptions in terms of characteristic vari-
ational formulas that contain information about where and how the mass concentrates in
X . These variational formulas contain a spatial part (identifying where the concentration
on islands takes place) and a profile part (identifying what the size and shape of both the
potential and the solution are on the islands).

In the present paper we focus on the case where X is a Galton-Watson tree, in the
quenched setting (i.e., almost surely with respect to the random tree and the random poten-
tial). In [1] the large-time asymptotics of the total mass was derived under the assumption
that the degree distribution has bounded support. The goal of the present paper is to relax
this assumption to unbounded degree distributions. In particular, we identify the weakest con-
dition on the tail of the degree distribution under which the arguments in [1] can be pushed
through. To do so we need to control the occurrence of large degrees uniformly in large
subtrees of the Galton-Watson tree.
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1.2 The PAM on a graph

We begin with some basic definitions and notations (and refer the reader to [3], [9] for more
background).

Let G = (V,E) be a simple connected undirected graph, either finite or countably infinite.
Let ∆G be the Laplacian on G, i.e.,

(∆Gf)(x) :=
∑
y∈V :
{x,y}∈E

[f(y)− f(x)], x ∈ V, f : V → R. (1.3)

Our object of interest is the non-negative solution of the Cauchy problem with localised initial
condition,

∂tu(x, t) = (∆Gu)(x, t) + ξ(x)u(x, t), x ∈ V, t > 0,
u(x, 0) = δO(x), x ∈ V, (1.4)

whereO ∈ V is referred to as the root ofG. We say thatG is rooted at O and callG = (V,E,O)
a rooted graph. The quantity u(x, t) can be interpreted as the amount of mass present at time
t at site x when initially there is unit mass at O.

Criteria for existence and uniqueness of the non-negative solution to (1.4) are well-known
(see [6], [7] for the case G = Zd), and rely on the Feynman-Kac formula

u(x, t) = EO
[
e
∫ t
0 ξ(Xs)ds 1l{Xt = x}

]
, (1.5)

where X = (Xt)t≥0 is the continuous-time random walk on the vertices V with jump rate 1
along the edges E, and PO denotes the law of X given X0 = O. We are interested in the total
mass of the solution,

U(t) :=
∑
x∈V

u(x, t) = EO
[
e
∫ t
0 ξ(Xs)ds

]
. (1.6)

Often we suppress the dependence on G, ξ from the notation. Note that, by time reversal
and the linearity of (1.4), U(t) = û(0, t) with û the solution of (1.4) with a different initial
condition, namely, û(x, 0) = 1 for all x ∈ V .

As in [1], throughout the paper we assume that the random potential ξ = (ξ(x))x∈V
consists of i.i.d. random variables with marginal distribution satisfying:

Assumption 1.1. [Asymptotic double-exponential potential]
For some % ∈ (0,∞),

P (ξ(0) ≥ 0) = 1, P (ξ(0) > u) = e−eu/% for u large enough. (1.7)

The restrictions in (1.7) are helpful to avoid certain technicalities that require no new ideas. In
particular, (1.7) is enough to guarantee existence and uniqueness of the non-negative solution
to (1.4) on any discrete graph with at most exponential growth (as can be inferred from the
proof in [7] for the case G = Zd). All our results remain valid under milder restrictions (e.g.
[7, Assumption (F)] plus an integrability condition on the lower tail of ξ(0)).

The following characteristic variational formula is important for the description of the
asymptotics of U(t) when ξ has a double-exponential tail. Denote by P(V ) the set of proba-
bility measures on V . For p ∈ P(V ), define

IE(p) :=
∑
{x,y}∈E

(√
p(x)−

√
p(y)

)2
, JV (p) := −

∑
x∈V

p(x) log p(x), (1.8)
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and set
χG(%) := inf

p∈P(V )
[IE(p) + %JV (p)], % ∈ (0,∞). (1.9)

The first term in (1.9) is the quadratic form associated with the Laplacian, describing the
solution u(·, t) in the intermittent islands, while the second term in (1.9) is the Legendre
transform of the rate function for the potential, describing the highest peaks of ξ(·) in the
intermittent islands.

1.3 The PAM on a Galton-Watson tree

Let D be a random variable taking values in N. Start with a root vertex O, and attach edges
from O to D first-generation vertices. Proceed recursively: after having attached the n-th
generation of vertices, attach to each one of them independently a number of vertices that
has distribution D, and declare the union of these vertices to be the (n+ 1)-th generation of
vertices. Denote by GW = (V,E) the graph thus obtained and by P its probability law. Write
P and E to denote probability and expectation for D, and supp(D) to denote the support of
P. The law of D is the offspring distribution of GW, the law of D is the degree distribution
of GW.

Throughout the paper, we assume that the degree distribution satisfies:

Assumption 1.2. [Exponential tails]
(1) dmin := min supp(D) ≥ 2 and E [D] ∈ (2,∞).
(2) E

[
eaD
]
<∞ for all a ∈ (0,∞).

Under this assumption, GW is P-a.s. an infinite tree. Moreover,

lim
r→∞

log |Br(O)|
r

= log E [D] =: ϑ ∈ (0,∞) P− a.s., (1.10)

where Br(O) ⊂ V is the ball of radius r around O in the graph distance (see e.g. [10, pp. 134–
135]). Note that this ball depends on GW and therefore is random. For our main result we
need an assumption that is much stronger than Assumption 1.2(2).

Assumption 1.3. [Super-double-exponential tails] There exists a function f : (0,∞)→
(0,∞) satisfying lims→∞ f(s) = 0 and lims→∞ f

′(s) = 0 such that

lim sup
s→∞

e−s logP(D > sf(s)) < −2ϑ. (1.11)

To state our main result, we define the constant

χ̃(%) := inf
{
χT (%) : T is an infinite tree with degrees in supp(D)

}
, (1.12)

with χG(%) defined in (1.9), and abbreviate

rt =
%t

log log t
. (1.13)

Theorem 1.4. [Quenched Lyapunov exponent] Subject to Assumptions 1.1–1.3,

1

t
logU(t) = % log(ϑrt)− %− χ̃(%) + o(1), t→∞, (P×P)-a.s. (1.14)
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With Theorem 1.4 we have completed our task to relax the main result in [1] to degree
distributions with unbounded support. The extension comes at the price of having to assume
a tail that decays faster than double-exponential as shown in (1.11). This property is needed
to control the occurrence of large degrees uniformly in large subtrees of GW. No doubt
Assumption 1.3 is stronger than is needed, but to go beyond would require a major overhaul
of the methods developed in [1], which remains a challenge.

In (1.4) the initial mass is located at the root. The asymptotics in (1.14) is robust against
different choices.

A heuristic explanation where the terms in (1.14) come from was given in [1, Section 1.5].
The asymptotics of U(t) is controlled by random walk paths in the Feynman-Kac formula
in (1.6) that run within time rt/% log rt to an intermittent island at distance rt from O, and
afterwards stay near that island for the rest of the time. The intermittent island turns out to
consist of a subtree with degree dmin where the potential has a height % log(ϑrt) and a shape
that is the solution of a variational formula restricted to that subtree. The first and third
term in (1.14) are the contribution of the path after it has reached the island, the second term
is the cost for reaching the island.

For d ∈ N\{1}, let Td be the infinite homogeneous tree in which every node has downward
degree d. It was shown in [1] that if % ≥ 1/ log(dmin + 1), then

χ̃(%) = χTdmin
(%). (1.15)

Presumably Tdmin
is the unique minimizer of (1.12), but proving so would require more work.

Outline. The remainder of the paper is organised as follows. Section 2 collects some struc-
tural properties of Galton-Watson trees. Section 3 contains several preparatory lemmas, which
identify the maximum size of the islands where the potential is suitably high, estimate the
contribution to the total mass in (1.6) by the random walk until it exits a subset of GW,
bound the principal eigenvalue associated with the islands, and estimate the number of loca-
tions where the potential is intermediate. Section 4 uses these preparatory lemmas to find
the contribution to the Feynman-Kac formula in (1.6) coming from various sets of paths.
Section 5 uses these contributions to prove Theorem 1.4. Appendices A–B contain some facts
about variational formulas and largest eigenvalues that are needed in Section 3.

Assumptions 1.1–1.2 are needed throughout the paper. Only in Sections 4–5 do we need
Assumption 1.3.

2 Structural properties of the Galton-Watson tree

In the section we collect a few structural properties of GW that play an important role
throughout the paper. None of these properties was needed in [1]. Section 2.1 looks at
volumes, Section 2.2 at degrees, Section 2.3 at tree animals.

2.1 Volumes

Let Zk be the number of offspring in generation k, i.e.,

Zk = |{x ∈ V : d(x,O) = k}|, (2.1)
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where d(x,O) is the distance from O to x. Let µ = E [D]. Then there exists a random variable
W ∈ (0,∞) such that

Wk := e−kϑZk = µ−kZk →W P-a.s. as k →∞. (2.2)

It is shown in [13, Theorem 5] that

∃C <∞, c > 0: P(|Wk −W | ≥ ε) ≤ Ce−c ε
2/3µn/3 ∀ ε > 0, k ∈ N. (2.3)

In addition, it is shown in [14, Theorems 2–3] that if D is bounded, then

− logP(W ≥ x) = xγ
+/(γ+−1) [L+(x) + o(1)], x→∞, (2.4)

− logP(W ≤ x) = x−γ
−/(1−γ−) [L−(x) + o(1)], x ↓ 0, (2.5)

where γ+ ∈ (1,∞) and γ− ∈ (0, 1) are the unique solutions of the equations

µγ
+

= dmax, µγ
−

= dmin, (2.6)

with L+, L− : (0,∞) → (0,∞) real-analytic functions that are multiplicatively periodic with
period µγ

+−1, respectively, µ1−γ− . Note that Assumption 1.2(1) guarantees that γ− 6= 1.

The tail behaviour in (2.4) requires that dmax < ∞. In our setting we have dmax = ∞,
which corresponds to γ+ = ∞, and so we expect exponential tail behaviour. The following
lemma provides a rough bound.

Lemma 2.1. [Exponential tail for generation sizes] If there exists an a > 0 such that
E [eaD] <∞, then there exists an a∗ > 0 such that E[ea∗W ] <∞.

Proof. First note that if there exists an a > 0 such that E [eaD] < ∞, then there exist b > 0
large and c > 0 small such that

ϕ(a) := E [eaD] ≤ eµa+ba2 ∀ 0 < a < c. (2.7)

Hence
E[eaZn+1 ] = E[ϕ(a)Zn ] ≤ E[e(µa+ba2)Zn ] (2.8)

and consequently, because µ > 1,

E
[
eaWn+1

]
≤ E

[
e(a+ba2µ−(n+2))Wn

]
≤ E

[
ea exp(bcµ−(n+2))Wn

]
. (2.9)

Put an := c exp(−bc
∑n−1

k=0 µ
−(k+2)), which satisfies 0 < an ≤ c. From the last inequality in

(2.9) it follows that
E
[
ean+1Wn+1

]
≤ E

[
eanWn

]
. (2.10)

Since n 7→ an is decreasing with limn→∞ an = a∗ > 0, Fatou’s lemma gives

E
[
ea∗W

]
≤ E

[
ea0W0

]
. (2.11)

Because E [ea0W0 ] = ea0 <∞, we get the claim.

The following lemma says that P-a.s. a ball of radius Rr centred anywhere in Br(O) has
volume eϑRr+o(Rr) as r →∞, provided Rr is large compared to log r.
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Lemma 2.2. [Volumes of large balls] Subject to Assumption 1.2(1), if there exists an
a > 0 such that E [eaD] <∞, then for any Rr satisfying limr→∞Rr/ log r =∞,

lim inf
r→∞

1

Rr
log
(

inf
x∈Br(O)

|BRr(x)|
)

= lim sup
r→∞

1

Rr
log
(

sup
x∈Br(O)

|BRr(x)|
)

= ϑ P− a.s.

(2.12)

Proof. We first prove the claim for lower balls. Afterwards we use a sandwich argument to
get the claim for balls.

For y ∈ GW that lies k generations below O, let y[−i], 0 ≤ i ≤ k be the vertex that lies i
generations above y. Define the lower ball of radius around y as

B↓r (y) := {x ∈ V : ∃ 0 ≤ i ≤ r with x[−i] = y}. (2.13)

Note that B↓r (O) = Br(O). Let Zk denote the vertices in the k-th generation. To get the
upper bound, pick δ > 0 and estimate

P
(

sup
x∈Br(O)

|B↓Rr(x)| ≥ e(1+δ)ϑRr
)
≤

r∑
k=0

P
(

sup
x∈Zk

|B↓Rr(x)| ≥ e(1+δ)ϑRr
)

=
r∑

k=0

∑
l∈N

P
(

sup
x∈Zk

|B↓Rr(x)| ≥ e(1+δ)ϑRr
∣∣∣ Zk = l

)
P(Zk = l)

≤
r∑

k=0

∑
l∈N

l P
(
|B↓Rr(O)| ≥ e(1+δ)ϑRr

)
P(Zk = l)

= P
(
|B↓Rr(O)| ≥ e(1+δ)ϑRr

) r∑
k=0

E(Zk).

(2.14)

By (1.10),
∑r

k=0 E(Zk) = eϑ(r+1)−1
eϑ−1

= O(eϑr), and so in order to be able to apply the Borel-
Cantelli lemma, it suffices to show that the probability in the last line decays faster than
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exponentially in r for any δ > 0. To that end, estimate

P
(
|B↓Rr(O)| ≥ e(1+δ)ϑRr

)
= P

(
e−ϑRr

Rr∑
k=0

Zk ≥ eδϑRr
)

= P
( Rr∑
k=0

Wk e−ϑ(Rr−k) ≥ eδϑRr
)
≤

Rr∑
k=0

P
(
Wk e−ϑ(Rr−k) ≥ 1

Rr + 1
eδϑRr

)
=

Rr∑
k=0

P
(
W + (Wk −W ) ≥ 1

Rr + 1
eδϑRreϑ(Rr−k)

)
≤

Rr∑
k=0

P
(
W ≥ 1

2(Rr + 1)
eδϑRreϑ(Rr−k)

)
+

Rr∑
k=0

P
(
|Wk −W | ≥

1

2(Rr + 1)
eδϑRreϑ(Rr−k)

)
≤ E[ea∗W ]

Rr∑
k=0

exp
(
− a∗

1

2(Rr + 1)
eδϑRreϑ(Rr−k)

)
+

Rr∑
k=0

C exp
(
− c
[ 1

2(Rr + 1)
eδϑRr eϑ(Rr−k)

]2/3
(eϑ)k/3

)
≤ E[ea∗W ](Rr + 1) exp

(
− a∗

1

2(Rr + 1)
eδϑRr

)
+ C(Rr + 1) exp

(
− c
[ 1

2(Rr + 1)
eδϑRr

]2/3)
,

(2.15)

where we use (2.3) with µ = eϑ. This produces the desired estimate.

To get the lower bound, pick 0 < δ < 1 and estimate

P
(

inf
x∈Br(O)

|B↓Rr(x)| ≤ e(1−δ)ϑRr
)
≤

r∑
k=0

P
(

inf
x∈Zk

|B↓Rr(x)| ≤ e(1−δ)ϑRr
)

=
r∑

k=0

∑
l∈N

P
(

inf
x∈Zk

|B↓Rr(x)| ≤ e(1−δ)ϑRr
∣∣∣ Zk = l

)
P(Zk = l)

≤
r∑

k=0

∑
l∈N

lP
(
|B↓Rr(O)| ≤ e(1−δ)ϑRr

)
P(Zk = l)

= P
(
|B↓Rr(O)| ≤ e(1−δ)ϑRr

) r∑
k=0

E(Zk).

(2.16)

It again suffices to show that the probability in the last line decays faster than exponentially
in r for any δ > 0. To that end, estimate

P
(
|B↓Rr(O)| ≤ e(1−δ)ϑRr

)
= P

(
e−ϑRr

Rr∑
k=0

Zk ≤ e−δϑRr
)

≤ P
(
WRr ≤ e−δϑRr

)
≤ P(W ≤ 2 e−δϑRr) + P(W −WRr ≥ e−δϑRr)

≤ exp
(
− c−(2eδϑRr)

γ−
1−γ− [1 + o(1)]

)
+ C exp

(
− c [e−

2
3
δϑ(eϑ)

1
3 ]Rr

)
,

(2.17)
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where we use (2.5), (2.3) with µ = eϑ, and put c− := inf L− ∈ (0,∞). For δ small enough this
produces the desired estimate. This completes the proof of (2.12) for lower balls.

To get the claim for balls, we observe that

B↓r (x) ⊆ Br(x) ⊆
r⋃

k=0

B↓r (x[−k]), (2.18)

and therefore

|B↓r (x)| ≤ |Br(x)| ≤
r∑

k=0

|B↓r (x[−k])|. (2.19)

It follows from (2.19) that

inf
x∈Br(O)

|B↓r (x)| ≤ inf
x∈Br(O)

|Br(x)| ≤ sup
x∈Br(O)

|Br(x)| ≤ (r + 1) sup
x∈Br(O)

|B↓r (x)|. (2.20)

Hence we get (2.12).

2.2 Degrees

Write Dx to denote the degree of vertex x. The following lemma implies that, P-a.s. and for
r →∞, Dx is bounded by a vanishing power of log r for all x ∈ B2r(O).

Lemma 2.3. [Maximal degree in a ball around the root]
(a) Subject to Assumption 1.2(2), for every δ > 0,∑

r∈N
P
(
∃x ∈ B2r(O) : Dx > δr

)
<∞. (2.21)

(b) Subject to Assumption 1.3, there exists a function δr : (0,∞)→ (0,∞) satisfying limr→∞ δr
= 0 and limr→∞ r

d
dr = 0 such that∑

r∈N
P
(
∃x ∈ B2r(O) : Dx > (log r)δr

)
<∞. (2.22)

Proof. (a) Estimate

P
(
∃x ∈ B↓2r(O) : Dx > δr

)
≤

2r∑
k=0

P
(
∃x ∈ Zk : Dx > δr

)
=

2r∑
k=0

∑
l∈N

P
(
∃x ∈ Zk : Dx > δr | Zk = l

)
P(Zk = l)

≤ P(D > δr)
2r∑
k=0

∑
l∈N

lP
(
Zk = l) = P(D > δr)

2r∑
k=0

E(Zk).

(2.23)

Since
∑2r

k=0 E(Zk) = e(2r+1)ϑ−1
eϑ−1

= O(e2rϑ), it suffices to show that P(D > δr) = O(e−cr) for

some c > 2ϑ. Since P(D > δr) ≤ e−aδrE(eaD), the latter is immediate from Assumption 1.2(2)
when we choose a > 2ϑ/δ.
(b) The only change is that in the last line P(D > δr) must be replaced by P(D > (log r)δr).
To see that the latter is O(e−cr) for some c > 2ϑ, we use the tail condition in (1.11) with
δr = f(s) and s = log r.
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2.3 Tree animals

For n ∈ N0 and x ∈ Br(O), let

An(x) = {Λ ⊂ Bn(x) : Λ is connected,Λ 3 x, |Λ| = n+ 1} (2.24)

be the set of tree animals of size n+ 1 that contain x. Put an(x) = |An(x)|.

Lemma 2.4. [Number of tree animals] Subject to Assumption 1.2(2), P-a.s. there exists
an r0 ∈ N such that an(x) ≤ rn for all r ≥ r0, x ∈ Br(O) and 0 ≤ n ≤ r.

Proof. We first prove the claim for lower tree animals. Afterwards we us a sandwich argument
to get the claim for tree animals.

For n ∈ N0 and x ∈ B↓r (O), let

A↓n(x) = {Λ ⊂ B↓n(x) : Λ is connected,Λ 3 x, |Λ| = n+ 1} (2.25)

be the set of lower tree animals of size n+ 1 that contain x. Put a↓n(x) = |A↓n(x)|. Fix δ > 0.
By Lemma 2.3(a) and the Borel-Cantelli lemma, P-a.s. there exists an r0 = r0(δ) ∈ N such

that Dx ≤ δr for all x ∈ B↓2r(O). Any lower tree animal of size n + 1 containing a vertex in

B↓r (O) is contained in B↓r+n(O). Any lower tree animal of size n+ 1 can be created by adding
a vertex to the outer boundary of a lower tree animal of size n. This leads to the recursive
inequality

a↓n(x) ≤ (δr)a↓n−1(x) ∀x ∈ B↓r (O), 1 ≤ n ≤ r. (2.26)

Since a↓0(x) = 1, it follows that

a↓n(x) ≤ (δr)n ∀x ∈ B↓r (O), 0 ≤ n ≤ r. (2.27)

Pick δ = 1 to get the claim for lower tree animals.

To get the claim for tree animals, note that an(x) ≤
∑n

k=0 a
↓
n(x[−k]) (compare with

(2.19)), and so an(x) ≤ (n+ 1)rn for all x ∈ Br(O) and all 0 ≤ n ≤ r.

3 Preliminaries

In this section we extend the lemmas in [1, Section 2]. Section 3.1 identifies the maximum
size of the islands where the potential is suitably high. Section 3.2 estimates the contribution
to the total mass in (1.6) by the random walk until it exits a subset of GW. Section 3.3 gives
a bound on the principal eigenvalue associated with the islands. Section 3.5 estimates the
number of locations where the potential is intermediate.

Abbreviate Lr = Lr(GW) = |Br(O)| and put

Sr := (log r)α, α ∈ (0, 1). (3.1)

3.1 Maximum size of the islands

For every r ∈ N there is a unique ar such that

P(ξ(0) > ar) =
1

r
. (3.2)

11



By Assumption 1.1, for r large enough

ar = % log log r (3.3)

For r ∈ N and A > 0, let

Πr,A = Πr,A(ξ) := {z ∈ Br(O) : ξ(z) > aLr − 2A} (3.4)

be the set of vertices in Br(O) where the potential is close to maximal,

Dr,A = Dr,A(ξ) := {z ∈ Br(O) : dist(z,Πr,A) ≤ Sr} (3.5)

be the Sr-neighbourhood of Πr,A, and Cr,A be the set of connected components of Dr,A in
GW, which we think of as islands. For MA ∈ N, define the event

Br,A :=
{
∃ C ∈ Cr,A : |C ∩Πr,A| > MA

}
. (3.6)

Note that Πr,A, Dr,A,Br,A depend on GW and therefore are random.

Lemma 3.1. [Maximum size of the islands] Subject to Assumptions 1.1–1.2, for every
A > 0 there exists an MA ∈ N such that∑

r∈N
P(Br,A) <∞ P− a.s. (3.7)

Proof. We follow [4, Lemma 6.6]. By Assumption 1.1, for every x ∈ V and r large enough,

P(x ∈ Πr,A) = P(ξ(x) > aLr − 2A) = L−cAr (3.8)

with cA = e−2A/%. By Lemma 2.2, P-a.s. for every y ∈ Br(O) and r large enough,

|BSr(y)| ≤ |Bo(r)(O)| = Lo(r) = Lo(1)
r , (3.9)

where we use that Sr = o(log r) = o(r), and hence for every m ∈ N,

P(|BSr(y) ∩Πr,A| ≥ m) ≤
(
|BSr(y)|

m

)
L−cAmr ≤ (|BSr(y)|L−cAr )m ≤ L−cAm[1+o(1)]

r . (3.10)

Consequently, P-a.s.

P(∃ C ∈ Cr,A : |C ∩Πr,A| ≥ m) ≤ P(∃ y ∈ Br(O) : |BSr(y) ∩Πr,A| ≥ m)

≤ |Br(O)|Lr = L(1−cAm)[1+o(1)]
r .

(3.11)

By choosing m > 1/cA, we see that the above probability becomes summable in r, and so we
have proved the claim with MA = d1/cAe.

Lemma 3.1 implies that (P×P)-a.s. Br,A does not occur eventually as r →∞. Note that
P-a.s. on the event [Br,A]c,

∀ C ∈ Cr,A : |C ∩Πr,A| ≤MA, diamGW(C) ≤ 2MASr, |C| ≤ e2ϑMASr , (3.12)

where the last inequality follows from Lemma 2.2.
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3.2 Mass up to an exit time

Lemma 3.2. [Mass up to an exit time] Subject to Assumption 1.2(2), P-a.s. for any
δ > 0, r ≥ r0, y ∈ Λ ⊂ Br(O), ξ ∈ [0,∞)V and γ > λΛ = λΛ(ξ,GW),

Ey
[
e
∫ τΛc
0 (ξ(Xs)−γ) ds

]
≤ 1 +

(δr) |Λ|
γ − λΛ

. (3.13)

Proof. We follow the proof of [7, Lemma 2.18] and [12, Lemma 4.2]. Define

u(x) := Ex
[
e
∫ τΛc
0 (ξ(Xs)−γ) ds

]
. (3.14)

This is the solution to the boundary value problem

(∆ + ξ − γ)u = 0 on Λ

u = 1 on Λc.
(3.15)

Via the substitution u =: 1 + v, this turns into

(∆ + ξ − γ)v = γ − ξ on Λ

v = 0 on Λc.
(3.16)

It is readily checked that for γ > λΛ the solution exists and is given by

v = Rγ(ξ − γ), (3.17)

where Rγ denotes the resolvent of ∆ + ξ in `2(Λ) with Dirichlet boundary condition. Hence

v(x) ≤ (δr) (Rγ1)(x) ≤ (δr) 〈Rγ1,1〉Λ ≤
(δr) |Λ|
γ − λΛ

, x ∈ Λ, (3.18)

where 1 denotes the constant function equal to 1, and 〈·, ·〉Λ denotes the inner product in
`2(Λ). To get the first inequality, we combine Lemma 2.3(a) with the lower bound in (B.2)
from Lemma B.1, to get ξ − γ ≤ λΛ + δr− γ ≤ δr on Λ. The positivity of the resolvent gives

0 ≤ [Rγ(δ log r − (ξ − γ))](x) = (δr) [Rγ1](x)− [Rγ(ξ − γ)](x). (3.19)

To get the second inequality, we write

(δr) (Rγ1)(x) ≤ (δr)
∑
x∈Λ

(Rγ1)(x) = (δr)
∑
x∈Λ

(Rγ1)(x)1(x) = (δr) 〈Rγ1,1〉Λ. (3.20)

To get the third inequality, we use the Fourier expansion of the resolvent with respect to the
orthonormal basis of eigenfunctions of ∆ + ξ in `2(Λ).

3.3 Principal eigenvalue of the islands

The following lemma provides a spectral bound.

Lemma 3.3. [Principal eigenvalues of the islands] Subject to Assumptions 1.1 and 1.2(2),
for any ε > 0, (P×P)-a.s. eventually as r →∞,

all C ∈ Cr,A satisfy : λC(ξ;GW) ≤ aLr − χ̂C(GW) + ε. (3.21)
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Proof. We follow the proof of [1, Lemma 2.3]. For ε > 0 and A > 0, define the event

B̄r,A :=
{

there exists a connected subset Λ⊂V with Λ∩Br(O) 6=∅,
|Λ|≤e2ϑMASr , λΛ(ξ;GW)>aLr−χ̂Λ(GW)+ε

}
(3.22)

with MA as in Lemma 3.1. Note that, by (1.1), eξ(x)/% is stochastically dominated by Z ∨N ,
where Z is an Exp(1) random variable and N > 0 is a constant. Thus, for any Λ ⊂ V , using

[1, Eq. (2.17)], putting γ =
√

eε/% > 1 and applying Markov’s inequality, we may estimate

P (λΛ(ξ;GW) > aLr − χ̂Λ(GW) + ε) ≤ P (LΛ(ξ − aLr − ε) > 1)

= P
(
γ−1LΛ(ξ) > γ logLr

)
≤ e−γ logLrE[eγ

−1LΛ(ξ)] ≤ e−γ logLrK |Λ|γ
(3.23)

with Kγ = E[eγ
−1(Z∨N)] ∈ (1,∞). Next, by Lemma 2.4, for any x ∈ Br(O) and 1 ≤ n ≤ r,

the number of connected subsets Λ ⊂ V with x ∈ Λ and |Λ| = n + 1 is P-a.s. at most
(n + 1)rn ≤ e2n log r for r ≥ r0. Noting that eSr ≤ r, we use a union bound and that by
Lemma 2.2 logLr = ϑr + o(r) as r →∞ P-a.s., to estimate for r large enough,

P(B̄r,A) ≤ e−(γ−1) logLr

be2ϑMASr c∑
n=1

e2n log rKn
γ

≤ e2ϑMASr exp
{
−ϑ(γ − 1)r + o(r) + (2 log r + logKγ) e2ϑMASr

}
= ro(1) exp

{
−ϑ(γ − 1)r + o(r) + (log r) ro(1)

}
≤ e−

1
2ϑ(γ−1)r.

(3.24)

Via the Borel-Cantelli lemma this implies that (P×P)-a.s. B̄r,A does not occur eventually as
r →∞. The proof is completed by invoking Lemma 3.1.

Corollary 3.4. [Uniform bound on principal eigenvalue of the islands] Subject to
Assumptions 1.1–1.2, for ϑ as in (1.10), and any ε > 0, (P×P)-a.s. eventually as r →∞,

max
C∈Cr,A

λ(1)

C (ξ;G) ≤ aLr − χ̃(%) + ε. (3.25)

Proof. See [1, Corollary 2.8]. The proof carries over verbatim because the degrees play no
role.

3.4 Maximum of the potential

The next lemma shows that aLr is the leading order of the maximum of ξ in Br(O).

Lemma 3.5. [Maximum of the potential] Subject to Assumptions 1.1–1.2, for any ϑ > 0,
(P×P)-a.s. eventually as r →∞,∣∣∣∣ max

x∈Br(O)
ξ(x)− aLr

∣∣∣∣ ≤ 2% log r

ϑr
. (3.26)

Proof. See [1, Lemma 2.5]. The proof carries over verbatim and uses Lemma 2.2.
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3.5 Number of intermediate peaks of the potential

We recall the following Chernoff bound for a binomial random variable with parameters n and
p (see e.g. [11, Lemma 5.9]):

P (Bin(n, p) ≥ u) ≤ e
−u[log( u

np
)−1]

, u > 0. (3.27)

Lemma 3.6. [Number of intermediate peaks of the potential] Subject to Assump-
tions 1.1 and 1.2(2), for any β ∈ (0, 1) and ε ∈ (0, 1

2β) the following holds. For a self-avoiding
path π in GW, set

Nπ = Nπ(ξ) := |{z ∈ supp(π) : ξ(z) > (1− ε)aLr}|. (3.28)

Define the event

Br :=
{

there exists a self-avoiding path π in GW with

supp(π)∩Br 6=∅, | supp(π)|≥(logLr)β and Nπ>
| supp(π)|
(logLr)ε

}
. (3.29)

Then ∑
r∈N0

P(Br) <∞ P− a.s. (3.30)

Proof. We follow the proof of [1, Lemma 2.9]. Fix β ∈ (0, 1) and ε ∈ (0, 1
2β). (1.7) implies

pr := P(ξ(0) > (1− ε)aLr) = exp
{
−(logLr)

1−ε} . (3.31)

Fix x ∈ Br(O) and k ∈ N. The number of self-avoiding paths π in Br(O) with | supp(π)| = k
and π0 = x is at most ek log r by Lemma 2.4 for r sufficiently large. For such a π, the random
variable Nπ has a Bin(k, pr)-distribution. Using (3.27), we obtain

P
(
∃ self-avoiding π with | supp(π)| = k, π0 = x and Nπ > k/(logLr)

ε
)

≤ exp
{
− k
(

(logLr)
1−2ε − log r − 1 + ε log logLr

(logLr)ε

)}
. (3.32)

By the definition of ε, together with the fact that Lr > r and x 7→ (log log x)/(log x)ε is
eventually decreasing, the expression in parentheses above is at least 1

2(logLr)
1−2ε. Summing

over k ≥ (logLr)
β and x ∈ Br(O), we get P− a.s.

P (Br) ≤ 2Lr exp
{
− 1

2(logLr)
1+β−2ε

}
≤ c1 exp

{
− c2(logLr)

1+δ
}

(3.33)

for some c1, c2, δ > 0. Since Lr > r, (3.33) is summable in r.

Lemma 3.6 implies that (P ×P)-a.s. for r large enough, all self-avoiding paths π in GW
with supp(π) ∩Br 6= ∅ and | supp(π)| ≥ (logLr)

β satisfy Nπ ≤ | supp(π)|
(logLr)ε

.

Lemma 3.7. [Number of high exceedances of the potential] Subject to Assumptions 1.1
and 1.2(2), for any A > 0 there is a C ≥ 1 such that, for all δ ∈ (0, 1), the following holds.
For a self-avoiding path π in GW, let

Nπ := |{x ∈ supp(π) : ξ(x) > aLr − 2A}|. (3.34)
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Define the event

Br :=

{
there exists a self-avoiding path π in G with

supp(π)∩Br 6=∅, | supp(π)|≥C(logLr)δ and Nπ>
| supp(π)|
(logLr)δ

}
. (3.35)

Then
∑

r∈N0
supG∈Gr

P(Br) < ∞. In particular, (P × P)-a.s. for r large enough, all self-

avoiding paths π in GW with supp(π) ∩Br 6= ∅ and | supp(π)| ≥ C(logLr)
δ satisfy

Nπ = |{x ∈ supp(π) : ξ(x) > aLr − 2A}| ≤ | supp(π)|
(logLr)δ

. (3.36)

Proof. Proceed as for Lemma 3.6, noting that this time

pr := P
(
ξ(0) > aLr − 2A

)
= L−εr (3.37)

where ε = e−2A/%, and taking C > 2/ε.

4 Path expansions

In this section we extend [1, Section 3]. Section 4.1 proves three lemmas that concern the
contribution the total mass in (1.6) coming from various sets of paths. Section 4.2 proves a
key proposition that controls the entropy associated with a key set of paths. The proof is
based on the three lemmas in Section 4.1.

Lemma 4.1. [Mass up to an exit time] Subject to Assumption 1.3, P-a.s. for any r ≥ r0,
y ∈ Λ ⊂ Br(O), ξ ∈ [0,∞)V and γ > λΛ = λΛ(ξ,GW),

Ey
[
e
∫ τΛc
0 (ξ(Xs)−γ) ds

]
≤ 1 +

(log r)δr |Λ|
γ − λΛ

. (4.1)

Proof. The proof is identical to that of Lemma 3.2, with δr replaced by (log r)δr (recall
Lemma 2.3).

We need various sets of nearest-neighbour paths in GW = (V,E,O), defined in [1]. For
` ∈ N0 and subsets Λ,Λ′ ⊂ V , put

P`(Λ,Λ
′) :=

{
(π0, . . . , π`) ∈ V `+1 :

π0 ∈ Λ, π` ∈ Λ′,
{πi, πi−1} ∈ E ∀ 1 ≤ i ≤ `

}
,

P(Λ,Λ′) :=
⋃
`∈N0

P`(Λ,Λ
′),

(4.2)

and set
P` := P`(V, V ), P := P(V, V ). (4.3)

When Λ or Λ′ consists of a single point, write x instead of {x}. For π ∈ P`, set |π| := `.
Write supp(π) := {π0, . . . , π|π|} to denote the set of points visited by π.

Let X = (Xt)t≥0 be the continuous-time random walk on G that jumps from x ∈ V to any
neighbour y ∼ x at rate 1. Denote by (Tk)k∈N0 the sequence of jump times (with T0 := 0).
For ` ∈ N0, let

π(`)(X) := (X0, . . . , XT`) (4.4)
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be the path in P` consisting of the first ` steps of X. For t ≥ 0, let

π(X[0,t]) = π(`t)(X), with `t ∈ N0 satisfying T`t ≤ t < T`t+1, (4.5)

denote the path in P consisting of all the steps taken by X between times 0 and t.

Recall the definitions from Section 3.1. For π ∈P and A > 0, define

λr,A(π) := sup
{
λ(1)

C (ξ;G) : C ∈ Cr,A, supp(π) ∩ C ∩Πr,A 6= ∅
}
, (4.6)

with the convention sup ∅ = −∞. This is the largest principal eigenvalue among the compo-
nents of Cr,A in GW that have a point of high exceedance visited by the path π.

4.1 Mass of the solution along excursions

Lemma 4.2. [Path evaluation] For ` ∈ N0, π ∈P` and γ > max0≤i<|π|{ξ(πi)−Dπi},

Eπ0

[
e
∫ T`
0 (ξ(Xs)−γ) ds

∣∣∣ π(`)(X) = π
]

=
`−1∏
i=0

Dπi

γ − [ξ(πi)−Dπi ]
. (4.7)

Proof. The proof is identical to that of [1, Lemma 3.2]. The left-hand side of (4.7) can be
evaluated by using the fact that T` is the sum of ` independent Exp(deg(πi)) random variables
that are independent of π(`)(X). The condition on γ ensures that all ` integrals are finite.

For a path π ∈P and ε ∈ (0, 1), we write

M r,ε
π :=

∣∣{0 ≤ i < |π| : ξ(πi) ≤ (1− ε)aLr
}∣∣, (4.8)

with the interpretation that M r,ε
π = 0 if |π| = 0.

Lemma 4.3. [Mass of excursions] Subject to Assumptions 1.1–1.3, for every A, ε > 0,
(P × P)-a.s. there exists an r0 ∈ N such that, for all r ≥ r0, all γ > aLr − A and all
π ∈P(Br(O), Br(O)) satisfying πi /∈ Πr,A for all 0 ≤ i < ` := |π|,

Eπ0

[
e
∫ T`
0 (ξ(Xs)−γ) ds

∣∣∣ π(`)(X) = π
]
≤ q`r,AeM

r,ε
π log[(log r)δr/aLr,A,εqr,A], (4.9)

where

aLr,A,ε := εaLr −A, qr,A :=

(
1 +

A

(log r)δr

)−1

. (4.10)

Note that π` ∈ Πr,A is allowed.

Proof. The proof is identical to that of [1, Lemma 3.3], with dmax replaced by (log r)δr (recall
Lemma 2.3).

We follow [1, Definition 3.4] and [11, Section 6.2]. Note that the distance between Πr,A

and Dc
r,A in GW is at least Sr = (logLr)

α (recall (3.4)–(3.5)).
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Definition 4.4. [Concatenation of paths] (a) When π and π′ are two paths in P with
π|π| = π′0, we define their concatenation as

π ◦ π′ := (π0, . . . , π|π|, π
′
1, . . . , π

′
|π′|) ∈P. (4.11)

Note that |π ◦ π′| = |π|+ |π′|.

(b) When π|π| 6= π′0, we can still define the shifted concatenation of π and π′ as π ◦ π̂′, where
π̂′ := (π|π|, π|π| + π′1 − π′0, . . . , π|π| + π′|π′| − π

′
0). The shifted concatenation of multiple paths is

defined inductively via associativity.

Now, if a path π ∈ P intersects Πr,A, then it can be decomposed into an initial path, a
sequence of excursions between Πr,A and Dc

r,A, and a terminal path. More precisely, there
exists mπ ∈ N such that

π = π̌(1) ◦ π̂(1) ◦ · · · ◦ π̌(mπ) ◦ π̂(mπ) ◦ π̄, (4.12)

where the paths in (4.12) satisfy

π̌(1) ∈P(V,Πr,A) with π̌(1)

i /∈ Πr,A, 0 ≤ i < |π̌(1)|,
π̂(k) ∈P(Πr,A, D

c
r,A) with π̂(k)

i ∈ Dr,A, 0 ≤ i < |π̂(k)|, 1 ≤ k ≤ mπ − 1,

π̌(k) ∈P(Dc
r,A,Πr,A) with π̌(k)

i /∈ Πr,A, 0 ≤ i < |π̌(k)|, 2 ≤ k ≤ mπ,

π̂(mπ) ∈P(Πr,A, V ) with π̂(mπ)

i ∈ Dr,A, 0 ≤ i < |π̂(mπ)|,

(4.13)

while
π̄ ∈P(Dc

r,A, V ) and π̄i /∈ Πr,A ∀ i ≥ 0 if π̂(mπ) ∈P(Πr,A, D
c
r,A),

π̄0 ∈ Dr,A, |π̄| = 0 otherwise.
(4.14)

Note that the decomposition in (4.12)–(4.14) is unique, and that the paths π̌(1), π̂(mπ) and π̄
can have zero length. If π is contained in Br(O), then so are all the paths in the decomposition.

Whenever supp(π) ∩Πr,A 6= ∅ and ε > 0, we define

sπ :=

mπ∑
i=1

|π̌(i)|+ |π̄|, kr,επ :=

mπ∑
i=1

M r,ε

π̌(i) +M r,ε
π̄ (4.15)

to be the total time spent in exterior excursions, respectively, on moderately low points of the
potential visited by exterior excursions (without their last point).

In case supp(π) ∩ Πr,A = ∅, we set mπ := 0, sπ := |π| and kr,επ := M r,ε
π . Recall from (4.6)

that, in this case, λr,A(π) = −∞.

We say that π, π′ ∈ P are equivalent, written π′ ∼ π, if mπ = mπ′ , π̌
′(i) = π̌(i) for

all i = 1, . . . ,mπ, and π̄′ = π̄. If π′ ∼ π, then sπ′ , k
r,ε
π′ and λr,A(π′) are all equal to the

counterparts for π.

To state our key lemma, we define, for m, s ∈ N0,

P(m,s) = {π ∈P : mπ = m, sπ = s} , (4.16)

and denote by
Cr,A := max{|C| : C ∈ Cr,A} (4.17)

the maximal size of the islands in Cr,A.
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Lemma 4.5. [Mass of an equivalence class] Subject to Assumptions 1.1 and 1.3, for
every A, ε > 0, (P×P)-a.s. there exists an r0 ∈ N such that, for all r ≥ r0, all m, s ∈ N0, all
π ∈P(m,s) with supp(π) ⊂ Br(O), all γ > λr,A(π) ∨ (aLr −A) and all t ≥ 0,

Eπ0

[
e
∫ t
0 (ξ(Xu)−γ) du 1l{π(X[0,t])∼π}

]
≤
(
C

1/2
r,A

)1l{m>0}
(

1 +
(log r)δr Cr,A
γ − λr,A(π)

)m(
qr,A

(log r)δr

)s
ek
r,ε
π log[(log r)δr/aLr,A,εqr,A]. (4.18)

Proof. The proof is identical to that of [1, Lemma 3.5], with dmax is replaced by (log r)δr

(recall Lemma 2.3).

4.2 Key proposition

The main result of this section is the following proposition.

Proposition 4.6. [Entropy reduction] Let α ∈ (0, 1) and κ ∈ (α, 1). Subject to Assump-
tion 1.3, there exists an A0(r) such that, for all A ≥ A0(r), with P-probability tending to one
as r → ∞, the following statement is true. For each x ∈ Br(O), each N ⊂ P(x,Br(O))
satisfying supp(π) ⊂ Br(O) and max1≤`≤|π| distG(π`, x) ≥ (logLr)

κ for all π ∈ N , and each
assignment π 7→ (γπ, zπ) ∈ R× V satisfying

γπ ≥
(
λr,A(π) + e−Sr

)
∨ (aLr −A) ∀ π ∈ N (4.19)

and
zπ ∈ supp(π) ∪

⋃
C∈Cr,A :

supp(π)∩C∩Πr,A 6=∅

C ∀ π ∈ N , (4.20)

the following inequality holds for all t ≥ 0:

logEx
[
e
∫ t
0 ξ(Xs)ds1l{π(X[0,t])∈N}

]
≤ sup

π∈N

{
tγπ + distG(x, zπ) log[(log r)δr/aLr,A,εqr,A]

}
. (4.21)

Proof. The proof is based on [1, Section 3.4]. First fix c0 > 2 and define

A0(r) = (log r)δr
(

e3c0(log r)1−α − 1
)
. (4.22)

Fix A ≥ A0(r), β ∈ (0, α) and ε ∈ (0, 1
2β) as in Lemma 3.6. Let r0 ∈ N be as given in

Lemma 4.5, and take r ≥ r0 so large that the conclusions of Lemmas 2.3, 3.1, 3.3 and 3.6
hold, i.e., assume that the events Br and Br,A in these lemmas do not occur. Fix x ∈ Br(O).
Recall the definitions of Cr,A and P(m,s). Note that the relation ∼ is an equivalence relation
in P(m,s), and define

P̃(m,s)
x :=

{
equivalence classes of the paths in P(x, V ) ∩P(m,s)

}
. (4.23)

The following bounded on the cardinality of this set is needed.

Lemma 4.7. [Bound equivalence classes] Subject to Assumption 1.3, P-a.s.,|P̃(m,s)
x | ≤

(2Cr,A)m(log r)δr(m+s) for all m, s ∈ N0.
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Proof. We can copy the proof of [1, Lemma 3.6], replacing dmax by (log r)δr .

The estimate is clear when m = 0. To prove that it holds for m ≥ 1, write ∂Λ := {z /∈
Λ: distG(z,Λ) = 1} for Λ ⊂ V . Then |∂C ∪ C| ≤ ((log r)δr + 1)|C| ≤ 2(log r)δrCr,A by

Lemma 2.3. Define the map Φ: P̃
(m,s)
x →Ps(x, V )×{1, . . . , 2(log r)δrCr,A}m as follows. For

each Λ ⊂ V with 1 ≤ |Λ| ≤ 2(log r)δrCr,A, fix an injection fΛ : Λ → {1, . . . , 2(log r)δrCr,A}.
Given a path π ∈ P(m,s) ∩P(x, V ), decompose π, and denote by π̃ ∈ Ps(x, V ) the shifted
concatenation of π̌(1), . . . , π̌(m), π̄. Note that, for 2 ≤ k ≤ m, the point π̌(k)

0 lies in ∂Ck for
some Ck ∈ Cr,A, while π̄0 ∈ ∂C ∪ C for some C ∈ Cr,A. Thus, it is possible to set

Φ(π) :=
(
π̃, f∂C2(π̌(2)

0 ), . . . , f∂Cm(π̌(m)

0 ), f∂C̄∪C̄(π̄0)
)
. (4.24)

It is readily checked that Φ(π) depends only on the equivalence class of π and, when restricted
to equivalence classes, Φ is injective. Hence the claim follows.

Now take N ⊂P(x, V ) as in the statement, and set

Ñ (m,s) :=
{

equivalence classes of paths in N ∩P(m,s)
}
⊂ P̃(m,s)

x . (4.25)

For each M∈ Ñ (m,s), choose a representative πM ∈M, and use Lemma (4.7) to write

Ex
[
e
∫ t
0 ξ(Xu)du1l{π(X[0,t])∈N}

]
=

∑
m,s∈N0

∑
M∈Ñ (m,s)

Ex
[
e
∫ t
0 ξ(Xu)du1l{π(X[0,t])∼πM}

]
≤

∑
m,s∈N0

(2(log r)δrCr,A)m((log r)δr)s sup
π∈N (m,s)

Ex
[
e
∫ t
0 ξ(Xu)du1l{π(X[0,t])∼π}

]
(4.26)

with the convention sup ∅ = 0. For fixed π ∈ N (m,s), by (4.19), apply (4.18) and Lemma 3.1
to obtain, for all r large enough and with c0 > 2 ,

(2(c log r)δr)m(log r)δrs Ex
[
e
∫ t
0 ξ(Xu)du1l{π(X[0,t])∼π}

]
≤ etγπec0m log rqsr,A ek

r,ε
π log[(log r)δr/aLr,A,εqr,A].

(4.27)

We next claim that, for r large enough and π ∈ N (m,s),

s ≥ [(m− 1) ∨ 1]Sr. (4.28)

Indeed, when m ≥ 2, | supp(π̌(i))| ≥ Sr for all 2 ≤ i ≤ m. When m = 0, | supp(π)| ≥
max1≤`≤|π| |π` − x| ≥ (logLr)

κ � Sr by assumption. When m = 1, the latter assumption
and Lemma 3.1 together imply that supp(π) ∩ Dc

r,A 6= ∅, and so either | supp(π̌(1))| ≥ Sr or
| supp(π̄)| ≥ Sr. Thus, (4.28) holds by the definition of Sr and s.

Note that qSrr,A < e−3c0 log r, so

∑
m≥0

∑
s≥[(m−1)∨1]Sr

ec0m log rqsr,A =
qSrr,A, + ec0 log rqSrr,A +

∑
m≥2 emc0 log rq

(m−1)Sr
r,A

1− qr,A
≤ 4e−c0 log r

1− qr,A
< 1

(4.29)
for r large enough. Inserting this back into (4.26), we obtain

logEx
[
e
∫ t
0 ξ(Xs)ds1l{π(X0,t)∈N}

]
≤ sup

π∈N

{
tγπ + kr,επ log[(log r)δr/aLr,A,εqr,A]

}
. (4.30)
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Thus the proof will be finished once we show that, for some ε′ > 0 and whp, respectively, a.s.
eventually as r →∞,

kr,επ ≥ distG(x, zπ)(1− 2(logLr)
−ε′) ∀π ∈ N . (4.31)

We can copy the argument at the end of [1, Section 3.4]. For each π ∈ N define an
auxiliary path π? as follows. First note that by using our assumptions we can find points
z′, z′′ ∈ supp(π) (not necessarily distinct) such that

distG(x, z′) ≥ (logLr)
κ, distG(z′′, zπ) ≤ 2MASr, (4.32)

where the latter holds by (3.12). Write {z1, z2} = {z′, z′′} with z1, z2 ordered according to
their hitting times by π, i.e., inf{` : π` = z1} ≤ inf{` : π` = z2}. Define πe as the concatenation
of the loop erasure of π between x and z1 and the loop erasure of π between z1 and z2. Since
πe is the concatenation of two self-avoiding paths, it visits each point at most twice. Finally,
define π? ∼ πe by replacing the excursions of πe from Πr,A to Dc

r,A by direct paths between the

corresponding endpoints, i.e., replace each π̂(i)
e by |π̂(i)

e | = `i, (π̂(i)
e )0 = xi ∈ Πr,A, and (π̂(i)

e )`i =
yi ∈ Dc

r,A by a shortest-distance path π̃(i)
? with the same endpoints and |π̃(i)

? | = distG(xi, yi).
Since π? visits each x ∈ Πr,A at most 2 times,

kr,επ ≥ kr,επ? ≥M
r,ε
π? − 2| supp(π?) ∩Πr,A|(Sr + 1) ≥M r,ε

π? − 4| supp(π?) ∩Πr,A|Sr. (4.33)

Note that M r,ε
π? ≥ |{x ∈ supp(π?) : ξ(x) ≤ (1− ε)aLr}| − 1 and, by (4.32), | supp(π?)| ≥

distG(x, z′) ≥ (logLr)
κ � (logLr)

α+2ε′ for some 0 < ε′ < ε. Applying Lemmas 3.6–3.7
and using (3.1) and Lr > r, we obtain, for r large enough,

kr,επ ≥ | supp(π?)|
(

1− 2

(logLr)ε
− 4Sr

(logLr)α+2ε′

)
≥ | supp(π?)|

(
1− 1

(logLr)ε
′

)
. (4.34)

On the other hand, since | supp(π?)| ≥ (logLr)
κ, by (4.32) we have

|supp(π?)| =
(
|supp(π?)|+ 2MASr

)
− 2MASr

=
(
|supp(π?)|+ 2MASr

)(
1− 2MASr
|supp(π?)|+ 2MASr

)
≥
(
distG(x, z′′) + 2MASr

)(
1− 2MASr

(logLr)κ

)
≥ distG(x, zπ)

(
1− 1

(logLr)ε
′

)
,

(4.35)

where the first inequality uses that the distance between two points on π? is less than the
total length of π?. Now (4.31) follows from (4.34)–(4.35).

5 Proof of the main theorem

Define
U∗(t) := et[% log(ϑrt)−%−χ̃(%)], (5.1)

where we recall (1.13). To prove Theorem 1.4 we show that

1

t
logU(t)− 1

t
logU∗(t) = o(1), t→∞, (P×P)-a.s. (5.2)

The proof proceeds via upper and lower bound, proved in Sections 5.1 and 5.2, respectively.
Throughout this section, Assumptions 1.1, 1.2(1) and 1.3 are in force.
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5.1 Upper bound

We follow [1, Section 4.2]. The proof of the upper bound in (5.2) relies on two lemmas showing
that paths staying inside a ball of radius dtγe for some γ ∈ (0, 1) or leaving a ball of radius
t log t have a negligible contribution to (1.6), the total mass of the solution.

Lemma 5.1. [No long paths] For any `t ≥ t log t,

lim
t→∞

1

U∗(t)
EO
[
e
∫ t
0 ξ(Xs)ds1l{τ[B`t ]c<t}

]
= 0 (P×P)− a.s. (5.3)

Proof. We follow [1, Lemma 4.2]. For r ≥ `t, let

Br :=

{
max

x∈Br(O)
ξ(x) ≥ aLr + 2%

}
. (5.4)

Since limt→∞ `t =∞, Lemma 3.5 gives that P-a.s.⋃
r≥`t

Br does not occur eventually as t→∞. (5.5)

Therefore we can work on the event
⋂
r≥`t [Br]

c. On this event, we write

EO
[
e
∫ t
0 ξ(Xs)ds1l{τ[B`t ]c<t}

]
=
∑
r≥`t

EO
[
e
∫ t
0 ξ(Xs)ds1l{sups∈[0,t] |Xs|=r}

]
≤ e2%t

∑
r≥`t

e%t log r+log(δr log log r) PO (Jt ≥ r) , (5.6)

where Jt is the number of jumps of X up to time t, and we use that |Br(O)| ≤ (log r)δrr.
Next, Jt is stochastically dominated by a Poisson random variable with parameter t(log r)δr .
Hence

PO (Jt ≥ r) ≤
[et (log r)δr ]r

rr
≤ exp

{
−r log

(
r

et (log r)δr

)}
(5.7)

for large r. Using that `t ≥ t log t, we can easily check that, for r ≥ `t and t large enough,

%t log r − r log

(
r

et (log r)δr

)
< −3r, r ≥ `t. (5.8)

Thus (5.6) is at most

e2%t
∑
r≥`t

e−3r+log(δr log log r) ≤ e2%t
∑
r≥`t

e−2r ≤ 2 e2%t e−2`t ≤ e−`t . (5.9)

Since limt→∞ `t =∞ and limt→∞ U
∗(t) =∞, this settles the claim.

Lemma 5.2. [No short paths] For any γ ∈ (0, 1),

lim
t→∞

1

U∗(t)
EO
[
e
∫ t
0 ξ(Xs)ds1l{τ[Bdtγe]c>t}

]
= 0 (P×P)− a.s. (5.10)
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Proof. We follow [1, Lemma 4.3]. By Lemma 3.5 with r = dtγe, we may assume that

max
x∈Bdtγe

ξ(x) ≤ % log logLdtγe +
2% logdtγe
ϑdtγe

≤ γ% log t+O(1), t→∞, (5.11)

where the second inequality uses that logLdtγe ∼ log |Bdtγe(O)| ∼ ϑdtγe. Hence

1

U∗(t)
EO
[
e
∫ t
0 ξ(Xs)ds1l{τ[Bdtγe]c>t}

]
≤ 1

U∗(t)
eγ%t log t+O(1) ≤ e(1−γ)%t log t+C log log log t, t→∞,

(5.12)
for any constant C > 1.

The proof of the upper bound in (5.2) also relies on a third lemma estimating the contri-
bution of paths leaving a ball of radius dtγe for some γ ∈ (0, 1) but staying inside a ball of
radius t log t. We slice to annulus between these two balls into layers, and derive an estimate
for paths that reach a given layer but do not reach the next layer. To that end, fix γ ∈ (α, 1)
with α as in (3.1), and let

Kt := dt1−γ log te, r
(k)
t := kdtγe, 1 ≤ k ≤ Kt, `t := Ktdtγe ≥ t log t. (5.13)

For 1 ≤ k ≤ Kt, define (recall (4.2))

N (k)

t :=
{
π ∈P(O, V ) : supp(π) ⊂ B

r
(k+1)
t

(O), supp(π) ∩Bc

r
(k)
t

(O) 6= ∅
}

(5.14)

and set

U (k)(t) := EO
[
e
∫ t
0 ξ(Xs)ds1l{π[0,t](X)∈N (k)

t }

]
. (5.15)

Lemma 5.3. [Upper bound on U (k)(t)] For any ε > 0, (P×P)-a.s. eventually as t→∞,

sup
1≤k≤Kt

1

t
logU (k)

t ≤
1

t
logU∗(t) + ε. (5.16)

Proof. We follow [1, Lemma 4.4] Fix k ∈ {1, . . . ,Kt}. For π ∈ N (k)

t , let

γπ := λ
r
(k+1)
t ,A

(π) + e−Sdtγe , zπ ∈ supp(π), |zπ| > r(k)

t , (5.17)

chosen such that (4.19)–(4.20) are satisfied. By Proposition 4.6 and (4.10), (P × P)-a.s.
eventually as t→∞,

1

t
logU (k)

t ≤ γπ −
|zπ|
t

(
log[ε% log(ϑr

(k+1)
t )]− δr log[log(r

(k+1)
t )] + o(1)

)
. (5.18)

Using Corollary 3.4 and logLr ∼ ϑr, we bound

γπ ≤ % log(ϑr
(k+1)
t )− χ̃(%) + 1

2ε+ o(1). (5.19)

Moreover, |zπ| > r(k+1)

t − dtγe and

dtγe
t

(
log[ε% log(ϑr

(k+1)
t )]− δr log[log(r

(k+1)
t )]

)
≤ 1

t1−γ
log log(2t log t) = o(1).

(5.20)

23



Hence
γπ ≤ Ft(r(k+1)

t )− χ̃(%) + 1
2ε+ o(1) (5.21)

with
Ft(r) := % log(ϑr)− r

t

[
log(ε% log(ϑr))− δr log(log r)

]
, r > 0. (5.22)

The function Ft is maximized at any point rt satisfying

%t = rt

[
log(ε% log(ϑrt))− (δr + r d

drδr) log log r +
1

log(ϑrt)
− δr

log rt

]
. (5.23)

In particular, rt = rt[1 + o(1)], which implies that

sup
r>0

Ft(r) ≤ % log(ϑrt)− %+ o(1), t→∞. (5.24)

Inserting (5.24) into (5.21), we obtain
1

t
logU (k)

t < % log(ϑrt) − % − χ̃(%) + ε, which is the

desired upper bound because ε > 0 is arbitrary.

Proof of the upper bound in (5.2). To avoid repetition, all statements hold (P×P)-a.s. even-
tually as t→∞. Set

U (0)(t) := EO
[
e
∫ t
0 ξ(Xs)ds1l{τ[Bdtγe]c>t}

]
, U (∞)(t) := EO

[
e
∫ t
0 ξ(Xs)ds1l{τ[Bdt log te]

c≤t}

]
. (5.25)

Then
U(t) ≤ U (0)(t) + U (∞)(t) +Kt max

1≤k≤Kt
U (k)(t). (5.26)

From Lemmas 5.1–5.3 and the fact that Kt = o(t), we get

lim sup
t→∞

{
1

t
logU(t)− 1

t
logU∗(t)

}
≤ ε. (5.27)

Since ε > 0 is arbitrary, this completes the proof of the upper bound in (1.14).

5.2 Lower bound

We follow [1, Section 4.1]. Fix ε > 0. By the definition of χ̃, there exists an infinite rooted
tree T = (V ′, E′,Y) with degrees in supp(Dg) such that χT (%) < χ̃(%) + 1

4ε. Let Qr = BT
r (Y)

be the ball of radius r around Y in T . By Proposition A.1 and (A.2), there exist a radius
R ∈ N and a potential profile q : BT

R → R with LQR(q; %) < 1 (in particular, q ≤ 0) such that

λQR(q;T ) ≥ −χ̂QR(%;T )− 1
2ε > −χ̃(%)− ε. (5.28)

For ` ∈ N, let B` = B`(O) denote the ball of radius ` around O in GW. We will show next
that, (P×P)-a.s. eventually as `→∞, B` contains a copy of the ball QR where the potentail
ξ is bounded from below by % log log |B`|+ q.

Proposition 5.4. [Balls with high exceedances] (P×P)-almost surely eventually as `→
∞, there exists a vertex z ∈ B` with BR+1(z) ⊂ B` and an isomorphism ϕ : BR+1(z)→ QR+1

such that ξ ≥ % log log |B`|+ q ◦ ϕ in BR(z). In particular,

λBR(z)(ξ;GW) > % log log |B`| − χ̃(%)− ε. (5.29)

Any such z necessarily satisfies |z| ≥ c` (P× P)-a.s. eventually as `→∞ for some constant
c = c(%, ϑ, χ̃(%), ε) > 0.
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Proof. See [1, Proposition 4.1]. The proof carries over verbatim because the degrees play no
role.

Proof of the lower bound in (1.14). Let z be as in Proposition 5.4. Write τz for the hitting
time of z by the random walk X. For s ∈ (0, t), we estimate

U(t) ≥ EO
[
e
∫ t
0 ξ(Xu) du 1l{τz≤s} 1l{Xu∈BR(z) ∀u∈[τz ,t]}

]
= EO

[
e
∫ τz
0 ξ(Xu) du 1l{τz≤s} Ez

[
e
∫ v
0 ξ(Xu) du 1l{Xu∈BR(z) ∀u∈[0,v]}

]∣∣∣
v=t−τz

]
,

(5.30)

where we use the strong Markov property at time τz. We first bound the last term in the
integrand in (5.30). Since ξ ≥ % log log |B`|+ q in BR(z),

Ez
[
e
∫ v
0 ξ(Xu) du1l{Xu∈BR(z) ∀u∈[0,v]}

]
≥ ev% log log |B`|EY

[
e
∫ v
0 q(Xu) du1l{Xu∈QR ∀u∈[0,v]}

]
≥ ev% log log |B`|evλQR (q;T )φ(1)

QR
(Y)2

> exp
{
v (% log log |B`| − χ̃(%)− ε)

} (5.31)

for large v, where we used that BR+1(z) is isomorphic to QR+1 for the indicators in the first
inequality, and applied Lemma B.2 and (5.28) to obtain the second and third inequalities,
respectively. On the other hand, since ξ ≥ 0,

EO
[
e
∫ τz
0 ξ(Xu) du1l{τz ≤ s}

]
≥ PO(τz ≤ s), (5.32)

and we can bound the latter probability from below by the probability that the random walk

runs along a shortest path from the root O to z within a time at most s. Such a path (yi)
|z|
i=0

has y0 = O, y|z| = z, yi ∼ yi−1 for i = 1, . . . , |z|, has at each step from yi precisely deg(yi)
choices for the next step with equal probability, and the step is carried out after an exponential
time Ei with parameter deg(yi). This gives

PO(τz ≤ s) ≥
( |z|∏
i=1

1

deg(yi)

)
P
( |z|∑
i=1

Ei ≤ s
)
≥ ((log |z|)δ`)−|z|Poidmins([|z|,∞)), (5.33)

where Poiγ is the Poisson distribution with parameter γ, and P is the generic symbol for
probability. Summarising, we obtain

U(t) ≥ ((log |z|)δl)−|z|e−dmins
(dmins)

|z|

|z|!
e(t−s)[% log log |B`|−χ̃(%)−ε]

≥ exp

{
−dmins+ (t− s) [% log log |B`| − χ̃(%)− ε]− |z| log

(
(log |z|)δ`
dmin

|z|
s

)}
≥ exp

{
−dmins+ (t− s) [% log log |B`| − χ̃(%)− ε]− ` log

(
(log `)δ`

dmin

`

s

)}
,

(5.34)

where in the last inequality we use that s ≤ |z| and ` ≥ |z|. Further assuming that ` = o(t),
we see that the optimum over s is obtained at

s =
`

dmin + % log log |B`| − χ̃(%)− ε
= o(t). (5.35)
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Note that, by Proposition 5.4, this s indeed satisfies s ≤ |z|. Applying (1.10) we get, after a
straightforward computation, (P× P)-a.s. eventually as t→∞,

1

t
logU(t) ≥ % log log |B`| −

`

t
log log `− `

t
δ` log log `− χ̃(%)− ε+O

(
`

t

)
. (5.36)

Inserting log |B`| ∼ ϑ`, we get

1

t
logU(t) ≥ F` − χ̃(%)− ε+ o(1) +O

(
`

t

)
(5.37)

with

F` = % log(ϑ`)− `

t
log log `− `

t
δ` log log `. (5.38)

The optimal ` for F` satisfies

%t = `
[
1 + (δ` + ` d

d`δ`)] log log `+
`δ`

log `
+

`

log `
, (5.39)

i.e., ` = rt[1 + o(1)]. For this choice we obtain

1

t
logU(t) ≥ % log(ϑrt)− %− χ̃(%)− ε+ o(1). (5.40)

Hence (P× P)-a.s.

lim inf
t→∞

{
1

t
logU(t)− 1

t
logU∗(t)

}
≥ −ε. (5.41)

Since ε > 0 is arbitrary, this completes the proof of the lower bound in (1.14).

REMARK: It is clear from (5.23) and (5.39) that, in order to get the correct asymptotics,
it is crucial that both δr and r d

drδr tend to zero as r →∞. This is why Assumption 1.3 is the
weakest condition on the tail of the degree distribution under which the arguments in [1] can
be pushed through.

A Dual variational formula

We introduce alternative representations for χ in (1.9) in terms of a ‘dual’ variational formula.
Fix % ∈ (0,∞) and a graph G = (V,E). The functional

L(q;G) :=
∑
x∈V

eq(x)/% ∈ [0,∞], q : V → [−∞,∞), (A.1)

plays the role of a large deviation rate function for the potential ξ in V (compare with (1.7)).
For Λ ⊂ V , define

χ̂Λ(G) := − sup
q : V→[−∞,∞),
L(q;G)≤1

λΛ(q;G) ∈ [0,∞). (A.2)

The condition L(q;G) ≤ 1 under the supremum ensures that the potentials q have a fair
probability under the i.i.d. double-exponential distribution. Write χ̂(G) = χ̂V (G).

Proposition A.1. [Alternative representations for χ] For any graph G = (V,E) and
any Λ ⊂ V ,

χ̂Λ(%;G) ≥ χ̂V (%;G) = χ̂G(%) = χG(%). (A.3)

Proof. See [1, Section A.1]
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B Largest eigenvalue

We recall the Rayleigh-Ritz formula for the principal eigenvalue of the Anderson Hamiltonian.
For Λ ⊂ V and q : V → [−∞,∞), let λΛ(q;G) denote the largest eigenvalue of the operator
∆G + q in Λ with Dirichlet boundary conditions on V \ Λ, i.e.,

λΛ(q;G) := sup
{
〈(∆G + q)φ, φ〉`2(V ) : φ ∈ RV , suppφ ⊂ Λ, ‖φ‖`2(V ) = 1

}
. (B.1)

Lemma B.1. [Spectral bounds]

(1) For any Γ ⊂ Λ ⊂ V ,

max
z∈Γ

q(z)−Dz̄ ≤ λΓ(q;G) ≤ λΛ(q;G) ≤ max
z∈Λ

q(z) (B.2)

with z̄ = arg maxz∈Γ q(z) and Dz̄ the degree of z̄.

(2) The eigenfunction corresponding to λΛ(q;G) can be taken to be non-negative.

(3) If q is real-valued and Γ ( Λ is finite and connected in G, then the second inequality in
(B.2) is strict and the eigenfunction corresponding to λΛ(q;G) is strictly positive.

Proof. Write

〈(∆G + q)φ, φ〉`2(V ) =
∑
x∈Λ

[(∆Gφ)(x) + q(x)φ(x)]φ(x)

=
∑
x∈Λ

∑
y∈Λ:

{x,y}∈EΛ

[φ(y)− φ(x)]φ(x) +
∑
x∈Λ

q(x)φ(x)2

= −1
2

∑
x,y∈Λ:
{x,y}∈EΛ

[φ(x)− φ(y)]2 +
∑
x∈Λ

q(x)φ(x)2,

(B.3)

where the first sum in the last line runs over all ordered pairs (x, y) with (x, y) 6= (y, x), which
gives rise to the factor 1

2 . The upper bound in (B.2) follows from the estimate

〈(∆G + q)φ, φ〉 ≤
∑
x∈Λ

q(x)φ(x)2 ≤ max
z∈Λ

q(z)
∑
x∈Λ

φ(x)2 = max
z∈Λ

q(z). (B.4)

To get the lower bound in (B.2), we use the fact that λΛ is non-decreasing in q. Hence,
replacing q(z) by −∞ for every z 6= z̄ and taking as test function φ = φ̄ = δz̄, we get from
(B.3) that

λΛ(q;G) ≥ −1
2

∑
x,y∈Λ:
{x,y}∈EΛ

[
φ̄(x)− φ̄(y)

]2
+
∑
x∈Λ

q(x)φ̄(x)2

= −1
2

∑
y∈Λ:

{z̄,y}∈EΛ

1 + q(z̄) = −Dz̄ + max
z∈Λ

q(z),
(B.5)

which settles the claim in (1). The claims in (2) and (3) are standard.

Inside GW, fix a finite connected subset Λ ⊂ V , and let HΛ denote the Anderson Hamil-
tonian in Λ with zero Dirichlet boundary conditions on Λc = V \Λ (i.e., the restriction of the

27



operator HG = ∆G + ξ to the class of functions supported on Λ). For y ∈ Λ, let uyΛ be the
solution of

∂tu(x, t) = (HΛu)(x, t), x ∈ Λ, t > 0,
u(x, 0) = δy(x), x ∈ Λ,

(B.6)

and set UyΛ(t) :=
∑

x∈Λ u
y
Λ(x, t). The solution admits the Feynman-Kac representation

uyΛ(x, t) = Ey
[
exp

{∫ t

0
ξ(Xs)ds

}
1l{τΛc > t,Xt = x}

]
, (B.7)

where τΛc is the hitting time of Λc. It also admits the spectral representation

uyΛ(x, t) =

|Λ|∑
k=1

etλ
(k)
Λ φ(k)

Λ (y)φ(k)

Λ (x), (B.8)

where λ(1)

Λ ≥ λ
(2)

Λ ≥ · · · ≥ λ
(|Λ|)
Λ and φ(1)

Λ , φ(2)

Λ , . . . , φ(|Λ|)
Λ are, respectively, the eigenvalues and the

corresponding orthonormal eigenfunctions of HΛ. These two representations may be exploited
to obtain bounds for one in terms of the other, as shown by the following lemma.

Lemma B.2. [Bounds on the solution] For any y ∈ Λ and any t > 0,

etλ
(1)
Λ φ(1)

Λ (y)2 ≤ Ey
[
e
∫ t
0 ξ(Xs)ds1l{τΛc>t,Xt=y}

]
≤ Ey

[
e
∫ t
0 ξ(Xs)ds1l{τΛc>t}

]
≤ etλ

(1)
Λ |Λ|1/2. (B.9)

Proof. The first and third inequalities follow from (B.7)–(B.8) after a suitable application of
Parseval’s identity. The second inequality is elementary.
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