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Abstract

In this paper, we analyze a two-queue random time-limited Markov modulated polling model.
In the first part of the paper, we investigate the fluid version: Fluid arrives at the two queues as
two independent flows with deterministic rate. There is a single server that serves both queues at
constant speeds. The server spends an exponentially distributed amount of time in each queue.
After the completion of such a visit time to one queue, the server instantly switches to the other
queue, i.e., there is no switchover time.
For this model, we first derive the Laplace-Stieltjes Transform (LST) of the stationary marginal
fluid content/workload at each queue. Subsequently, we derive a functional equation for the LST
of the two-dimensional workload distribution that leads to a Riemann-Hilbert boundary value
problem (BVP). After taking a heavy-traffic limit, and restricting ourselves to the symmetric case,
the boundary value problem simplifies and can be solved explicitly.
In the second part of the paper, allowing for more general (Lévy) input processes and server
switching policies, we investigate the transient process-limit of the joint workload in heavy traf-
fic. Again solving a BVP, we determine the stationary distribution of the limiting process. We
show that, in the symmetric case, this distribution coincides with our earlier solution of the BVP,
implying that in this case the two limits (stationarity and heavy traffic) commute.

1 Introduction

The stationary analysis of multi-dimensional Markov processes associated with queueing models
is often quite challenging. Even in the two-dimensional case, the characterization of the stationary
distribution of fundamental queueing models (such as the shortest queue routing and the coupled
processors [20, 23]) requires solving boundary value problems. The intrinsic complexity of this
analysis has led to the development of asymptotic techniques, studying the stationary distribution
in some limiting regime of the model parameters; one prominent example being the heavy-traffic
limit, first introduced by Kingman [34] for the single server queue. In the heavy-traffic limit, a
scaled version of the workload process is shown to have a non-trivial limit, which may serve as an
approximation to the non-scaled process. The methodological contribution in this paper is to com-
bine both approaches: For a specific fluid flow polling model with random time-limited service (which
will be specified later), we first derive the boundary value problem, which characterizes the sta-
tionary distribution, but for which no explicit solution is known. We then formulate the boundary
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value problem obtained in the heavy-traffic limit, which in the symmetric case leads to an explicit
solution for the two-dimensional stationary distribution (in heavy traffic). A second contribution
of our paper is to investigate the heavy-traffic limit of a generalization of the polling model using
process limits, allowing for Lévy input processes into the queues and a more general switching
process for the server. Following [32], instead of directly focusing on the stationary distribution
and deriving a functional equation for it, we characterize the entire scaled limit process as a two-
dimensional reflected Brownian motion in the positive orthant. We show that in the earlier special
(Markovian) symmetric case the stationary distribution of the heavy-traffic process limit coincides
with the heavy-traffic limit of the stationary distribution; thus the heavy-traffic limit and the time
limit to stationarity commute.
Specifically, the model that we consider is a polling model with two queues and a single server
that moves between the two queues to provide them with service. The policy that governs the
switching is random time-limited (RTL): The duration of the service period at any queue is ran-
dom, having an exponential distribution. All these service periods are independent and the server
always remains at a queue until the exponentially distributed time expires, even if that queue
is empty and the other is not. The input and, when the served queue is not empty, the output
processes for both queues are assumed to be deterministic fluid streams (with identical rates).
Our motivation to study this RTL Markov modulated fluid polling model comes from our ear-
lier paper [39], in which the present fluid model emerged as an (asymptotic) approximation of a
two-queue RTL polling model with Poisson arrivals and exponential service times. In the present
paper, we show that even under the simplifying assumptions of fluid flows with constant inflow
and outflow rates, and symmetric queues, determining the joint stationary workload distribution
still requires solving a complicated boundary value problem (BVP). In the heavy-traffic limit, we
obtain and explicitly solve a BVP which is similar to that studied in [14] and belongs to a class of
two-dimensional BVP that is being discussed in [20] (see also [23]). It is intuitive to recognize that
in the asymmetric case with different loads on the two queues, the queue dynamics are easier to
describe (compared to the symmetric case), as the workloads become independent in heavy traffic,
reducing the analysis to that of the two marginals. The heaviest loaded queue reaches the satu-
ration point (and must be scaled) while the other queue remains stable (and needs not be scaled).
For this reason, in the first part of the paper, we focus on the symmetric case: the two queues are
entirely symmetric in terms of inflow and outflow rates, as well as the server visiting times. The
symmetry assumption puts us in the most interesting case for the heavy-traffic setting that we con-
sider in this paper; it ensures that the workloads in the two queues are of comparable magnitude
in heavy-traffic. In the second part of the paper, we extend the analysis to both a more general
(Lévy input) model and to the study of the symmetric as well as the asymmetric case.

Related literature. Both fluid queueing models and polling models have received much atten-
tion in the literature of stochastic service systems; we refer to the surveys [15, 36] for overviews of
the literature on fluid queues, and to the surveys [10, 13] for similar overviews on polling.
In contrast with the extensive literature on fluid queues and on polling, there are only very few
studies focussing on polling systems with fluid input. Some exceptions are Czerniak and Yechiali
[21], Boxma et al. [11], Remerova et al. [37], and Adan et al. [3]; see also [13, Section 6]. A recent
heavy-traffic analysis of a fluid model with two queues in series is Koops et al. [35].
Polling models with time-limited service also have not been widely studied. Coffman, Fayolle and
Mitrani [19] have analyzed a two-queue polling model with exponential visit periods; in their case

2



(contrary to the service protocol pertaining to the model studied in this paper) the server does not
stay at an empty queue. They determine the probability generating function (PGF) of the joint
stationary queue length distribution by solving a Riemann-Carleman BVP. In a series of papers,
Al Hanbali et al. (see, e.g., [5]) consider a polling model with several queues and exponential visit
periods. They relate the PGFs of the number of customers in a queue at the end of the server’s visit
to that queue and at its beginning. This is used as input for a numerical scheme to approximate
the joint queue length PGF at the server departure instants from the queues. Further references
are provided in [38]; that paper, and [39], also present a perturbation method for obtaining queue
length PGFs in time-limited polling models.

Organization of the paper. In Section 2, we describe the RTL Markov modulated fluid queue
under consideration. In Section 3, we briefly present the LSTs of the model’s marginal stationary
workload distributions and obtain their heavy-traffic limits. Section 4 is devoted to a discussion of
the joint workload distribution analysis. In Section 5, restricting ourselves to the symmetric case,
we derive an explicit expression for the LST of the joint stationary workload distribution in heavy
traffic by solving a Riemann-Hilbert BVP. Several numerical experiments are performed in Section
6 in order to get more insight into the model. Section 7 is devoted to the computation of the scaled
joint stationary distribution of an analogous model with a general Lévy input, generalizing the
results obtained in Sections 3–5.

2 Model description and notation

We consider an RTL Markov modulated fluid polling model with two queues. In our initial de-
scription we will not make any symmetry assumptions between the two queues, to facilitate later
presentation and discussions regarding these assumptions in Section 4. As alluded to in the in-
troduction, our main contributions in the first part of the paper (Sections 3–5) concern the heavy-
traffic limit for identical parameter settings for the two queues. Arguably, this is the most interest-
ing case under heavy-traffic conditions, because - as we will make precise later - it ensures that the
workload processes of the two queues obey a similar scaling when approaching the heavy-traffic
saturation point, and, consequently, exhibit a non-trivial correlation. To the contrary, in an asym-
metric setting, one of the two queues will approach heavy traffic while the other remains bounded.
In that case, the two workloads are asymptotically independent and their joint heavy-traffic dis-
tribution can be obtained from the marginal scaled limit for the queue with heaviest load and the
ordinary (non heavy-traffic) marginal distribution of the lighter loaded queue.
In the asymmetric setting, fluid enters queue j (say Qj) at a constant rate of λj > 0, j = 1, 2.
There is a single server that serves both queues with constant rate µj > 0, j = 1, 2. A special
feature of the model is that the server spends random amounts of time at each queue, these times
are independent of the fluid content levels (workloads at the queues); in particular, when a queue
becomes empty, the server will remain at that queue (although not providing any service), even
if the other queue is not empty, until the expiration of the random visit time. We denote the
length of a generic time interval that the server resides at Qj by Tj , j = 1, 2. The periods Tj are
exponentially distributed with rate cj > 0, j = 1, 2. Upon completion of the residence time at Qj ,
the server instantaneously switches to the other queue Q3−j , j = 1, 2, i.e., there is no switch-over
time. All residence times are independent.
To analyze the model under consideration, we let Vj(t) denote the workload at Qj at time t, t ≥ 0.
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Assuming V1(0) = u0, V2(0) = l0, and the server being at Q1 at time 0, we can describe the
workload at time T1 and T1 + T2 as follows:

• In the interval (0, T1] the server is serving Q1, therefore the workload (the fluid content) at
Q1 decreases linearly as long as it is positive: V1(T1) = max{0, u0 + (λ1−µ1)T1}. During this
time period, the workload at Q2 increases linearly: V2(T1) = l0 + λ2T1.

• Analogously as explained above, in the interval (T1, T1 + T2], the server is serving Q2, there-
fore the workload at Q2 decreases linearly as long as it is positive, hence V2(T1 + T2) =

max{0, V2(T1) + (λ2 − µ2)T2}. The workload at Q1 increases linearly, so V1(T1 + T2) =

V1(T1) + λ1T2.

In stationarity,
(
V1(T1 + T2), V2(T1 + T2)

)
has the same distribution as

(
V1(0), V2(0)

)
.

Stability condition. For the model under consideration, the stability condition states that both
queues must have larger capacities than the respective loads imposed on them:

ρ1 <
c2

c1 + c2
and ρ2 <

c1
c1 + c2

, (1)

with ρj =
λj
µj

, j = 1, 2, cf. [38].

3 Marginal workload analysis

In this section, we first briefly focus on the stationary workload of Q1, and hence by identical ar-
guments also of Q2. Let V1(t) denote the workload at time t, t ≥ 0, and V1 the stationary workload
at an arbitrary epoch. From a special case of [31, Section 5], and also from the analysis performed
in [17], the marginal queue length distributions of the model under consideration are known. We
include them here for completeness.

Theorem 3.1. The LST of the (marginal) workload of the first queue in stationarity under the stability
condition (1) is given by

E
(
e−sV1

)
=

1 + ρ1µ1

c1+c2
s

1 + ρ1µ1

c2
(
1− c1c2

ρ1
1−ρ1

)s . (2)

An equivalent formula holds for the LST of V2 under the stability condition (1).

Remark 3.2. From the result of Theorem 3.1, it is evident that, for θ1 = c1+c2
ρ1µ1

, θ2 = c2
ρ1µ1

(
1− c1

c2

ρ1
1−ρ1

)
and with Eθ ∼ exp(θ),

1. V1 + Eθ1 is distributed like Eθ2 , with V1, Eθ1 independent.

2. The distribution of V1 is a (θ2/θ1, 1− θ2/θ1) mixture of zero and Eθ2 .

With the result of Theorem 3.1, we can study the behavior of the workload V1 in heavy traffic, i.e.,
when ρ1 ↑ c2

c1+c2
.
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Lemma 3.3. For ρ1 ↑ c2
c1+c2

, (
c2

c1 + c2
− ρ1

)
V1

d−→ Z, (3)

where Z is an exponentially distributed random variable with mean c1c2µ1

(c1+c2)3
.

Proof. Replacing s by
(

c2
c1+c2

− ρ1
)
s in (2) and taking the limit as ρ1 ↑ c2

c1+c2
, yields

lim
ρ1↑ c2

c1+c2

E
(
e
−
(

c2
c1+c2

−ρ1
)
sV1

)
=

1

1 + c1c2µ1

(c1+c2)3
s
. (4)

Note that the right hand side (r.h.s.) in (4) corresponds to the LST of an exponentially distributed
random variable with mean c1c2µ1

(c1+c2)3
.

4 Joint workload analysis

We now focus on the joint workload distribution, restricting ourselves to the symmetric case, i.e.,
c1 = c2 = c, λ1 = λ2 = λ and µ1 = µ2 = µ. A main stepping stone in our analysis is the functional
equation in (13) below. A corresponding functional equation can be derived for the asymmetric
case, see also [38], but for the purpose of this paper it suffices to show that the symmetric case
leads to a complicated BVP that, although it can be solved, provides little probabilistic insight to
the problem at hand. Our next step is to analyze it under heavy-traffic, and, as explained earlier,
the symmetric case is then the interesting one.
As a side remark, note that for both queues to reach heavy traffic simultaneously, it suffices to have
λ1/µ1 = λ2/µ2 if c1 = c2; additionally demanding that λ1 = λ2 (and hence µ1 = µ2) amounts to
choosing a different scaling unit for the workloads.

Step 1: Calculation of E
(
e−s1V1(T1)−s2V2(T1)|V1(0) = u0, V2(0) = l0

)
.

In this step, we calculate the LST of the joint workload distribution at time T1. From the observa-
tions listed above the stability condition (1) in Section 2, we obtain

E
(
e−s1V1(T1)−s2V2(T1)|V1(0) = u0, V2(0) = l0

)
= ce−s2l0

(∫ u0
µ−λ

t=0

e−(s2λ+c)te−s1(u0+(λ−µ)t)dt+

∫ ∞
t=

u0
µ−λ

e−(s2λ+c)tdt

)

=
c

c+ s2λ

[
s2λ+ c

s2λ+ c+ s1(λ− µ)
e−s1u0−s2l0 +

s1(λ− µ)

s2λ+ c+ s1(λ− µ)
e−

c+s2λ
µ−λ u0−s2l0

]
. (5)

Step 2: Calculation of E
(
e−s1V1(T1)−s2V2(T1)

)
in stationarity:

In stationarity,
(
V1(0), V2(0)

)
and

(
V1(T1 + T2), V2(T1 + T2)

)
have the same distribution. Uncondi-

tioning, we obtain from (5):

E
(
e−s1V1(T1)−s2V2(T1)

)
=

c

c+ s2λ

[ s2λ+ c

s2λ+ c+ s1(λ− µ)
E
(
e−s1V1(0)−s2V2(0)

)
+

s1(λ− µ)

s2λ+ c+ s1(λ− µ)
E
(
e−

c+s2λ
µ−λ V1(0)−s2V2(0)

)]
. (6)
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Formulation of a functional equation. Since we are interested in the symmetric case, we can
formulate a functional equation corresponding to (6) by defining

ν̃(s1, s2) := E
(
e−s1V1(0)−s2V2(0)

)
,

and then by symmetry,
ν̃(s2, s1) = E

(
e−s1V1(T1)−s2V2(T1)

)
.

Further, defining
f(s1, s2) := s1λ+ c+ s2(λ− µ), (7)

we obtain

ν̃(s2, s1) =
c

f(s2, s1)
ν̃(s1, s2) +

c

f(s2, s1)

s1(λ− µ)

s2λ+ c
ν̃

(
s2λ+ c

µ− λ
, s2

)
. (8)

Now substituting s1 = s2, gives

ν̃

(
s2λ+ c

µ− λ
, s2

)
=

(2λ− µ)(s2λ+ c)

c(λ− µ)
ν̃(s2, s2). (9)

Combining (8) and (9) yields

ν̃(s2, s1) =
c

f(s2, s1)
ν̃(s1, s2) +

(2λ− µ)s1
f(s2, s1)

ν̃(s2, s2). (10)

By symmetry (after interchanging the indexes),

ν̃(s1, s2) =
c

f(s1, s2)
ν̃(s2, s1) +

(2λ− µ)s2
f(s1, s2)

ν̃(s1, s1). (11)

Combining (10) and (11), it follows that

ν̃(s1, s2) =
c2

f(s1, s2)f(s2, s1)
ν̃(s1, s2) +

c(2λ− µ)s1
f(s1, s2)f(s2, s1)

ν̃(s2, s2)

+
(2λ− µ)s2
f(s1, s2)

ν̃(s1, s1), (12)

so that finally,

k̃(s1, s2)

s1s2
ν̃(s1, s2) = −2µ

(
1

2
− λ

µ

)[
c

s2
ν̃(s2, s2) +

f(s1, s2)

s1
ν̃(s1, s1)

]
, (13)

with k̃(s1, s2) = f(s1, s2)f(s2, s1)− c2 and with f(s1, s2) defined in Equation (7).
Equations of this type have been studied in the monograph [20]. There a solution procedure for
the present problem is outlined, which amounts to the following global steps:

Step A. Consider the zeros of the kernel equation k̃(s1, s2), that have Re[s1], Re[s2] ≥ 0. For such
pairs (s1, s2), ν̃(s1, s2) is analytic, and hence, for those pairs, the l.h.s. of (13) is equal to zero.

Step B. A suitable set of those zeros of the kernel may form a contour. The fact that the r.h.s. of
(13) is zero on that contour (the ”boundary”), in combination with analyticity properties of
ν̃(s1, s1) and ν̃(s2, s2) inside and/or outside that contour, can be used to formulate a Rie-
mann or Riemann-Hilbert BVP. The solution of such a problem yields ν̃(s1, s1) and ν̃(s2, s2).
Then ν̃(s1, s2) follows via (13).
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Unfortunately, the above steps do not constitute a simple, straightforward recipe. For example,
several choices of zero pairs are possible in the present problem, and it is not a priori clear what is
the best choice. Therefore, to successfully employ this Boundary Value method (BVM) requires a
detailed investigation of the zeros of the kernel k̃(s1, s2) of the functional equation. In what follows
in this section, we describe in more detail these steps and emphasize the hurdles we encounter.

Kernel analysis. In the analysis of (13), a crucial role is played by the kernel equation k̃(s1, s2) =

0. Finding a suitable contour as mentioned above requires analyzing all pairs (s1, s2) that solve
the kernel equation, which is equivalent to

λ(λ− µ)s22 +
[
c(2λ− µ) + ((λ− µ)2 + λ2)s1

]
s2

+ λ(λ− µ)s21 + c(2λ− µ)s1 = 0, (14)

with Re[s1],Re[s2] ≥ 0. By solving the above equation, we obtain the zeros of the kernel as

s±2 (s1) =
−c(2λ− µ)− ((λ− µ)2 + λ2)s1 ± (µ− 2λ)µ

√
∆(s1)

2λ(λ− µ)
, (15)

with discriminant ∆(s1) = s21 − c
µ

1
1/2−λ/µs1 + c2

µ2 . The function s±2 (s1) has two real branching
points

s±1 =
c

µ

1
1/2− λ/µ

(
1±

√
1− 4

(
1/2− λ/µ

)2)
,

with 0 < s−1 < s+1 . Note that for s1 ∈ (s−1 , s
+
1 ), s±2 (s1) is a complex number, say s±2 = u+ iv (where

in the last equality we have suppressed the dependence on s1). Noting that s+2 + s−2 = 2u and
that s+2 × s

−
2 = u2 + v2, we can define the contour that supports s±2 (s1) for s1 ∈ (s−1 , s

+
1 ). After

cumbersome but straightforward computations, we obtain that

s1 =
c(µ− 2λ) + 2λu(µ− λ)

2λ2 + µ(µ− 2λ)
, (16)

r2 = v2 +
(uκ− τ)

2

ξ2
, (17)

with

κ =
√

(3λ2 − 3λµ+ µ2) (λ2 − λµ+ µ2),

τ = −cµ(µ− 2λ) < 0,

ξ = 2λ2 − 2λµ+ µ2 = 2λ2 + µ(µ− 2λ) > 0,

r2 =
c2
(
λ2 − λµ+ µ2

) (
λ(µ− λ)

(
3λ2 − 3λµ+ µ2

)
+ (2λ− µ)2

)
λ(µ− λ) (2λ2 − 2λµ+ µ2)

2 > 0,

which describes an ellipse for 0 < λ < µ/2. Let us denote the set by

Ẽ =

{
(u, v) ∈

[
τ − rξ
κ

,
τ + rξ

κ

]
× R

∣∣∣ v2 +
(uκ− τ)2

ξ2
= r2

}
.
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BVM: Solution of the functional equation (13). Note that in order to solve the functional equa-
tion, it suffices to compute ν̃(s, s), for Re[s] ≥ 0.
To this purpose, we take s1 with s1 ∈ (s−1 , s

+
1 ) and s±2 (s1) = u ± iv, with (u, v) ∈ Ẽ. For all such

(s1, s
±
2 (s1)) pairs, the l.h.s. of (13) becomes zero, and hence, for all s2 = s±2 (s1), we have

ν̃(s1, s1)

s1
=

−c
f(s1, s2)

ν̃(s2, s2)

s2
=
f(s2, s1)

−cs2
ν̃(s2, s2),

where in the last equality we have used the fact that (s1, s2) are roots of k̃(s1, s2) = 0. For s1 ∈
(s−1 , s

+
1 ), ν̃(s1,s1)/s1 is real valued, thus,

Re
[
−if(s2, s1)ν̃(s2, s2)/cs2

]
= 0,

with f(s2, s1)/cs2 = (s2λ+ c+ s1(λ−µ))/cs2. For s2 = u+ iv, (u, v) ∈ Ẽ and s1 given in Equation
(16), the above simplifies to

−if(s2, s1)

cs2
=

λv
(
2u(λ− µ)2 − cµ

)
c (2λ2 − 2λµ+ µ2) (u2 + v2)

− i
λ
(
µu(c+ 2λu− µu) + v2

(
2λ2 − 2λµ+ µ2

))
c (2λ2 − 2λµ+ µ2) (u2 + v2)

(18)

:= a(u, v) + ib(u, v), (u, v) ∈ Ẽ. (19)

Next, we transform the problem into a Riemann-Hilbert problem on the unit circle D. For this
purpose, we define φ̃ (with inverse ψ̃) to be a conformal mapping of the interior of the unit circle
D onto the region bounded by Ẽ with normalization conditions φ̃ (−1) = τ−rξ

κ , φ̃(0) = 2τ
κ , and

φ̃ (1) = τ+rξ
κ . That allows us to translate the Riemann-Hilbert BVP on and inside Ẽ to the following

Riemann-Hilbert BVP (cf. [20, Section I.3.5] and [14, Section 6]): LetD denote the unit circle contour
andD+ the interior of the unit circle, then the BVP, with a(·) and b(·) real known functions defined
on D,

Re[
(
a(t)− ib(t)

)
h(t)] = 0, t ∈ D, (20)

for some function h(·) analytic inD+ and continuous inD+∪D, has the following solution, cf. [14]
and [20, Section I.3.5],

h(w) = h0 Exp

(
1

2π

∫
t∈D

arctan

(
b(t)

a(t)

)
t+ w

t− w
1

t
dt

)
, w ∈ D+, (21)

where h0 is a constant and

arctan

(
b(t)

a(t)

)
=

1

2i
log

(
a(t) + ib(t)

a(t)− ib(t)

)
.

Considering the conformal mapping from the ellipse Ẽ to the unit circle D, say ψ̃(·), which is
explicitly expressed in the Jacobi elliptic function (the sine of the amplitude – sinus amplitudinis
– or sn, see, e.g., [4, Sections 24–25]), yields, for s2 inside the ellipse Ẽ,

ν̃(s2, s2) = h0 Exp

 1

4πi

∫
t∈Ẽ

1

2i
log

(
a(ψ̃(t)) + ib(ψ̃(t))

a(ψ̃(t))− ib(ψ̃(t))

)
ψ̃(t) + s2

ψ̃(t)− s2
1

ψ̃(t)
dψ̃(t)

 , (22)
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with a(·) and b(·) defined in (19). The constant h0 is determined from the normalizing condition
ν̃(0, 0) = 1. With the above analysis, we can compute the LST of the total workload, based on the
conformal mapping ψ̃(·). That enables us to explicitly determine ν̃(s1, s2) as defined in Equation
(13). As evident from Equation (22), this is quite cumbersome and typically leads to expressions
in which one needs to perform a difficult computational procedure as they involve inverting the
LST, which is in terms expressed using the Jacobi elliptic function. In addition to the numerical
complications, due to the nature of the solution of the BVP, it is difficult to gain probabilistic insight
into the problem at hand.
In addition to the above mentioned hurdles, it is also important to note that by definition ν̃(s2, s2)

is analytic for Re[s2] = u ≥ 0, but the domain Ẽ requires the analytic continuation of ν̃(s2, s2) to
Re[s2] = u ≥ (τ−rξ)/κ (note that (τ−rξ)/κ < 0). This would constitute one further hurdle in the
analysis.
For all aforementioned reasons, we instead focus on the heavy-traffic setting of the model and
solve the resulting simpler BVP.
Note that the above analysis is very similar to the one performed in [20, Section III.1], as also there
the problem at hand (of two queues in parallel under the join the shortest queue routing protocol)
yields a Riemann-Hilbert problem on an ellipse, cf. [2]. Because of the similarities between the two
problems, one could further investigate other possible equivalent expressions to (22) pertaining to
a meromorphic expansion of the equation which could be explicitly inverted, cf. [20, Section III.1.4,
Equation (4.11)].

5 Heavy-traffic analysis of the joint workload distribution

In this section, we shall determine the heavy-traffic limit of the LST of the scaled joint workload
distribution of the symmetric model in stationarity. In what follows, we use functional equation
(13). Let ρ be the load on each of the two queues (ρ = λ/µ). We scale the functional equation by
replacing s1 by

(
1/2− ρ

)
s1, and s2 by

(
1/2− ρ

)
s2. After dividing by −2µc in (13) and taking the

limit ρ ↑ 1/2, we obtain the following functional equation

k̃?(s1, s2)

s1s2
ν̃?(s1, s2) =

ν̃?(s1, s1)

s1
+
ν̃?(s2, s2)

s2
, (23)

where ν̃?(s1, s2) = lim
ρ↑1/2

E(e−s1(
1/2−ρ)V1−s2(1/2−ρ)V2) and

k̃?(s1, s2) = − lim
ρ↑1/2

1

2µc
(
1/2− ρ

)2 k̃
((

1/2− ρ
)
s1,
(
1/2− ρ

)
s2

)
= s1 + s2 +

µ

8c

(
s1 − s2

)2
. (24)

There is one unknown function in the r.h.s. of (23): ν̃?(s, s). We calculate this unknown function
using the BVM by applying Step A and Step B discussed in Section 4.

Kernel analysis. To apply the BVM, one needs to investigate the zeros of kernel k̃?(s1, s2). By
setting k̃?(s1, s2) = 0, we obtain

s±2 (s1) =
−1 + µ

4cs1 ±
√

1− µ
c s1

µ
4c

. (25)
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Note that s±2 (s1) has a single branching point at s1 = c
µ . For real valued s1 with s1 > c/µ, the

function s±2 (s1) is complex valued. Letting s±2 (s1) = u± iv, we obtain

u2 + v2 = s+2 (s1)s−2 (s1) =

(
−1 + µ

4cs1
)2 − 1 + µ

c s1(
µ
4c

)2 , (26)

and

2u = s+2 (s1) + s−2 (s1) =
−1 + µ

4cs1
µ
8c

. (27)

Computing s1 = u+ 3c/µ from the above equation and substituting it into (26), we have

u2 + v2 =

(
µ
4c

)2
u2 − 1 + µ

c u+ 4(
µ
4c

)2 . (28)

Simplifying the above equation yields

v2 =
16c

µ

(
u+

3c

µ

)
, (29)

which describes a parabola in the complex plane. We will restrict ourselves to the following set:

E =

{
(u, v) ∈ (−3c

µ
,∞)× R | v2 =

16c

µ

(
u+

3c

µ

)}
.

BVM: Solution of the functional equation (23). Now we take s1 with s1 > c/µ and s±2 (s1) =

u ± iv, with (u, v) ∈ E. For all such (s1, s
±
2 (s1)) pairs, the r.h.s. of (23) becomes zero, and hence,

for all s2 = s±2 (s1), we have
ν̃?(s2, s2)

s2
= − ν̃

?(s1, s1)

s1
. (30)

For s1 > c/µ, the r.h.s. of the above equation is real, thus yielding

Re
[
g(s2)

]
= 0, for s2 = s±2 (s1) = u± iv, with (u, v) ∈ E\{(0, 0)}, (31)

where g(s2) = i ν̃
?(s2,s2)
s2

. Notice that ν̃?(s2, s2) is analytic for Re[s2] ≥ 0. Below, we prove, in
Lemma 5.3, that ν̃?(s2, s2) is analytic on the strip −3c/µ < Re[s2] < 0. For clarity of exposition, we
postpone the proof of this lemma until after Theorem 5.2, at which point we will have introduced
all necessary notation.
We thus see that g(s2) is analytic inside the contour E, say E+, except for s2 = 0 which is a pole
in E+. The above problem now reduces to a Riemann-Hilbert problem with a pole, and with
boundary E, see [20, Section I.3.3]. To transform it into a (standard) Riemann-Hilbert problem on
the unit circle D, we define φ (with inverse ψ) to be a conformal mapping of the interior of the
unit circle D onto the region bounded by E with normalization conditions φ (−1) = ∞, φ(0) =

0, and φ (1) = −3c/µ. That allows us to translate the Riemann-Hilbert BVP on and inside E to
the following simple Riemann-Hilbert BVP with a pole (cf. [20, Section I.3.3] and [14, Section 6]):
Defining h(w) := g(φ(w)), we obtain for h(·) on the unit circle D:

Re[h(w)] = 0, w ∈ D\{0}, (32)
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with h(·) analytic inD+\{0} and continuous inD+∪D\{0}. The solution of the BVP (32) is, cf. [14]
and [20, Section I.3.3]:

h(w) = iα+ βw − β̄

w
, w ∈ D+ ∪D\{0}, (33)

where α, β are constants that we will calculate explicitly in Theorem 5.2. This determines g(x) =

h(ψ(x)); substituting it in the above equation we obtain

g(s2) = iα+ βψ(s2)− β̄

ψ(s2)
, s2 ∈ E+ ∪ E\{0}, (34)

where ψ(·) is the conformal mapping from the parabola E to the unit circle D. Since g(s2) =

iν̃?(s2, s2)/s2, we obtain for Re[s2] > −3c/µ,

ν̃?(s2, s2) = αs2 − i β ψ(s2)s2 + i
β̄s2
ψ(s2)

. (35)

With that we have calculated the LST of the total workload in heavy traffic, based on the conformal
mapping ψ(s2). Before materializing this in Theorem 5.2, we give an explicit expression for ψ(s2)

in the next lemma. That will enable us to explicitly determine ν̃?(s2, s2) in Theorem 5.2.

Lemma 5.1. For z ∈ C, we have a conformal map ψ(z) which maps the interior of parabola (29) onto the
interior of the unit circle D, and it is given explicitly as follows:

ψ(z) =
1−
√

2 cosh(π4
√

µ
c z − 1)

1 +
√

2 cosh(π4
√

µ
c z − 1)

. (36)

Proof. The conformal mapping ψ(z) is obtained by taking the composition of the following con-
formal mappings:

i. The conformal mapping η(z) = z − c
µ , where z = x + iy, maps parabola y2 = 16c

µ (x + 3c
µ )

onto parabola y2 = 16c
µ (x+ 4c

µ ).

ii. From [9, p.113], we have that the conformal mapping ξ(z) = i cosh
(
π
4

√
µ
c z
)

maps the inte-

rior of the parabola y2 = 16c
µ (x+ 4c

µ ) onto the interior of the upper half-plane Im[ξ] > 0.

iii. As shown in [16, p. 326, Equation (6)], the conformal mapping w(z) = 1+i
√
2z

1−i
√
2z

maps the
upper half-plane (i.e., Im[z] > 0 ) onto the interior of the unit circle |w| < 1.

It follows from [9, Theorem III], that a composition of conformal mappings again is a conformal
mapping. Hence the composition mapping ψ(z) := w(ξ(η(z))) conformally maps the interior of
the parabola (29) onto the interior of the unit circle D.

Now we state the first main theorem of this section, in which we obtain an explicit expression for
the total stationary workload LST in heavy traffic.

Theorem 5.2. The scaled total workload LST in heavy traffic is given by, for Re[s] > −3c/µ,

lim
ρ↑1/2

E
(
e−s(

1/2−ρ)(V1+V2)
)

=
π

4

µ

c

s

cosh(π2
√

µ
c s− 1)

. (37)
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Proof. Substituting ψ(z) from Lemma 5.1 in (35) yields

ν̃?(s, s) = αs− i β

(
1−
√

2 cosh(π4
√

µ
c s− 1)

1 +
√

2 cosh(π4
√

µ
c s− 1)

)
s

+ i β̄

(
1 +
√

2 cosh(π4
√

µ
c s− 1)

1−
√

2 cosh(π4
√

µ
c s− 1)

)
s. (38)

Since ν̃?(0, 0) = 1, we obtain from the above equation β̄ = π
16
µ
c i, and since ν̃?(∞,∞) = 0, we

obtain α = −π8
µ
c . Substituting the values of α, β and β̄ into the above equation and thereafter

simplifying it, we obtain

ν̃?(s, s)

= −π
8

µ

c

[
1 +

1

2

1−
√

2 cosh(π4
√

µ
c s− 1)

1 +
√

2 cosh(π4
√

µ
c s− 1)

+
1

2

1 +
√

2 cosh(π4
√

µ
c s− 1)

1−
√

2 cosh(π4
√

µ
c s− 1)

]
s. (39)

The theorem follows after some further simplifications and using the trigonometric square formula
cosh2 x =

(
cosh(2x) + 1

)
/2.

It is now convenient to formulate and prove the postponed Lemma 5.3. As we have discussed in
Step A of Section 4, we are interested in finding the LST in the domain Re[s2] ≥ 0. In the previous
theorem, we have calculated the LST expression ν̃?(s2, s2) in Re[s2] > −3c/µ. We want to show that
ν̃?(s2, s2) is analytic in the strip −3c/µ < Re[s2] < 0. From (37), we have an explicit expression and
it is sufficient to show that the denominator cosh(π2

√
µ
c s2 − 1) has no zeros on that strip.

Lemma 5.3. The LST of the total scaled workload in heavy traffic, as given in (37), is analytic on the strip
−3c/µ < Re[s2] < 0.

Proof. In the proof of Lemma 5.1, we observed that cosh(π2
√

µ
c s2 − 1) is a conformal mapping for

Re[s2] > −3c/µ, and hence it is an analytic function for Re[s2] > −3c/µ. Moreover, the reciprocal
of this analytic function is also analytic (see [16, p. 74]) if the denominator has no zeros in that
domain. To show that the denominator cosh(π2

√
µ
c s2 − 1) has no zeros in −3c/µ < Re[s2] < 0, we

solve

0 = cosh(
π

2

√
µ

c
s2 − 1) =

e
π
2

√
µ
c s2−1 + e−

π
2

√
µ
c s2−1

2
, (40)

so
e
π
2

√
µ
c s2−1 = eπi−

π
2

√
µ
c s2−1, (41)

and hence π
2

√
µ
c s2 − 1 = πi− π

2

√
µ
c s2 − 1+2πni, n ∈ Z. This implies that the zeros of the function

cosh(π2
√

µ
c s2 − 1) are s2 = c

µ

(
1− (2n+ 1)2

)
, n ∈ Z. There are two different cases for the zeros

we need to discuss: (i) when n = 0 or n = −1, we have s2 = 0, and in this case we know ν̃?(s2, s2)

is 1. (ii) When n ∈ Z\{0,−1}, we have s2 = c
µ

(
1− (2n+ 1)2

)
≤ −8c/µ < −3c/µ, which concludes

the claim of the lemma.
Note that instead of working directly with the roots appearing in the simplified Equation (36),
one could consider the roots of the two denominators appearing in Equation (39), i.e., the zeros of
1±
√

2 cosh(π4
√

µ
c s2 − 1).

Equivalently, one can prove the analytic continuation using Euler’s formula, cf. [8, Equation (3.3)],
which converts the hyperbolic cosine into an infinite product (we use this approach to rewrite
Equation (36) as an infinite product expansion, cf. Equation (50)). Using the infinite product
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expansion, it becomes evident that, in the domain Re[s2] > −8c/µ, there are no roots of the denom-
inator.

The LST of the total workload lends itself to explicitly determine the heavy-traffic stationary work-
load distribution as shown in the following Lemma:

Lemma 5.4. With f(1/2−ρ)(V1+V2)(·) the probability density function of the scaled total workload (1/2 −
ρ)(V1 + V2), we have

lim
ρ↑1/2

f(1/2−ρ)(V1+V2)(x) =

∞∑
n=1

(−1)n+1(2n+ 1)
c

µ

(
(2n+ 1)2 − 1

)
e−

c
µ ((2n+1)2−1)x, x > 0. (42)

Moreover, the limiting distribution as ρ ↑ 1/2 of the scaled total workload (1/2 − ρ)(V1 + V2) is infinitely
divisible and is distributed like

∞∑
n=1

En
c
µ

(
(2n+ 1)2 − 1

) , (43)

where {En}n∈N is a sequence of independent and identically exponentially distributed random variables
with rate 1.

The infinite divisibility of the scaled total workload distribution is a consequence of the infinite
divisibility of the exponential distribution.
Before proceeding with the proof of Lemma 5.4, we review the needed relevant results in the
remark below.

Remark 5.5. To compute the limiting probability density function of the scaled total workload in
heavy traffic, we need to invert the LST (37). The appearance of LSTs with a hyperbolic cosine and
their probabilistic interpretation has a long standing tradition in probability theory, see, e.g., [8]
and the references therein. As we shall need these results for the proof of Lemma 5.4, we review
them shortly below.
Consider a random variable defined as

C =
2

π2

∞∑
n=1

En
(n− 1/2)2

(44)

with {En}n∈N a sequence of independent and identically exponentially distributed random vari-
ables with rate 1. Then,

E
(
e−sC

)
= E

 ∞∏
n=1

e
− 2s
π2(n−1/2)2

En

 =
1∏∞

n=1

(
1 + 2s

π2(n−1/2)2

) =
1

cosh
√

2s
, (45)

where the last equality is known as Euler’s formula, cf. Equation (3.3) in [8]. Moreover, using the
Mittag-Leffler expansion, based on the poles of the r.h.s. of Equation (45), yields

E
(
e−sC

)
= π

∞∑
n=1

(−1)n(n− 1/2)

s+ (n− 1/2)2π2/2
,
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cf. [40, Equation (2.21)]. Noting that 1
s+(n−1/2)2π2/2 =

∫∞
x=0

e−sxe−(n−1/2)2π2x/2dx, this last expres-
sion yields the density function of the random variable C, more concretely

fC(x) = π

∞∑
n=1

(−1)n(n− 1/2)e−(n−
1/2)2π2x/2, x > 0. (46)

Moreover, equivalent expressions to (46) can be produced using the reciprocal relation fC(x) =(
2
πx

)3/2
fC
(

4
π2x

)
, cf. [8, Table 1 (continued) Row 5]. This immediately implies that

fC(x) =

√
2

πx3

∞∑
n=1

(−1)n(2n− 1)e−(2n−1)
2/2x, x > 0,

see [8, Equation (3.11)].
As stated in [40, page 441], this turns out to be the density for the maximum displacement of a
one-dimensional standard Brownian motion in a fixed time interval or, as stated in [8, Table 2 Row
3], the density of the hitting time of 1 of the one-dimensional standard Brownian motion with
reflection at 0.
To further understand the infinite divisibility of the hitting time, the interested reader is referred
to [24, page 550], where the idea relies on the fact that the hitting time from 0 to 1 can be divided
into the hitting time from 0 to any point in the interval (0, 1) plus the independent (by the strong
Markov property) hitting time from that point to 1. By putting more and more points between 0

and 1, the hitting time can be expressed as the limit of a null triangular array, hence giving rise to
the infinite divisibility property expressed in (44).
A similar approach can be applied for the random hitting time of a one-dimensional standard
Brownian motion with drift µ ≥ 0 to {±1}, say C ′. As shown in [33, Theorem 7.1], the random
hitting time has the following representation

C ′ = 2

∞∑
n=1

En
µ2 + π2(n− 1/2)2

, (47)

and it is shown, by performing the same computations as in (45), to have the following LST

E
(
e−sC

′
)

=
coshµ

cosh
√

2s+ µ2
.

Proof of Lemma 5.4. We express the LST (37) as an infinite product of LST of independent exponen-
tially distributed random variables. To this purpose, we need the following two identities

1

cosh
√
s

=

∞∏
n=1

(
1 +

s

π2(n− 1/2)2

)
, (48)

which is Euler’s formula, cf. [8, Equation (3.3)]. Moreover,

cosπs =

∞∏
n=0

(
1−

(
s

n+ 1/2

)2
)
.

From this last equation, by taking out the n = 0 term, we can show that

∞∏
n=1

(
1−

(
1/2

n+ 1/2

)2
)

= lim
s→1/2

cosπs

1− 4s2
=
π

4
. (49)
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Using (48) and (49), yields after straightforward computations that

π

4

µ

c

s

cosh(π2
√

µ
c s− 1)

=
µs

c

∏∞
n=1

(
1−

(
1/2

n+1/2

)2)
∏∞
n=1

(
1 +

π2µs
4c −

π2

4

π2(n−1/2)2

)

=

∏∞
n=2

(
1−

(
1/2

n−1/2

)2)
∏∞
n=2

(
1 +

µs
4c−

1
4

(n−1/2)2

)
=

∞∏
n=1

c
µ

(
(2n+ 1)2 − 1

)
s+ c

µ

(
(2n+ 1)2 − 1

) . (50)

Note that the last equality reveals that the LST at hand is associated with the random variable of
Equation (43). For convenience, we shall denote the random variable of Equation (43) by C̃.
We now turn our attention to the computation of the density function. Note that the conventional
approach to produce the density function (based on a meromorphic expansion) doesn’t work as
the corresponding (meromorphic) series diverges. We shall overcome this following the approach
of [40]. More concretely, we consider, for N > 0,

N∏
n=1

c
µ

(
(2n+ 1)2 − 1

)
s+ c

µ

(
(2n+ 1)2 − 1

) =

N∑
n=1

c
µ

(
(2n+ 1)2 − 1

)
s+ c

µ

(
(2n+ 1)2 − 1

) N∏
k=1,k 6=n

k(k + 1)

k(k + 1)− n(n+ 1)

=

N∑
n=1

c
µ

(
(2n+ 1)2 − 1

)
s+ c

µ

(
(2n+ 1)2 − 1

) (−1)n+1(2n+ 1)N !(N + 1)!

(N − n)!(N + n+ 1)!

=

∞∑
n=1

(−1)n+1(2n+ 1)

c
µ

(
(2n+ 1)2 − 1

)
s+ c

µ

(
(2n+ 1)2 − 1

)
× (N − n+ 1) · · ·N

(N + 2) · · · (N + n+ 1)
1{n≤N}, (51)

by taking partial fractions and noting that (2n + 1)2 − 1 = 4n(n + 1). Note that, as N → ∞, the
l.h.s. of Equation (51) converges to (50). The Laplace transform on the r.h.s. of Equation (51) can
be easily inverted, from which we obtain that the density function of (50) is given by

lim
N→∞

∞∑
n=1

(−1)n+1(2n+ 1)
c

µ

(
(2n+ 1)2 − 1

)
e−

c
µ ((2n+1)2−1)x

× (N − n+ 1) · · ·N
(N + 2) · · · (N + n+ 1)

1{n≤N}, x > 0. (52)

Applying the Dominated Convergence Theorem immediately yields Equation (42) as the terms
(with respect to N ) inside the series are bounded

(N − n+ 1) · · ·N
(N + 2) · · · (N + n+ 1)

≤ 1, ∀ 1 ≤ n ≤ N,

as

lim
N→∞

(−1)n+1(2n+ 1)
c

µ

(
(2n+ 1)2 − 1

)
e−

c
µ ((2n+1)2−1)x (N − n+ 1) · · ·N

(N + 2) · · · (N + n+ 1)
1{n≤N}

= (−1)n+1(2n+ 1)
c

µ

(
(2n+ 1)2 − 1

)
e−

c
µ ((2n+1)2−1)x,
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and the series
∞∑
n=1

(−1)n+1(2n+ 1)
c

µ

(
(2n+ 1)2 − 1

)
e−

c
µ ((2n+1)2−1)x

converges for x > 0. From [29, Theorem 8.2, page 60], it follows that (42) is indeed the density
function in question. This is intuitively validated by noting that, if we were to directly use the
Mittag-Leffler expansion, based on the poles of the r.h.s. of Equation (50) this would yield

π

4

µ

c

s

cosh(π2
√

µ
c s− 1)

=

∞∑
n=1

(−1)n+1(2n+ 1)

c
µ

(
(2n+ 1)2 − 1

)
s+ c

µ

(
(2n+ 1)2 − 1

) .
However the r.h.s. of the above equation does not converge, but still yields the same result as in
(42). This was noticed and commented upon on [40, page 441].

We now state the most important result of this section. In (37), we have computed an explicit
expression for the scaled total workload LST in heavy traffic. In the following theorem, we give an
explicit expression for the scaled joint workload LST in heavy traffic.

Theorem 5.6. For Re[sj ] > −3c/µ, j = 1, 2, the scaled joint workload LST in heavy traffic is given by:

lim
ρ↑1/2

E(e−s1(
1/2−ρ)V1−s2(1/2−ρ)V2) =

π

4

µ

c

s1s2

k̃?(s1, s2)

[
1

cosh(π2
√

µ
c s1 − 1)

+
1

cosh(π2
√

µ
c s2 − 1)

]
, (53)

where k̃?(s1, s2) = s1 + s2 + µ
8c

(
s1 − s2

)2.

Proof. By substituting ν̃?(sj , sj), j = 1, 2 (obtained from the LST (37)) into Equation (23) we obtain
ν̃?(s1, s2).

Remark 5.7. Notice that letting s2 → 0 in (53), the r.h.s. tends to s1
k̃?(s1,0)

= 1
1+ µ

8c s1
, which is the

heavy-traffic limit LST of the marginal workload as given in Lemma 3.3.

As a corollary we compute the first and second stationary moments of the joint workload in heavy
traffic.

Corollary 5.8. For j = 1, 2, it holds that

E
(

limρ↑1/2
(
1/2− ρ

)
Vj

)
=

µ

8c
,

E
(

limρ↑1/2
(
1/2− ρ

)2
V 2
j

)
=

µ2

32c2
,

E
(

limρ↑1/2
(
1/2− ρ

)2
V1V2

)
=

µ2

32c2
π2 − 9

3
,

R
(

limρ↑1/2

((
1/2− ρ

)
V1,
(
1/2− ρ

)
V2

))
=

2

3
π2 − 7 ≈ −0.4203,

where R(·, ·) is the correlation coefficient.

Proof. The marginal moments of the workload Vj , j = 1, 2 in heavy traffic are computed directly
from Lemma 3.3. Equivalently, Expression (43) can be used to compute the moments, namely

E(C̃) =

∞∑
n=1

1
c
µ

(
(2n+ 1)2 − 1

) =
µ

4c
,

Var(C̃) =

∞∑
n=1

1
c2

µ2

(
(2n+ 1)2 − 1

)2 =
µ2

16c2
π2 − 9

3
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with C̃ denoting the scaled total workload lim
ρ↑1/2

(1/2 − ρ)(V1 + V2). The joint moment of lim
ρ↑1/2

(1/2 −

ρ)2V1V2 is computed by differentiating the LST expression (53) w.r.t. s1 and s2.

6 Numerical results

In this section, we verify the obtained heavy-traffic results via simulations. Note that there are sit-
uations where simulation is not very efficient, and one such scenario appears in the heavy-traffic
analysis of queueing models; see, e.g., [6]. Here it has been noted repeatedly that the standard
simulation methods do not perform satisfactorily, one main problem being that the run lengths
need to be exceedingly large to obtain even moderate precision. We have conducted simulations
to validate our findings. One expects that as ρ ↑ 1/2, the correlation coefficient tends to the ex-
act correlation coefficient R

(
limρ↑1/2

(
(1/2− ρ)V1, (1/2− ρ)V2

))
= −0.4203. For the parameters

c = 0.1 and ρ = 0.49, we perform 1000 batches of MaxTime (2 × 107) simulations and calculate
the correlation coefficient, the lower limit (LL), and the upper limit (UL) of the 95% confidence in-
terval using the 1000 samples of the correlation coefficients. The runtime of each simulation takes
approximately 2 hours.

Number of Runs = 1000, MaxTime = 2× 107

ρ

0.2

0.4

0.47

0.49

Confidence Interval LL Simulated R(V1, V2) Confidence Interval UL
−0.3954 −0.3954 −0.3954

−0.4185 −0.4184 −0.4184

−0.4202 −0.4200 −0.4200

−0.4213 −0.4208 −0.4202

Table 1: Simulated correlation coefficient. The theoretical value for ρ→ 1/2 is −0.4203.
By properties of the correlation coefficient, R(V1, V2) equals R((1/2− ρ)V1, (1/2− ρ)V2).

From Table 1, we observe that as ρ approaches 0.5 from below, the simulation result approaches
R
(

limρ↑1/2
(
(1/2− ρ)V1, (1/2− ρ)V2

))
= −0.4203. We also observe that the upper and lower limit

of the confidence interval increase as ρ approaches 1/2.

Remark 6.1. Notice from the simulation results in Table 1 that the correlation coefficient of the
joint workload is not very sensitive to the traffic load.

Remark 6.2. The scaled two-dimensional workload LST ν̃?(s1, s2) can be inverted numerically,
cf. [18, 22]. We have not been able to explicitly invert the LST. The scaled marginal distributions
in heavy traffic are exponential (cf. Lemma 3.3), which suggests that the two-dimensional scaled
workload distribution in heavy traffic might be a bivariate exponential distribution. It is discussed
in [12, Theorem 4.2] that the minimal correlation of any bivariate exponential distributions is 1 −
π2
/6 = −0.6449. This does not exclude the possibility that the joint workload in heavy traffic has a

bivariate exponential distribution, as our correlation equals −0.4203.

For further validation of our heavy-traffic results, we plot the empirical cumulative distribution
function (ECDF) of the scaled total workload in heavy traffic. For the parameters mentioned above,
we first compute the inverse Laplace transform of the expression given in (37) by using Talbot’s
method [1] in Matlab, then compare it with the simulation results. The simulations are performed
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for the load ρ = 0.2, 0.3, 0.4 and 0.49. Each simulation is performed for MaxTime (1 × 109) which
takes approximately 1 hour. In Figure 1, one can see that as ρ approaches 0.49 the simulation
results also approach the results obtained from the empirical cumulative distribution computed
numerically from the inverse LST of the expression given in (37), i.e., ECDF jnvLST.
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x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
(x

)

Empirical CDF of ((1/2 - )*(V
1
+V

2
))

Simulation  = 0.2
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ECDF_invLST

Figure 1: Empirical cumulative distribution of the scaled total workload in heavy traffic.

7 Process limit in heavy traffic

Our main result so far in Theorem 5.6 established the heavy-traffic limit of the stationary joint
distribution of the scaled workloads in the symmetric case. In this section, we investigate the
heavy-traffic limit of the entire process of scaled workloads, under less restrictive assumptions on
the input processes and the server switching process. We show that the stationary distribution
of this limit process corroborates with the limit distribution of Theorem 5.6, establishing that the
time-stationary limit and the heavy-traffic limit can be interchanged. Similar interchanges of limits
have been previously demonstrated for different models in [25] and [42].
As mentioned above, for the analysis in this section, we relax our assumptions regarding the input
processes and the server switching process between the queues. For the two queues, we assume
Lévy subordinator inputs instead of constant fluid flows, and the server visit periods form an
alternating renewal process with possibly dependent consecutive visiting periods to server 1 and
server 2. In the following, we make our assumptions precise.
We start with the server switching process: Specifically, we consider an i.i.d. sequence of nonneg-
ative random pairs {(T1(k), T2(k)), k ≥ 1} distributed like (T1, T2) where E(Tj)

2, j = 1, 2, are
assumed finite (the marginal distributions of the Tj are no longer assumed to be exponential). As
before 1/cj = E(Tj), and we denote σ2

j = Var[Tj ]. The covariance between consecutive visit periods
to queue 1 and queue 2 is denoted by ζ = Cov(T1, T2).
Let S0 = 0, Sn =

∑n
k=1(T1(k)+T2(k)) for n ≥ 1 and set I(t) = 1 if t ∈

⋃∞
n=0[Sn, Sn+T1(n+1)) and

I(t) = 0 otherwise. Assuming that T1 +T2 is not almost surely (a.s.) zero, then with p1 := c2/(c1+c2)
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it is well known that 1
t

∫ t
0
I(u)du→ p1 a.s. and it is also known that

1√
n

∫ nt

0

(I(u)− p1)du (54)

converges weakly (in D[0,∞) endowed with the Skorohod J1-topology) to a zero drift Brownian
motion with variance given by

σ2 =
Var

(∫ T1+T2

0
I(u)du− p1(T1 + T2)

)
E(T1 + T2)

=
Var(T1 − p1(T1 + T2))

E(T1 + T2)

=
c21σ

2
1 − 2c1c2ζ + c22σ

2
2

(c1 + c2)3
c1c2 . (55)

For a central limit theorem version of this, see [28, 41]. This central limit version may also be
concluded from [7, Theorem. 3.2, page 178]. The functional limit theorem may be concluded from,
e.g., [26, 27]. Let us denote this Brownian motion by σW (t) where {W (t), t ≥ t} denotes a Wiener
process (standard Brownian motion).
Next we describe the input processes into the two queues, which we assume to be independent
of the just described server switching process. We no longer assume that the input processes are
constant fluid flows, but instead let the input into Qj be a Lévy process {Jj(t), t ≥ 0}, j = 1, 2. To
be precise, we assume that {J(t) ≡ (J1(t), J2(t)), t ≥ 0} is a bivariate subordinator with Laplace
exponent −η(s) where, for (s1, s2) ∈ R2

+,

η(s1, s2) = b1s1 + b2s2 +

∫
R2

+

(1− e−s1x1−s2x2)Π(dx1,dx2). (56)

Here (b1, b2) ∈ R2
+ and Π is the Lévy measure satisfying

∫
R2

+
xj ∧ 1 Π(dx1,dx2) < ∞ for j =

1, 2. However, here we actually assume that
∫
R2

+
x2jΠ(dx1,dx2) < ∞, which is equivalent to the

assumption that E(J2
j (1)) < ∞ for j = 1, 2. Consistent with our earlier notation, for j, i ∈ {1, 2},

we write

λj = E(Jj(1)) = bj +

∫
R2

+

xjΠ(dx1,dx2) =
∂η

∂sj
(0+, 0+);

σji = Cov(Jj(1), Ji(1)) =

∫
R2

+

xjxiΠ(dx1,dx2) =
−∂2η
∂sj∂si

(0+, 0+) , (57)

and Σ = (σji)j,i∈{1,2} is the covariance matrix. Then n−1/2
(
J1(nt)− λ1nt, J2(nt)− λ2nt

)
con-

verges weakly to a zero mean (2-dimensional) Brownian motion with covariance matrix Σ. Let
us denote this Brownian motion by {B(t) ≡ (B1(t), B2(t)), t ≥ 0}. Having assumed that the
processes {(T1(k), T2(k)), k ≥ 1} and {J(t), t ≥ 0} are independent, the Brownian motions W
(one-dimensional) and B (two-dimensional) are independent as well.

We are now ready to describe the buffer content process of the two queues. The cumulative input
to Qj until time t is Jj(t), j = 1, 2. At instances where I(t) = 1 (resp., I(t) = 0) the server is
working at Q1 (resp., Q2) at a rate of µ1 (resp., µ2). If we let p2 = 1 − p1, and define the free
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processes

X1(t) = J1(t)− µ1

∫ t

0

I(u)du

= J1(t)− λ1t+ (λ1 − p1µ1)t− µ1

∫ t

0

(I(u)− p1)du;

X2(t) = J2(t)− µ2

∫ t

0

(1− I(u))du (58)

= J2(t)− λ2t+ (λ2 − p2µ2)t+ µ2

∫ t

0

(I(u)− p1)du,

then the buffer content process associated with the j-th station (j = 1, 2) is given by the (continu-
ous) functional

Vj(t) = Xj(t)− inf
0≤u≤t

Xj(u) . (59)

As is natural in our model, we assume that λj > 0 for j = 1, 2 and that 0 < p1 < 1. Let us replace
(µ1, µ2) by a sequence (µn1 , µ

n
2 ), such that as n→∞,

√
n(p1µ

n
1 − λ1, p2µn2 − λ2)→ (θ1, θ2) . (60)

Although not necessary at this point, for later considerations we will assume that θj > 0, j =

1, 2. For each value of n, Xn
j (t) is the resulting free process with service rates µnj ; and V nj (t) =

Xn
j (t) − inf0≤u≤tX

n
j (u) the corresponding buffer content process of Qj , j = 1, 2. Observing that

µnj → λj/pj , it follows that n−1/2Xn(nt) converges weakly to

X?
1 (t) = −θ1t+B1(t)− λ1σ

p1
W (t),

X?
2 (t) = −θ2t+B2(t) +

λ2σ

p2
W (t).

In particular, the covariance matrix of the limiting Brownian motion is given by

Σ? =


σ11 +

λ2
1σ

2

p21
σ12 − λ1λ2σ

2

p1p2

σ12 − λ1λ2σ
2

p1p2
σ22 +

λ2
2σ

2

p22

 .

By the continuous mapping theorem it also follows that n−1/2V n(nt) converges weakly to V ?(t)
with V ?j (t) = X?

j (t)− inf0≤u≤tX
?
j (u), j = 1, 2.

In the previous sections, we considered the special case Jj(t) = λjt, so that σji = 0 for j, j = 1, 2. If
in addition σ > 0 (note that this assumption only excludes the case in which T1(k)/T2(k) is a fixed
constant), we can define X̂?

j =
pj
λjσ

X?
j and θ̂j =

pj
λjσ

θj , j = 1, 2. This results in

X̂?
1 (t) = −θ̂1t−W (t); X̂?

2 (t) = −θ̂2t+W (t) . (61)

Finally defining V̂ ?j (t) = X̂?
j (t) − inf0≤u≤t X̂

?
j (u), we observe that V̂ ?j (t) =

pj
λjσ

V ?j (t), so that in

order to study the stationary behavior of V ?(·) it suffices to study that of V̂ ?(t). From now on it
will be necessary that θ̂j > 0 for j = 1, 2, which is ensured by our earlier assumption that θj > 0.
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Let us first observe that for s ∈ R2
+ (actually for all s ∈ R2), from (61), it follows after straightfor-

ward computations that

k̂(s1, s2) ≡ logE
[
e−s1X̂

?
1 (1)−s2X̂

?
2 (1)
]

= θ̂1s1 + θ̂2s2 +
1

2
(s1 − s2)2 .

With L̂?j (t) = − inf0≤u≤t X̂
?
j (u), j = 1, 2, we know that V ?j (t) = 0, for every point of (right) increase

of L̂?j (t). From this and the martingale of [32], it may be concluded that the following is a zero mean
martingale:

k̂(s1, s2)

∫ t

0

e−s1V̂
?
1 (u)−s2V̂ ?2 (u)du− e−s1V̂

?
1 (t)−s2V̂ ?2 (t) + e−s1V̂

?
1 (0)−s2V̂ ?2 (0)

− s1
∫ t

0

e−s2Ṽ
?
2 (u)dL̂?1(u)− s2

∫ t

0

e−s1Ṽ
?
1 (u)dL̂?2(u) . (62)

It has become standard by now, see, e.g., [30, Corollary 2.3] (also from the theory of multivariate re-
flected Brownian motions on the nonnegative orthant), that if v̂?(s1, s2) is the LST of the stationary
version of V̂ ?, then taking expectations in Equation (62) yields

0 = tk̂(s1, s2)ν̂?(s1, s2)− ν̂?(s1, s2) + ν̂?(s1, s2)

− s1E
∫ t

0

e−s2Ṽ
?
2 (u)dL̂?1(u)− s2E

∫ t

0

e−s1Ṽ
?
1 (u)dL̂?2(u) (63)

and in particular for t = 1 we have

k̂(s1, s2)ν̂?(s1, s2) = s1f̂1(s2) + s2f̂2(s1) , (64)

where

f̂1(s2) = E
∫ 1

0

e−s2Ṽ
?
2 (u)dL̂?1(u),

f̂2(s1) = E
∫ 1

0

e−s1Ṽ
?
1 (u)dL̂?2(u) .

Our objective is to determine the unknown function in the l.h.s. of (64): ν̂?(s1, s2).
The present setting is in several respects much more general: a two-dimensional Lévy input pro-
cess, non-exponential visit periods, and asymmetry.
In the symmetric case, viz. for θ̂1 = θ̂2 = θ̂, the key functional equation (64) reduces to

s1 + s2 + 1
2θ̂

(s1 − s2)2

s1s2
ν̂?(s1, s2) =

f̂1(s2)

s2
+
f̂2(s1)

s1
, (65)

which is in essence identical to (23) for θ̂ = 4c/µ. In this case, the starting point of the analysis
matches, revealing that the results also match. It is important to note that, in the symmetric case,
although the analysis is identical to the one performed in Section 5, the setting of this section is
much broader than the one of Section 5.
In the analysis that follows, we do not restrict ourselves to a symmetric system as we did in Section
5, instead we consider general θ1, θ2. For this general setting, we calculate the unknown function
in the l.h.s. of (64) using the BVM by applying Step A and Step B in an analogous manner as in
Section 5. Unfortunately, several of the convenient simplifications that transpire in the symmetric
case and that eventually led to the elegant result of Theorem 5.2 are not allowed in the asymmetric
case θ1 6= θ2, as this can be seen in the analysis that follows and in the result of Theorem 7.2.

21



Kernel analysis. To apply the BVM, one needs to investigate the zeros of kernel k̂(s1, s2). By
setting k̂(s1, s2) = 0, we obtain

ŝ±2 (s1) = s1 − θ̂2 ±
√
θ̂22 − 2s1(θ̂1 + θ̂2). (66)

Note that ŝ±2 (s1) has a single branching point at s1 = θ̂22/2(θ̂1+θ̂2). For real valued s1 with s1 >
θ̂22/2(θ̂1+θ̂2), the function ŝ±2 (s1) is complex valued. Letting ŝ±2 (s1) = u±iv, we obtain, after straight-
forward computations, that

v2 = 2(θ̂1 + θ̂2)

(
u+

θ̂2(2θ̂1 + θ̂2)

2(θ̂1 + θ̂2)

)
, (67)

which describes a parabola in the complex plane. We shall restrict ourselves to the following set:

Ê1 =

(u, v) ∈ (−θ̂2(2θ̂1+θ̂2)/2(θ̂1+θ̂2),∞)× R | v2 = 2(θ̂1 + θ̂2)

(
u+

θ̂2(2θ̂1 + θ̂2)

2(θ̂1 + θ̂2)

) .

This domain will allow us to determine f̂1(·), while the symmetric domain obtained by considering
the roots ŝ±1 (s2) (which will result in a symmetric parabola with θ̂1 and θ̂2 interchanged) will allow
us to determine f̂2(·).

BVM: Solution of the functional equation (64). Notice that, by definition, f̂1(s2) is analytic for
Re[s2] ≥ 0. It still remains to show that f̂1(s2) is analytic on the strip−θ̂2(2θ̂1+θ̂2)/2(θ̂1+θ̂2) < Re[s2] <

0. We shall return to this point at a later stage, cf. Lemma 7.3.
Now we take s1 with s1 > θ̂22/2(θ̂1+θ̂2) and ŝ±2 (s1) = u± iv, with (u, v) ∈ Ê1. For all such (s1, ŝ

±
2 (s1))

pairs, the l.h.s. of (64) becomes zero, and hence, for all s2 = ŝ±2 (s1), we have

f̂1(s2)

s2
= − f̂2(s1)

s1
. (68)

For s1 > θ̂22/2(θ̂1+θ̂2), the r.h.s. of the above equation is real, thus yielding

Re

[
i
f̂1(s2)

s2

]
= 0, for s2 = ŝ±2 (s1) = u± iv, with (u, v) ∈ Ê1\{(0, 0)}. (69)

We thus see that f̂1(s2)/s2 is analytic inside the contour Ê1, say Ê+
1 , except for s2 = 0 which is a

pole in Ê+
1 . The above problem now reduces to a Riemann-Hilbert problem with a pole, and with

boundary Ê1, see [20, Section I.3.3]. To transform it into a (standard) Riemann-Hilbert problem on
the unit circle D, we define φ̂1 (with inverse ψ̂1) to be a conformal mapping of the interior of the

unit circle D onto Ê+
1 with normalization conditions φ̂1 (−1) =∞, φ̂1(0) =

1−
√
2 cos

(
πθ̂1

2(θ̂1+θ̂2)

)
1+
√
2 cos

(
πθ̂1

2(θ̂1+θ̂2)

) , and

φ̂1 (1) = − θ̂2(2θ̂1+θ̂2)
2(θ̂1+θ̂2)

. Following the same steps as in Section 5, leading to Theorem 5.2, we again

translate the Riemann-Hilbert BVP on and inside Ê1 to the simple Riemann-Hilbert BVP with a
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pole. The solution of the BVP (69) is:

f̂1(s2) =α1s2 − iβ1

ψ̂1(s2)−
1−
√

2 cos

(
πθ̂1

2(θ̂1+θ̂2)

)
1 +
√

2 cos

(
πθ̂1

2(θ̂1+θ̂2)

)
 s2

+ i
β̄1

ψ̂1(s2)−
1−
√
2 cos

(
πθ̂1

2(θ̂1+θ̂2)

)
1+
√
2 cos

(
πθ̂1

2(θ̂1+θ̂2)

)
s2, s2 ∈ Ê+

1 ∪ Ê1\{0}, (70)

where ψ̂1(·) is the conformal mapping from the parabola Ê1 to the unit circle D given in the fol-
lowing lemma and the constants α1 and β1, together with the full solution for the scaled buffer
content processes are given in Theorem 7.2.

Lemma 7.1. For z ∈ C and for j = 1, 2, the conformal map

ψ̂j(z) =

1−
√

2 cosh

(
π

2(θ̂1+θ̂2)

√
2(θ̂1 + θ̂2)z − θ̂2j

)
1 +
√

2 cosh

(
π

2(θ̂1+θ̂2)

√
2(θ̂1 + θ̂2)z − θ̂2j

) (71)

maps the interior of parabola

v2 = 2(θ̂1 + θ̂2)

(
u+

θ̂3−j(2θ̂j + θ̂3−j)

2(θ̂1 + θ̂2)

)
onto the interior of the unit circle D.

Proof. The proof of the lemma is identical to that of Lemma 7.1 and as such it is omitted.

Now we are in position to state the main theorem of this section, in which we obtain an explicit
expression for the scaled stationary buffer content process LST in heavy traffic.

Theorem 7.2. For j = 1, 2, the scaled stationary buffer content process LST in heavy traffic is given by,
for Re[sj ] > −θ̂j(2θ̂3−j+θ̂j)/2(θ̂1+θ̂2),

f̂j(s3−j) = E

[∫ 1

0

e−s3−j V̂
?
3−j(u)dL̂?j (u)

]

= s3−j

π sin

(
πθ̂j

2(θ̂1+θ̂2)

)
(
√

2 sin

(
πθ̂3−j

2(θ̂1+θ̂2)

)
+ 1

)2

[
−

cos

(
πθ̂j

θ̂1+θ̂2

)
+ 4

2 sin

(
πθ̂3−j

2(θ̂1+θ̂2)

)
+
√

2

+ 2
√

2

(
1

√
2 sin

(
πθ̂3−j

2(θ̂1+θ̂2)

)
+ 1

− 1

√
2 cosh

(
π
√

2(θ̂1+θ̂2)s3−j−θ̂2j
2(θ̂1+θ2)

)
+ 1

)

+
1

√
2

(
1

√
2 sin

 πθ̂3−j
2(θ̂1+θ̂2)

+1

− 1

√
2 cosh

π

√
2(θ̂1+θ̂2)s3−j−θ̂2j

2(θ̂1+θ̂2)

+1

) −√2

]
. (72)
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For j = 1, 2, the scaled joint stationary buffer content process LST in heavy traffic is given by, for Re[sj ] >

−θ̂j(2θ̂3−j+θ̂j)/2(θ̂1+θ̂2),

ν̂?(s1, s2) = E

[∫ 1

0

e−s1V̂
?
1 (u)−s2V̂ ?2 (u)du

]
=

=
s1s2

k̂(s1, s2)

(
f̂1(s2)

s2
+
f̂2(s1)

s1

)
, (73)

where k̂(s1, s2) = θ̂1s1 + θ̂2s2 + 1
2 (s1 − s2)2.

Proof. Setting s2 = 0 yields on the one hand that the l.h.s. of (70) is equal to f̂1(0) = θ̂1 and on
the other hand that the r.h.s. of (70) is equal to iβ̄1/ψ̂′1(0). Substituting ψ̂1(z) from Lemma 7.1 we
obtain the value for β1. Moreover, since f̂1(∞) = 0, we obtain the value for α1. The same approach
can also be used for the determination of f̂2(s1). After tedious, but straightforward computations,
Equation (72) follows.

It is now convenient to formulate and prove the postponed Lemma 7.3.

Lemma 7.3. For j = 1, 2, the j-th scaled stationary buffer content process LST in heavy traffic is analytic
on the strip −θ̂j(2θ̂3−j+θ̂j)/2(θ̂1+θ̂2) < Re[sj ] < 0.

Proof. Similar to the proof of Lemma 5.3, we need to show that f̂1(s2) has no poles in−θ̂j(2θ̂3−j+θ̂j)/2(θ̂1+θ̂2) <
Re[sj ] < 0. This is equivalent to considering the roots of the two denominators appearing in Equa-

tion (72), i.e., the zeros of 1 +
√

2 cosh

(
π

2(θ̂1+θ̂2)

√
2(θ̂1 + θ̂2)s3−j − θ̂2j

)
and the zeros of

1
√

2 sin

(
πθ̂3−j

2(θ̂1+θ̂2)

)
+ 1

− 1

√
2 cosh

(
π
√

2(θ̂1+θ̂2)s3−j−θ̂2j
2(θ̂1+θ̂2)

)
+ 1

.

For the former zeros, note that these are

s3−j =
1

2
(
θ̂1 + θ̂2

) (θ̂2j − 4(θ̂1 + θ̂2)2(3/4 + 2n)2
)
, n ∈ Z. (74)

For the latter zeros, straightforward computations reveal that these are

s3−j =
1

2
(
θ̂1 + θ̂2

) (θ̂2j − (−θ̂j + 4(θ̂1 + θ̂2)n)2
)
, n ∈ Z \ {0}, (75)

where we needed to exclude the case s3−j = 0 (which is equivalent to n = 0 in the last expression),
as this is not a pole for Equation (72). In both cases, (74) and (75), it is straightforward to show that
s3−j < −θ̂j(2θ̂3−j+θ̂j)/2(θ̂1+θ̂2) for all n.

Concluding this section, we would like to remark that in case θ̂1 = θ̂2 = θ̂, the result of Theorem
7.2 reduces exactly to that of Theorem 5.6 for θ̂ = 4c/µ. This proves that the two limits (stationarity
and heavy traffic) commute. Moreover, one can easily verify that, in the asymmetric case, taking
the limit θ̂j ↓ 0, while θ̂3−j > 0 yields

lim
θ̂j↓0

f̂j(s3−j) = lim
θ̂j↓0

E

[∫ 1

0

e−s3−j V̂
?
3−j(u)dL̂?j (u)

]
= 0,

as the sin

(
πθ̂j

2(θ̂1+θ̂2)

)
becomes zero and all other quantities are bounded.
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