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Abstract.

The Dawson integral F'(y) arises in the analysis of a particular model (Dist-
flow model) for charging electric vehicles (EVs) when one passes from the in-
trinsic discrete setting to an analytically more tractable continuous setting.
The mathematical and computational properties of F(y) have been devel-
oped in the context of the error function, with purely imaginary argument
1y, y > 0, for which packages, such as Mathematica, exist. In this report, we
focus on bounds on F(y) that are sharp, both at y = 0 and y = oo, a topic
that has been hardly addressed in the existing literature. One of the bounds
we show emerges naturally from the EV-application when one compares the
Distflow model to a linearized version of it.



1 Introduction

We start this report by outlining how the Dawson integral arises in the
analysis of a particular model (Distflow model) for charging electric vehicles
(EVs) at N (large) charging stations connected by a power line, with the
requirement that the ratio between the voltages at the root and the last
station at the power line should stay below a desired level. A full description
of the problem at hand, comprising a comparison of the Distflow model and
the linearized Distflow model, can be found in [1]. In [1], Subsections 2.3.1-2,
the two models are introduced and discussed. Under the Distflow model, the
normalized voltages V,,, n = 0,1,.... N — 1, N, with Vy the voltage at the
root station and V} the voltage at the last station of the power line, satisfy
a recursion

Vo=1, Vi=1+ky: Vi —2V,+V, = % n=1,..N—1, (1)
see [1], (2.16-2.18). The k,, comprising given charging rates p, and resis-
tance/reactance values r and x as well as the arrival rate A at the stations, are
normally small (of the order a/N? with 0 < a < 0.1). The ratio Vy/Vy = Vy
between the voltages at the root node (N) and the last node (0) should be
below a level 1/(1 — A), where the tolerance A is small (of the order 0.1).
Linearization of the Distflow model, as is done in [1], Subsection 2.3.2, yields
the linearized Distflow model.

For analytically comparing the two models, it is assumed that all £,, are
equal to a/N?, with a € (0,0.1) independent of n (for numerically comparing
the two models, such an assumption does not need to be made). In [1],
Section 5.3 and Appendix B, a major effort is made to establish a relationship
between the sequence V,,, n = 0,1, ..., N, and the solution fy(t), t > 0, of the

second-order boundary value problem
1
Jt)=—=, t>0; 0)=1, fi(0)=0. 2
=7 1200 KO=1. £0) )

In particular, it is shown see [1], Section 5.4, that Vy — fo(y/a) as N — oo
and a is fixed.
The Dawson integral F(y) = e™¥" I(y), with

Y

I<y>:/ev2dv, y=0. 3)

0

then arises as follows, see [1], Appendix C. We have

folt) = exp(U*(t)),  t=0, (4)
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where U(t) is defined implicitly by

=

(1)
Cdv=t/V2, t>0. (5)

o\

That is, in the notation preferred in [1], Section 5.4,

U(t) = inverﬁ(t \/%) : t>0, (6

where inverfi is the inverse of the function

~—

Y T
2 2 2 2
ierf(y/i) = — / e’ dv with erf(z) = — / e % ds. (7)
VT VT

In the research effort, from which [1] and [2] resulted, properties and
results about the sequence V,,, n = 0, 1, ..., have been conjectured and proved
by first establishing these for the analytically more tractable function fy(2).
For instance, we have from the asymptotics

ey’ 1 3
I(y>NZ(1+2_y2+4_zﬁ+m>’ Yy —» 00, (8)
(asymptotic series) that
In(Int)
e 1/2 _
folt) = t(21nt) (1+0( - )) t o0 9)

This leads to the conjecture that for fixed k£ > 0, and with n in (1) allowed
to tend to oo,
V,, ~ n(2k1Inn)/? | n— 0o . (10)

The latter result will be proved in all detail in [2].

2 Basic properties and bounds of Dawson’s
integral

We shall now give basic properties and bounds for Dawson’s integral

F(y) = e ¥ I(y) and the intgral I(y) in (3), as far as relevant for our pur-

poses. We refer to [3], Ch. 7 for an extensive account, with references, of the
properties of the error function and Dawson’s integral. We have
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o 20+1
=yl+iy+Ly +5°+.), y>0, (11

e =13 -2k—1) & & k+12 B
k=0

2 e
P R T L T D VYT
eV’ 1 3 15

S R A ) S0 12
2y( toEtritas T Y — 00 (12)

The series in (12) is an asymptotic series; see [4], (2.8) and further, for a
Cauchy principal value integral for the remainder when finitely many terms
of the series are included. When for a particular y > 0 the series is truncated
at the integer k nearest to y* — 1/2, the truncation error is of the order

DE+3/2) o9  _p
a2 ~e v V2 (13)

(for y = 8 this is &~ 2 x 107 with k = 64).

C. In [3], §7.8 some bounds on I(y) are given, viz.

1
f(y)<3—y(2€y2+y2—2), y>0, (14)
v _q
) <——. y>0, (15)

The right-hand side of (14) has Taylor series
1
@@eyg +yt =) =y(l+3y' +5y' +5y°+.) ., y=0, (16)

and the bound in (14) is therefore sharp, see (11), at y = 0; the bound in
(14) is not sharp as y — oo, see (12). The right-hand side of (15) has Taylor

series )
ey —1

Y

and the bound in (15) is therefore sharp at y = 0 (though not as sharp as
(16)). In [5], 2° on p. 180, there is given the bound

=y(l+3y°+3y'+.), y=0, (17)

T (e —1), y>0. (18)



Since % = 1.2337..., the bound 18) is not sharp at y = 0 nor at y = co. 1

haven’t seen lower bounds on I(y).

D. We now present some simple lower and upper bounds. We have

eV’ —1 eV’ — 1
< I(y) < >0. 19
oy = (y) < ;Y2 (19)
Indeed,
v _q 00 20+1
—— =205 (20)
1=0
and 1 1 1
[=0,1,.., (21)

<
NSRRI ES R

o (19) follows from (11). The lower bound in (19) is sharp at y = oo and
not sharp at y = 0; the upper bound in (19) is sharp at y = 0 and not sharp
at y = co. The lower bound in (19) can be sharpened to

sinh(y?) e —e ¥
I(y) > - . y>0. 22
) > - )

Indeed, we have for y > 0

Yy )
e‘yQI(y) = e_y2/6”2 dv:/e(vﬂ/)(v—y) dv
0 0

Y

> / =Y oy = Qi (1—e %
Yy
0

2

) - (23)

The bound in (22) is sharp at both y = 0 and y = co. As a result of a
numerical computation, it is found that the minimum of sinh(y?)/(y I(y))
over y > 0 equals 0.766769724... and is assumed at y = 1.386079411....

The lower bound in (22) arose in an early version of [1] (Nov. 2, 2021)
where the Distflow and linearized Distflow models were compared. For this,
it was required that

Iy (24)

H) = ﬁo/ v



is strictly decreasing in y > 0. One computes

1 2y eV’ 2
HW) = e~ a7 () + ) | (25)

and this negative for all y > 0 if and only if (22) holds.

3 More advanced bounds and approximations

We consider now the functions, with v > 0,

eV’ —1 1—e
. p— I >
B(y; ) % / (1 —— ) ,  y=>0, (26)

as potential lower and upper bounds for I(y) for all y > 0. The function
B(y; ), case v = 1, arises naturally when one wants to show that, see (19),

/(S vz 1)

(strictly) decreases from 1 at y =0 to 1/2 at y = oo.

Lemma 1 We have fory >0

e’ —1\\/ eV’ —1 1—e ¥
(1) / (7)) <0e 1) > B n="5 =/ (1- )
(28)
Proof. We have for y > 0
e’ — 1\ e —1—2y%e” yev

0 (Z ) - e
(1) / () o WA @)

and this is negative if and only if

Y eV’ —1)e¥’

Iy > 5 A Y (30)

22 v’ — (ev’ —1)
The right-hand side of (30) equals B(y; 1) and this completes the proof.

We next list a number of properties of the B(y; ).



Proposition 1 (a) We have, see (19),

v _ 1 v 1
Bly; 0) = - , y>0; lim Bly; ) = -

Y y—00 2y

y>0. (31)

(b) Fory >0 fized, we have that B(y; ) is a decreasing function of v > 0.
(¢) We have for fized v > 0 that

Bl ) 1 (22) (3)

Y

decreases iny >0 from 1 at y =0 to 1/2 at y = occ.
(d) We have for v >0

Bly;7) = y(l+50 -1+ (H7 -7+
+ (=3 +EZY -5+ +
= I(y)1+0@Y)), yio0. (33)

(e) We have (asymptotic equivalence)

and, for fixed v > 0,

B(.)6y2 1 _ey2<1+1+1+1+>
S e e 2yy?  AyPyt o 8y3yS T
1
- I(y)<1+0<?>>, y 00 . (35)

The proofs of these results are straightforward. It is used that the function
x>0 (1—e*)/x decreases from 1 at = 0 to 0 at x = co. Furthermore,
it is used that exp(—y?) and exp(—vyy?), v > 0, are exponentially small as
y — oo and thus are asymptotically equivalent with 0/y? + 0/y* + ....

Theorem 1 (a) B(y;vy) < I(y) forally>0<~vy>1.
(b) Bly;y) = 1(y) forally >0+ 0<v<1/3.

Proof. (a) It follows from (12) and (35) that B(y; v) < I(y) for all y > 0
implies that 1/2y < 1/2, i.e., v > 1. Furthermore, from Proposition 1(b)
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we have that B(y; v) < B(y; 1) for all y > 0 and all v > 1. Hence, it is
sufficient to show that B(y; 1) < I(y), y > 0. We have I(0) =0 = B(0; 1),
and so it is sufficient to show that for y > 0

y(e” — 1)
22 — (1 — e v

ry)=e> ) =B (36)

We compute for y > 0
( y(e” —1) )’
2y? — (1 —ev’)

 —az(e® — 1) +4ate” — (" —1)(1—e ") +2z(l —e)
- Gr— (1= ) » (87)

where we have set z = y? > 0. Thus (36) is equivalent with
—4x(e”—1)+4r?e" —(e"—1)(1—e *)+2x(1—e %) < (20— (1—e))*, (38)
with z = y* > 0. The right-hand side of (38) equals
4r?e” —dx(e” — 1) +e"(1 —e™™)? | (39)

and so, cancelling the 4z%e” — 4z(e” — 1) from both sides of (38) and dividing
through by a factor 1 — e~*, we have that (36) is equivalent with

—(e*—1)+2z<e’(1—e7), r=1y">0, (40)

i.e., with (e* —1)/xz > 1 for > 0. This is obviously true.

(b) It follows from (11) and (33) that B(y;y) > I(y) for all y > 0
implies that %(1 — ) >1/3, i.e., v < 1/3. Furthermore, from Proposition 1
(b), we have that B(y; v) > B(y; 1/3) for all y > 0 and all v, 0 <~y < 1/3.
Hence, it is sufficient to show that B(y; 1/3) > I(y), y > 0. We have
I(0) = 0= B(0; 1/3), and so it is sufficient to show that for all y > 0

(e —1)
2y — (1 —e”

)= < ( Jzywwm v=1/3. (1)

We compute for y > 0

= v {-2yz(e® — 1) + dyz’e” — (e" = 1)(1 — ")

( yy(e? —1) ))’

29y? — (1 — e
— 2ze"(1 — e ") + 2yz(e" — 1) e "} /
{2y —(1—-e))?}, (42)
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where we have set x = y? > 0. Thus (41) is equivalent with
1
—(2yr — (1 —e )" < —2yx(e” — 1) +dyr?e” — (e — 1)(1 — e )
Y

—2ze(1 —e ) +2yz(e” — 1) e,  (43)

with # = y? > 0. The left-hand side of (43) equals

1
dyzPe” —dx(l—e M) e" + = (1 — e 1")%e" | (44)
Y

while the right-hand side of (43) equals
dyrPe” — 2x(l —e ") e" — (" —1)(1 —e %)
— 2yx(e” — 1)+ 2yz(e® —1)e 7" . (45)

Simplifying then in (43), we get that (41) is equivalent with

1
—22(1 —e 1) e" + — (1 — e 7)%e”
/‘)/

< —2yz(e® —1)(1—e ) = (" = 1)(1 —e "), z=y9y*>0.(46)

Dividing through in (46) by 1 — e™7*, we have that (41) is equivalent with

1
—2xe"+—(1—e")e" < =2yzx(e” —1) — (" — 1), (47)
Y
i.e., with
x 1 x 1 1—y)z
—2(1—7v)ze +<——|—1>6 ——e T <1+ 2 (48)
Y Y

with z = 3> > 0. We have equality in (48) for z = 0, and so, taking
derivatives in (48), it is sufficient to show that

1 1-—
—2(1—7)61—2(1—7)xe$—|—<—+1) e’ — 76(1_7)$<27, x>0, (49)
Y Y
i.e., that
1 x x -9 (1—y)z
(—+2’7—1>€ —2(l—=7y)ze® — —— " <2y, z>0. (50)
Y Y



We have equality in (50) for z = 0, and so, taking derivatives in (50), it is
sufficient to show that

1 1 — )2
<—+2v—1> 6" — 21— ) e —2(1 —wet — L= came g 51)
Y

gl
i.e., that
1 1—7)?
<—+4fy—3>e‘”—2(1—’y)xez—&e(l7)x<0, r>0. (52)
gl gl

The left-hand side of (52) equals 3y — 1 at z = 0 and thus vanishes at x = 0
since v = 1/3, For v = 1/3, the left-hand side of (52) becomes

(e —xe” — e%w) : (53)

[SIFN

and this is negative for > 0 since ¢*(1 — z) < 1 < €3%, > 0. This
completes the proof.

We have the Taylor developments, relevant for small y > 0,

Iy) =y + 3"+ 5y + 500+, (54)
Bly; ) =y(1+0-y"+ 3y - 5¢°+..) (55)
Bly; 1/3) =yl + i+ Zy' + 245+ .., (56)

and the asymptotic expansions, relevant for y — oo,
eV’ 1 3 15
I(y) ~ S (1 Sy ) , 57
eV’ 1 1 1
B ;1~—<1 S . ) 58
i~ G (1 gt gt (59)
eV’ 39 21
B ;13~—(1 I . ) 59
i1/~ S (1 gttt (59)

Thus, in particular

B(y; 1/3)

T 1+ 2y +0@u°% .,  ylo, (60)
and Bly: 1) 1 1
y;
. — . 1
I(y) 2y* +O<y6> L VT (61
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Compare Proposition 1 (e).
By a numerical effort, it has been found that

B(y;1) B(Yi;1)

i — = 0.852634652... 62
w0 I(y) 1) | o
By 1 B(Yi3:1/3
max (s 1/3) _ B(Yys; 1/3) _ 1.135207141... , (63)
y>0 I(y) I<}q/3)

with Y] = 1.180392274... and Y3 = 2.324381951....
In Figure 1, we present plots of

R(y§ 7) - y e [07 9] ) (64)

with v = 1/3, 0.54 and 1, illustrating that B(y; 1/3) is an upper bound for

I(y), y > 0, and that B(y; 1) is a lower bound for I(y), y > 0, with maximal
absolute relative errors of less than 15%. The choice v = 0.54 has

max (R(y; v) — 1) ® max (1 — R(y; 7)) ~ 0.044 . (65)

y=>0 y=>0

4 Bounding and approximating fy(?)

We recall that

folt) =exp(U(t)) ,  y=U()=W(fo®))"*, t>0, (66)

where U(t) is defined implicitly by

2 t
e’ dv=—, t>0. 67
O/ L (67)

I(y)z/e”de, y>0. (68)

Then we can find a bound (or approximation)

2p(t) = exp(yz(t)) . yp(t) = (In(2p(1)))"? (69)
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of fo(t) by letting y = yp(t) solve the equation

Bl =5 (70)

With reference to (19) and to Theorem 1 in Section 3, we shall consider the
lower bounds

eV’ — 1 692—1<1 1—e v

-1
= B(y; =B(y; 1 1
5, = Blyioo) and 5 ) =B, ()

the upper bound

e’ —1 1—e /3y -1

and the approximation

e’ —1 <1 1—e

—1
5 2WQ) ~B(y:y), =054,  (13)

as bound or approximation of I(y).

Evidently, when B(y) is a lower (upper) bound for I(y), y > 0, we have
from I(U(t)) = t/v/2 = B(yg(t)) that yg(t) > (L) U(t).

First consider the lower bound B(y; co) in (71). Then solving y = y(t)
from the equation

e’ —1 t
-t 74
yields for z = z,,(t) = exp(y2,(t)) the fixed-point equation
z=1+t2In2)"Y2 = Fy(z; 1) . (75)

With ¢ > 1 being fixed, it is elementary to show that the mapping z >
1 — F(z; t) has two fixed-points z € [1,00), viz. z = 1 and z = 2,.(t) >
1. To compute the latter fixed-point, we iterate by successive substitution
according to

2O = (212 ZUHD =1 (2 20NV 5 =0,1, ..., (76)

where the initial value z(¥) is suggested by the asymptotic result (9) for fo(t).

Next consider the general function B(y; ) from Section 3 with 1/3 <
v < 1. Now solving y = y,(t) from the equation

B(y;v) = (77)

v’ — 1 (1 1— e%ﬂ)—l
2y 2yy?

sl
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yields for z = z,(t) = exp(y2(t)) the fixed-point equation

1—2z277

=14+t2mn)/? -t ————
z=14+12Inz) NCITPLE

= F,(2;1). (78)

We have for F,(z; t) with fixed ¢ > 1 the following:
- F,(1;t) =1,
— F,(z;t) > z for z in a right-neighbourhood of 1,

d
- [F,(z; t)] is positive and decreasing in z > 1 when 0 < vy < 1.
z

As to the latter property, one computes explicitly

1 d 1
c RG] = 21— (@me) 24 S (20) )
I | (U SRGR IS
eV’ 1—e
- 2yt 1) —— 79
y\/§( W) 2992 (79)
where we have set z = exp(y?) with y > 0. Now
d e 2 eV 2 2 4
o [—y 2y +1)| = R (2vy” —1—=2y" —4yy") <0 (80)

for all y > 0 when 0 < v < 1, and this shows that the first factor on the
second line of (79) decreases in y > 0 when 0 < v < 1. The second factor on
the second line of (79) decreases in y > 0 for all v > 0.

We conclude that the mapping z > 1 — F.,(z; t) has two fixed-points
z € [1,00), viz. z =1 and z = z,(t) > 1. The latter fixed-point can again
be computed iteratively by successive substitution using (78) with 20 =
t(Int)'/? as initial value.

We illustrate all this for the case that ¢ = 10. We have

fo(10) =19.25011998, U(10) = 1.719743380 ; 2 = 21.45966026 . (81)
We find then

1. Lower bound B(y; co) yields, using 12 iterations in (76) with initial

value z(©,

200(10) = 26.61881448 ,  y5o(10) = (In 25,(10))/? = 1.811523745 . (82)
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2. Lower bound B(y; 1) yields, using 12 iterations based on the fixed-
point equation (78) with v = 1 and with initial value z(?,

21(10) = 22.03097612,  41(10) = (In 2, (10))*/2 = 1.758536172 . (83)

3. Upper bound B(y; 1/3) yields using 15 iterations based on the fixed-
point equation (78) with v = 1/3 and with initial value 2(*),

21/3(10) = 17.133554664 ,  y1/3(10) = (In 213(10))"/? = 1.685537995 . (84)

4. Approximation B(y; 0.54) yields, using 14 iterations based on the
fixed-point equation (78) with v = 0.54 and with initial value 2(©,

2054(10) = 19.24791149 | yo54 = (In 2054(10))"/2 = 1.719710022 . (85)

It is observed that in all cases (except, perhaps, in case 1), the y-values
obtained are (quite) close to U(10) in (81), already for the relatively small
value 10 of ¢. This observation can be used to do a quality assessment of the
estimates z of fy(t), for values of t = 10 and larger. We recall that, given an
approximation B(y) of I(y), we solve y = yp from

B(yg) = % - / e dv . (86)

Now
B(yp) = Rp(ys) /e” dv . (87)
0

where the Rp-function, compare Figure 1, is given by

Rg(y) = ?JB& : y>0. (88)

[ ev* dv
0

In all considered cases, this Rp-function is a well-behaved smooth function.
Next we have in terms of the Dawson function F(y)

Y

I(y):/eUQd”:eyQF(y), y>0. (89)

The function F' is, compared to exp(y?), a mildly varying function in the
sense that F'(y)/F(y) is not large when y is away from 0. Now, from (86,
87, 89)

U2 (t) — vt

e’ WF(U(t)) = Rp(ys) € F(ys) - (90)

14



Hence, using
fot) = exp(U*(1)) , 25 = exp(yp) | (91)
we get v
2B 1 FU() 1 el
o) Ry (ys) Fap) Ry (yp) = R (U(1)) , (92)
where the latter two near-equalities hold when yp is close to U(t) and mild
variation of F' and Rp.
We conclude that the relative error, made by approximating fo(t) by zp,
can be read off accurately from the R-plots in Figure 1. Thus we find

1. %fj(?(?f —138~1.33=R Y U®1); ) ,
2. 288? = 1Ll4~112=RYU®M); 1),

3. Z}ﬁ—(llo(;) =089~ 0.91 = RY(U(t); 1/3) ,
4. %%?) —1.00 = RY(U(t); 0.54) .

by looking at the values of the R-functions in Figure 1 at y = U(10) = 1.72
(for the first case, a separate consideration is required).

The first identity in (92) can be explored further by elaborating the factor
F(U(t))/F(yg), yielding improved estimates of fy(t).
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Figure 1: The ratio R(y; v) = B(y; 7v)/I(y) in the range 0 < y < 9 for
v=1/3,0.54 and 1.
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