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Abstract.
The Dawson integral F (y) arises in the analysis of a particular model (Dist-
flow model) for charging electric vehicles (EVs) when one passes from the in-
trinsic discrete setting to an analytically more tractable continuous setting.
The mathematical and computational properties of F (y) have been devel-
oped in the context of the error function, with purely imaginary argument
iy, y ≥ 0, for which packages, such as Mathematica, exist. In this report, we
focus on bounds on F (y) that are sharp, both at y = 0 and y = ∞, a topic
that has been hardly addressed in the existing literature. One of the bounds
we show emerges naturally from the EV-application when one compares the
Distflow model to a linearized version of it.
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1 Introduction

We start this report by outlining how the Dawson integral arises in the
analysis of a particular model (Distflow model) for charging electric vehicles
(EVs) at N (large) charging stations connected by a power line, with the
requirement that the ratio between the voltages at the root and the last
station at the power line should stay below a desired level. A full description
of the problem at hand, comprising a comparison of the Distflow model and
the linearized Distflow model, can be found in [1]. In [1], Subsections 2.3.1–2,
the two models are introduced and discussed. Under the Distflow model, the
normalized voltages Vn, n = 0, 1, ..., N − 1, N , with VN the voltage at the
root station and V0 the voltage at the last station of the power line, satisfy
a recursion

V0 = 1 , V1 = 1+ k0 ; Vn+1 − 2Vn + Vn−1 =
kn
Vn

, n = 1, ..., N − 1 , (1)

see [1], (2.16–2.18). The kn, comprising given charging rates pn and resis-
tance/reactance values r and x as well as the arrival rate λ at the stations, are
normally small (of the order a/N2 with 0 < a < 0.1). The ratio VN/V0 = VN

between the voltages at the root node (N) and the last node (0) should be
below a level 1/(1 − ∆), where the tolerance ∆ is small (of the order 0.1).
Linearization of the Distflow model, as is done in [1], Subsection 2.3.2, yields
the linearized Distflow model.

For analytically comparing the two models, it is assumed that all kn are
equal to a/N2, with a ∈ (0, 0.1) independent of n (for numerically comparing
the two models, such an assumption does not need to be made). In [1],
Section 5.3 and Appendix B, a major effort is made to establish a relationship
between the sequence Vn, n = 0, 1, ..., N , and the solution f0(t), t ≥ 0, of the
second-order boundary value problem

f ′′
0 (t) =

1

f0(t)
, t ≥ 0 ; f0(0) = 1 , f ′

0(0) = 0 . (2)

In particular, it is shown see [1], Section 5.4, that VN → f0(
√
a) as N → ∞

and a is fixed.
The Dawson integral F (y) = e−y2 I(y), with

I(y) =

y∫
0

ev
2

dv , y ≥ 0 , (3)

then arises as follows, see [1], Appendix C. We have

f0(t) = exp(U2(t)) , t ≥ 0 , (4)
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where U(t) is defined implicitly by

U(t)∫
0

ev
2

dv = t/
√
2 , t ≥ 0 . (5)

That is, in the notation preferred in [1], Section 5.4,

U(t) = inverfi
(
t

√
2

π

)
, t ≥ 0 , (6)

where inverfi is the inverse of the function

i erf(y/i) =
2√
π

y∫
0

ev
2

dv with erf(x) =
2√
π

x∫
0

e−s2 ds . (7)

In the research effort, from which [1] and [2] resulted, properties and
results about the sequence Vn, n = 0, 1, ... , have been conjectured and proved
by first establishing these for the analytically more tractable function f0(z).
For instance, we have from the asymptotics

I(y) ∼ ey
2

2y

(
1 +

1

2y2
+

3

4y4
+ ...

)
, y → ∞ , (8)

(asymptotic series) that

f0(t) = t(2 ln t)1/2
(
1 +O

( ln(ln t)
ln t

))
, t → ∞ . (9)

This leads to the conjecture that for fixed k > 0, and with n in (1) allowed
to tend to ∞,

Vn ∼ n(2k lnn)1/2 , n → ∞ . (10)

The latter result will be proved in all detail in [2].

2 Basic properties and bounds of Dawson’s

integral

We shall now give basic properties and bounds for Dawson’s integral
F (y) = e−y2 I(y) and the intgral I(y) in (3), as far as relevant for our pur-
poses. We refer to [3], Ch. 7 for an extensive account, with references, of the
properties of the error function and Dawson’s integral. We have
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A. I(y) =
∞∑
l=0

y2l+1

l!(2l + 1)
= y(1 + 1

3
y2 + 1

10
y4 + 1

42
y6 + ...) , y ≥ 0 , (11)

B. I(y) ∼ ey
2

2y

∞∑
k=0

1 · 3 · ... · (2k − 1)

(2y2)k
=

ey
2

2y

∞∑
k=0

Γ(k + 1/2)

Γ(1/2)
y−2k

=
ey

2

2y

(
1 +

1

2y2
+

3

4y4
+

15

8y6
+ ...

)
, y → ∞ . (12)

The series in (12) is an asymptotic series; see [4], (2.8) and further, for a
Cauchy principal value integral for the remainder when finitely many terms
of the series are included. When for a particular y > 0 the series is truncated
at the integer k nearest to y2 − 1/2, the truncation error is of the order

Γ(k + 3/2)

Γ(1/2)
y−2k−2 ≈ e−y2

√
2 (13)

(for y = 8 this is ≈ 2× 10−28 with k = 64).

C. In [3], §7.8 some bounds on I(y) are given, viz.

I(y) <
1

3y
(2ey

2

+ y2 − 2) , y > 0 , (14)

I(y) <
ey

2 − 1

y
, y > 0 , (15)

The right-hand side of (14) has Taylor series

1

3y
(2ey

2

+ y2 − 2) = y(1 + 1
3
y2 + 1

9
y4 + 1

36
y6 + ...) , y ≥ 0 , (16)

and the bound in (14) is therefore sharp, see (11), at y = 0; the bound in
(14) is not sharp as y → ∞, see (12). The right-hand side of (15) has Taylor
series

ey
2 − 1

y
= y(1 + 1

2
y2 + 1

6
y4 + ...) , y ≥ 0 , (17)

and the bound in (15) is therefore sharp at y = 0 (though not as sharp as
(16)). In [5], 2o on p. 180, there is given the bound

I(y) <
π2

8y
(ey

2 − 1) , y > 0 . (18)
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Since π2

8
= 1.2337... , the bound 18) is not sharp at y = 0 nor at y = ∞. I

haven’t seen lower bounds on I(y).

D. We now present some simple lower and upper bounds. We have

ey
2 − 1

2y
≤ I(y) ≤ ey

2 − 1

y
, y ≥ 0 . (19)

Indeed,
ey

2 − 1

y
=

∞∑
l=0

y2l+1

(l + 1)!
, (20)

and
1

2 · (l + 1)!
<

1

l!(2l + 1)
≤ 1

(l + 1)!
, l = 0, 1, ... , (21)

so (19) follows from (11). The lower bound in (19) is sharp at y = ∞ and
not sharp at y = 0; the upper bound in (19) is sharp at y = 0 and not sharp
at y = ∞. The lower bound in (19) can be sharpened to

I(y) >
sinh(y2)

y
=

ey
2 − e−y2

2y
, y > 0 . (22)

Indeed, we have for y > 0

e−y2 I(y) = e−y2

y∫
0

ev
2

dv =

y∫
0

e(v+y)(v−y) dv

>

y∫
0

e2y(v−y) dv =
1

2y
(1− e−2y2) . (23)

The bound in (22) is sharp at both y = 0 and y = ∞. As a result of a
numerical computation, it is found that the minimum of sinh(y2)/(y I(y))
over y ≥ 0 equals 0.766769724... and is assumed at y = 1.386079411... .

The lower bound in (22) arose in an early version of [1] (Nov. 2, 2021)
where the Distflow and linearized Distflow models were compared. For this,
it was required that

H(y) :=
1√

e2y2 − 1

y∫
0

ev
2

dv =
I(y)√
e2y2 − 1

(24)
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is strictly decreasing in y > 0. One computes

H ′(y) =
1√

e2y2 − 1

(
− 2y e2y

2

e2y2 − 1
I(y) + ey

2
)
, (25)

and this negative for all y > 0 if and only if (22) holds.

3 More advanced bounds and approximations

We consider now the functions, with γ ≥ 0,

B(y ; γ) =
ey

2 − 1

2y
/
(
1− 1− e−γy2

2γy2

)
, y ≥ 0 , (26)

as potential lower and upper bounds for I(y) for all y ≥ 0. The function
B(y ; γ), case γ = 1, arises naturally when one wants to show that, see (19),

I(y) /
(ey2 − 1

y

)
, y ≥ 0 , (27)

(strictly) decreases from 1 at y = 0 to 1/2 at y = ∞.

Lemma 1 We have for y > 0(
I(y) /

(ey2 − 1

y

))′
< 0 ⇔ I(y) > B(y ; 1) =

ey
2 − 1

2y
/
(
1− 1− e−y2

2y2

)
.

(28)

Proof. We have for y > 0(
I(y) /

(ey2 − 1

y

))′
=

ey
2 − 1− 2y2 ey

2

(ey2 − 1)2
I(y) +

y ey
2

ey2 − 1
, (29)

and this is negative if and only if

I(y) >
y(ey

2 − 1) ey
2

2y2 ey2 − (ey2 − 1)
. (30)

The right-hand side of (30) equals B(y ; 1) and this completes the proof.

We next list a number of properties of the B(y ; γ).
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Proposition 1 (a) We have, see (19),

B(y ; 0) =
ey

2 − 1

y
, y ≥ 0 ; lim

y→∞
B(y ; γ) =

ey
2 − 1

2y
, y > 0 . (31)

(b) For y ≥ 0 fixed, we have that B(y ; γ) is a decreasing function of γ ≥ 0.

(c) We have for fixed γ > 0 that

B(y ; γ) /
(ey2 − 1

y

)
(32)

decreases in y ≥ 0 from 1 at y = 0 to 1/2 at y = ∞.

(d) We have for γ ≥ 0

B(y ; γ) = y(1 + 1
2
(1− γ) y2 + ( 5

12
γ2 − 1

4
γ + 1

6
) y4

+ (− 1
3
γ3 + 5

24
γ2 − 1

12
γ + 1

24
) γ6 + ...

= I(y)(1 +O(y2)) , y ↓ 0 . (33)

(e) We have (asymptotic equivalence)

B(y ; 0) ∼ ey
2

y

(
1 +

0

y2
+

0

y4
+

0

y6
+ ...

)
, y → ∞ , (34)

and, for fixed γ > 0,

B(y ; γ) ∼ ey
2

2y

1

1− (2γy2)−1
=

ey
2

2y

(
1 +

1

2γy2
+

1

4γ2y4
+

1

8γ3y6
+ ...

)
= I(y)

(
1 +O

( 1

y2

))
, y → ∞ . (35)

The proofs of these results are straightforward. It is used that the function
x ≥ 0 7→ (1− e−x)/x decreases from 1 at x = 0 to 0 at x = ∞. Furthermore,
it is used that exp(−y2) and exp(−γy2), γ > 0, are exponentially small as
y → ∞ and thus are asymptotically equivalent with 0/y2 + 0/y4 + ... .

Theorem 1 (a) B(y ; γ) ≤ I(y) for all y ≥ 0 ⇔ γ ≥ 1.
(b) B(y ; γ) ≥ I(y) for all y ≥ 0 ⇔ 0 ≤ γ ≤ 1/3.

Proof. (a) It follows from (12) and (35) that B(y ; γ) ≤ I(y) for all y ≥ 0
implies that 1/2γ ≤ 1/2, i.e., γ ≥ 1. Furthermore, from Proposition 1(b)
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we have that B(y ; γ) ≤ B(y ; 1) for all y ≥ 0 and all γ ≥ 1. Hence, it is
sufficient to show that B(y ; 1) ≤ I(y), y ≥ 0. We have I(0) = 0 = B(0 ; 1),
and so it is sufficient to show that for y > 0

I ′(y) = ey
2

>
( y(ey

2 − 1)

2y2 − (1− e−y2)

)′
= B′(y ; 1) . (36)

We compute for y > 0( y(ey
2 − 1)

2y2 − (1− ey2)

)′

=
−4x(ex − 1) + 4x2ex − (ex − 1)(1− e−x) + 2x(1− e−x)

(2x− (1− e−x))2
, (37)

where we have set x = y2 > 0. Thus (36) is equivalent with

−4x(ex−1)+4x2ex−(ex−1)(1−e−x)+2x(1−e−x) < ex(2x−(1−e−x))2 , (38)

with x = y2 > 0. The right-hand side of (38) equals

4x2ex − 4x(ex − 1) + ex(1− e−x)2 , (39)

and so, cancelling the 4x2ex−4x(ex−1) from both sides of (38) and dividing
through by a factor 1− e−x, we have that (36) is equivalent with

−(ex − 1) + 2x < ex(1− e−x) , x = y2 > 0 , (40)

i.e., with (ex − 1)/x > 1 for x > 0. This is obviously true.
(b) It follows from (11) and (33) that B(y ; γ) ≥ I(y) for all y ≥ 0

implies that 1
2
(1− γ) ≥ 1/3, i.e., γ ≤ 1/3. Furthermore, from Proposition 1

(b), we have that B(y ; γ) ≥ B(y ; 1/3) for all y ≥ 0 and all γ, 0 ≤ γ ≤ 1/3.
Hence, it is sufficient to show that B(y ; 1/3) ≥ I(y), y ≥ 0. We have
I(0) = 0 = B(0 ; 1/3), and so it is sufficient to show that for all y > 0

I ′(y) = ey
2

<
( γy(ey

2 − 1)

2γy2 − (1− e−γy2)

)′
= B′(y ; γ) , γ = 1/3 . (41)

We compute for y > 0( γy(ey
2 − 1)

2γy2 − (1− e−γy2)

)′
= γ

{
−2γx(ex − 1) + 4γx2ex − (ex − 1)(1− e−γx)

− 2xex(1− e−γx) + 2γx(ex − 1) e−γx
}

/{
(2γx− (1− e−γx))2

}
, (42)
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where we have set x = y2 > 0. Thus (41) is equivalent with

1

γ
(2γx− (1− e−γx))2 ex < −2γx(ex − 1) + 4γx2ex − (ex − 1)(1− e−γx)

−2xex(1− e−γx) + 2γx(ex − 1) e−γx , (43)

with x = y2 > 0. The left-hand side of (43) equals

4γx2ex − 4x(1− e−γx) ex +
1

γ
(1− e−γx)2 ex , (44)

while the right-hand side of (43) equals

4γx2ex − 2x(1− e−γx) ex − (ex − 1)(1− e−γx)

− 2γx(ex − 1) + 2γx(ex − 1) e−γx . (45)

Simplifying then in (43), we get that (41) is equivalent with

−2x(1− e−γx) ex +
1

γ
(1− e−γx)2 ex

< −2γx(ex − 1)(1− e−γx)− (ex − 1)(1− e−γx) , x = y2 > 0 . (46)

Dividing through in (46) by 1− e−γx, we have that (41) is equivalent with

−2x ex +
1

γ
(1− e−γx) ex < −2γx(ex − 1)− (ex − 1) , (47)

i.e., with

−2(1− γ)x ex +
(1
γ
+ 1

)
ex − 1

γ
e(1−γ)x < 1 + 2γx (48)

with x = y2 > 0. We have equality in (48) for x = 0, and so, taking
derivatives in (48), it is sufficient to show that

−2(1−γ) ex−2(1−γ)x ex+
(1
γ
+1

)
ex− 1− γ

γ
e(1−γ)x < 2γ , x > 0 , (49)

i.e., that(1
γ
+ 2γ − 1

)
ex − 2(1− γ)x ex − 1− γ

γ
e(1−γ)x < 2γ , x > 0 . (50)
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We have equality in (50) for x = 0, and so, taking derivatives in (50), it is
sufficient to show that(1

γ
+ 2γ − 1

)
ex − 2(1− γ) ex − 2(1− γ)x ex − (1− γ)2

γ
e(1−γ)x < 0 , (51)

i.e., that(1
γ
+ 4γ − 3

)
ex − 2(1− γ)x ex − (1− γ)2

γ
e(1−γ)x < 0 , x > 0 . (52)

The left-hand side of (52) equals 3γ − 1 at x = 0 and thus vanishes at x = 0
since γ = 1/3, For γ = 1/3, the left-hand side of (52) becomes

4
3
(ex − x ex − e

2
3
x) , (53)

and this is negative for x > 0 since ex(1 − x) < 1 < e
2
3
x, x > 0. This

completes the proof.

We have the Taylor developments, relevant for small y > 0,

I(y) = y(1 + 1
3
y2 + 1

10
y4 + 1

42
y6 + ...) , (54)

B(y ; 1) = y(1 + 0 · y2 + 1
3
y4 − 1

12
y6 + ...) , (55)

B(y ; 1/3) = y(1 + 1
3
y2 + 7

54
y4 + 2

81
y6 + ...) , (56)

and the asymptotic expansions, relevant for y → ∞,

I(y) ∼ ey
2

2y

(
1 +

1

2y2
+

3

4y4
+

15

8y6
+ ...

)
, (57)

B(y ; 1) ∼ ey
2

2y

(
1 +

1

2y2
+

1

4y4
+

1

8y6
+ ...

)
, (58)

B(y ; 1/3) ∼ ey
2

2y

(
1 +

3

2y2
+

9

4y4
+

27

8y6
+ ...

)
. (59)

Thus, in particular

B(y ; 1/3)

I(y)
= 1 + 8

270
y4 +O(y6) , y ↓ 0 , (60)

and
B(y ; 1)

I(y)
= 1− 1

2y4
+O

( 1

y6

)
, y → ∞ . (61)
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Compare Proposition 1 (e).
By a numerical effort, it has been found that

min
y≥0

B(y ; 1)

I(y)
=

B(Y1 ; 1)

I(Y1)
= 0.852634652... , (62)

max
y≥0

B(y ; 1/3)

I(y)
=

B(Y1/3 ; 1/3)

I(Y1/3)
= 1.135207141... , (63)

with Y1 = 1.180392274... and Y1/3 = 2.324381951... .
In Figure 1, we present plots of

R(y ; γ) =
B(y ; γ)

I(y)
, y ∈ [0, 9] , (64)

with γ = 1/3, 0.54 and 1, illustrating that B(y ; 1/3) is an upper bound for
I(y), y ≥ 0, and that B(y ; 1) is a lower bound for I(y), y ≥ 0, with maximal
absolute relative errors of less than 15%. The choice γ = 0.54 has

max
y≥0

(R(y ; γ)− 1) ≈ max
y≥0

(1−R(y ; γ)) ≈ 0.044 . (65)

4 Bounding and approximating f0(t)

We recall that

f0(t) = exp(U2(t)) , y = U(t) = (ln(f0(t)))
1/2 , t ≥ 0 , (66)

where U(t) is defined implicitly by

U(t)∫
0

ev
2

dv =
t√
2
, t ≥ 0 . (67)

Suppose we have a bound (or approximation) B(y) for

I(y) =

y∫
0

ev
2

dv , y ≥ 0 . (68)

Then we can find a bound (or approximation)

zB(t) = exp(y2B(t)) , yB(t) = (ln(zB(t)))
1/2 (69)
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of f0(t) by letting y = yB(t) solve the equation

B(y) =
t√
2
. (70)

With reference to (19) and to Theorem 1 in Section 3, we shall consider the
lower bounds

ey
2 − 1

2y
= B(y ; ∞) and

ey
2 − 1

2y

(
1− 1− e−y2

2y2

)−1

= B(y ; 1) , (71)

the upper bound

ey
2 − 1

2y

(
1− 1− e−y2/3

2y2/3

)−1

= B(y ; 1/3) , (72)

and the approximation

ey
2 − 1

2y

(
1− 1− e−γy2

2γy2

)−1

= B(y ; γ) , γ = 0.54 , (73)

as bound or approximation of I(y).
Evidently, when B(y) is a lower (upper) bound for I(y), y ≥ 0, we have

from I(U(t)) = t/
√
2 = B(yB(t)) that yB(t) ≥ (≤) U(t).

First consider the lower bound B(y ; ∞) in (71). Then solving y = y∞(t)
from the equation

ey
2 − 1

2y
=

t√
2
, (74)

yields for z = z∞(t) = exp(y2∞(t)) the fixed-point equation

z = 1 + t(2 ln z)1/2 =: F∞(z ; t) . (75)

With t > 1 being fixed, it is elementary to show that the mapping z ≥
1 7→ F∞(z ; t) has two fixed-points z ∈ [1,∞), viz. z = 1 and z = z∞(t) >
1. To compute the latter fixed-point, we iterate by successive substitution
according to

z(0) = t(2 ln t)1/2 ; z(j+1) = 1 + t(2 ln z(j))1/2 , j = 0, 1, ... , (76)

where the initial value z(0) is suggested by the asymptotic result (9) for f0(t).
Next consider the general function B(y ; γ) from Section 3 with 1/3 ≤

γ ≤ 1. Now solving y = yγ(t) from the equation

B(y ; γ) =
ey

2 − 1

2y

(
1− 1− e−γy2

2γy2

)−1

=
t√
2
, (77)
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yields for z = zγ(t) = exp(y2γ(t)) the fixed-point equation

z = 1 + t(2 ln z)1/2 − t
1− z−γ

γ(2 ln z)1/2
=: Fγ(z ; t) . (78)

We have for Fγ(z ; t) with fixed t > 1 the following:

– Fγ(1 ; t) = 1,

– Fγ(z ; t) > z for z in a right-neighbourhood of 1,

–
d

dz
[Fγ(z ; t)] is positive and decreasing in z ≥ 1 when 0 < γ ≤ 1.

As to the latter property, one computes explicitly

1

t

d

dz
[Fγ(z ; t)] = z−1(1− z−γ)

(
(2 ln z)−1/2 +

1

γ
(2 ln z)−3/2

)
=

e−y2

y
√
2
(2γy2 + 1) · 1− e−γy2

2γy2
, (79)

where we have set z = exp(y2) with y ≥ 0. Now

d

dy

[e−y2

y
(2γy2 + 1)

]
=

e−y2

y2
(2γy2 − 1− 2y2 − 4γy4) < 0 (80)

for all y > 0 when 0 < γ ≤ 1, and this shows that the first factor on the
second line of (79) decreases in y > 0 when 0 < γ ≤ 1. The second factor on
the second line of (79) decreases in y > 0 for all γ > 0.

We conclude that the mapping z ≥ 1 7→ Fγ(z ; t) has two fixed-points
z ∈ [1,∞), viz. z = 1 and z = zγ(t) > 1. The latter fixed-point can again
be computed iteratively by successive substitution using (78) with z(0) =
t(ln t)1/2 as initial value.

We illustrate all this for the case that t = 10. We have

f0(10) = 19.25011998 , U(10) = 1.719743380 ; z(0) = 21.45966026 . (81)

We find then
1. Lower bound B(y ; ∞) yields, using 12 iterations in (76) with initial

value z(0),

z∞(10) = 26.61881448 , y∞(10) = (ln z∞(10))1/2 = 1.811523745 . (82)
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2. Lower bound B(y ; 1) yields, using 12 iterations based on the fixed-
point equation (78) with γ = 1 and with initial value z(0),

z1(10) = 22.03097612 , y1(10) = (ln z1(10))
1/2 = 1.758536172 . (83)

3. Upper bound B(y ; 1/3) yields using 15 iterations based on the fixed-
point equation (78) with γ = 1/3 and with initial value z(0),

z1/3(10) = 17.133554664 , y1/3(10) = (ln z1/3(10))
1/2 = 1.685537995 . (84)

4. Approximation B(y ; 0.54) yields, using 14 iterations based on the
fixed-point equation (78) with γ = 0.54 and with initial value z(0),

z0.54(10) = 19.24791149 , y0.54 = (ln z0.54(10))
1/2 = 1.719710022 . (85)

It is observed that in all cases (except, perhaps, in case 1), the y-values
obtained are (quite) close to U(10) in (81), already for the relatively small
value 10 of t. This observation can be used to do a quality assessment of the
estimates z of f0(t), for values of t = 10 and larger. We recall that, given an
approximation B(y) of I(y), we solve y = yB from

B(yB) =
t√
2
=

U(t)∫
0

ev
2

dv . (86)

Now

B(yB) = RB(yB)

yB∫
0

ev
2

dv . (87)

where the RB-function, compare Figure 1, is given by

RB(y) =
B(y)

y∫
0

ev2 dv

, y ≥ 0 . (88)

In all considered cases, this RB-function is a well-behaved smooth function.
Next we have in terms of the Dawson function F (y)

I(y) =

y∫
0

ev
2

dv = ey
2

F (y) , y ≥ 0 . (89)

The function F is, compared to exp(y2), a mildly varying function in the
sense that F ′(y)/F (y) is not large when y is away from 0. Now, from (86,
87, 89)

eU
2(t) F (U(t)) = RB(yB) e

y2B F (yB) . (90)
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Hence, using
f0(t) = exp(U2(t)) , zB = exp(y2B) , (91)

we get
zB
f0(t)

= R−1
B (yB)

F (U(t))

F (yB)
≈ R−1

B (yB) ≈ R−1
B (U(t)) , (92)

where the latter two near-equalities hold when yB is close to U(t) and mild
variation of F and RB.

We conclude that the relative error, made by approximating f0(t) by zB,
can be read off accurately from the R-plots in Figure 1. Thus we find

1.
z∞(10)

f0(10)
= 1.38 ≈ 1.33 = R−1(U(t) ; ∞) ,

2.
z1(10)

f0(10)
= 1.14 ≈ 1.12 = R−1(U(t) ; 1) ,

3.
z1/3(10)

f0(10)
= 0.89 ≈ 0.91 = R−1(U(t) ; 1/3) ,

4.
z0.54(10)

f0(10)
= 1.00 = R−1(U(t) ; 0.54) .

by looking at the values of the R-functions in Figure 1 at y = U(10) = 1.72
(for the first case, a separate consideration is required).

The first identity in (92) can be explored further by elaborating the factor
F (U(t))/F (yB), yielding improved estimates of f0(t).
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Figure 1: The ratio R(y ; γ) = B(y ; γ)/I(y) in the range 0 ≤ y ≤ 9 for
γ = 1/3, 0.54 and 1.
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