EURANDOM PREPRINT SERIES

2021-014
December 14, 2021

Bounds on Dawson's integral occurring in the analysis of a line distribution network for electric vehicles
A. Janssen

ISSN 1389-2355

Bounds on Dawson's integral occurring in the analysis of a line distribution network for electric vehicles

A.J.E.M. Janssen
Eindhoven University of Technology, Department of Mathematics and Computer Science

Abstract

. The Dawson integral $F(y)$ arises in the analysis of a particular model (Distflow model) for charging electric vehicles (EVs) when one passes from the intrinsic discrete setting to an analytically more tractable continuous setting. The mathematical and computational properties of $F(y)$ have been developed in the context of the error function, with purely imaginary argument $i y, y \geq 0$, for which packages, such as Mathematica, exist. In this report, we focus on bounds on $F(y)$ that are sharp, both at $y=0$ and $y=\infty$, a topic that has been hardly addressed in the existing literature. One of the bounds we show emerges naturally from the EV-application when one compares the Distflow model to a linearized version of it.

1 Introduction

We start this report by outlining how the Dawson integral arises in the analysis of a particular model (Distflow model) for charging electric vehicles (EVs) at N (large) charging stations connected by a power line, with the requirement that the ratio between the voltages at the root and the last station at the power line should stay below a desired level. A full description of the problem at hand, comprising a comparison of the Distflow model and the linearized Distflow model, can be found in [1]. In [1], Subsections 2.3.1-2, the two models are introduced and discussed. Under the Distflow model, the normalized voltages $V_{n}, n=0,1, \ldots, N-1, N$, with V_{N} the voltage at the root station and V_{0} the voltage at the last station of the power line, satisfy a recursion

$$
\begin{equation*}
V_{0}=1, \quad V_{1}=1+k_{0} ; \quad V_{n+1}-2 V_{n}+V_{n-1}=\frac{k_{n}}{V_{n}}, \quad n=1, \ldots, N-1 \tag{1}
\end{equation*}
$$

see [1], (2.16-2.18). The k_{n}, comprising given charging rates p_{n} and resistance/reactance values r and x as well as the arrival rate λ at the stations, are normally small (of the order a / N^{2} with $0<a<0.1$). The ratio $V_{N} / V_{0}=V_{N}$ between the voltages at the root node (N) and the last node (0) should be below a level $1 /(1-\Delta)$, where the tolerance Δ is small (of the order 0.1). Linearization of the Distflow model, as is done in [1], Subsection 2.3.2, yields the linearized Distflow model.

For analytically comparing the two models, it is assumed that all k_{n} are equal to a / N^{2}, with $a \in(0,0.1)$ independent of n (for numerically comparing the two models, such an assumption does not need to be made). In [1], Section 5.3 and Appendix B, a major effort is made to establish a relationship between the sequence $V_{n}, n=0,1, \ldots, N$, and the solution $f_{0}(t), t \geq 0$, of the second-order boundary value problem

$$
\begin{equation*}
f_{0}^{\prime \prime}(t)=\frac{1}{f_{0}(t)}, \quad t \geq 0 ; \quad f_{0}(0)=1, \quad f_{0}^{\prime}(0)=0 \tag{2}
\end{equation*}
$$

In particular, it is shown see [1], Section 5.4, that $V_{N} \rightarrow f_{0}(\sqrt{a})$ as $N \rightarrow \infty$ and a is fixed.

The Dawson integral $F(y)=e^{-y^{2}} I(y)$, with

$$
\begin{equation*}
I(y)=\int_{0}^{y} e^{v^{2}} d v, \quad y \geq 0 \tag{3}
\end{equation*}
$$

then arises as follows, see [1], Appendix C. We have

$$
\begin{equation*}
f_{0}(t)=\exp \left(U^{2}(t)\right), \quad t \geq 0, \tag{4}
\end{equation*}
$$

where $U(t)$ is defined implicitly by

$$
\begin{equation*}
\int_{0}^{U(t)} e^{v^{2}} d v=t / \sqrt{2}, \quad t \geq 0 \tag{5}
\end{equation*}
$$

That is, in the notation preferred in [1], Section 5.4,

$$
\begin{equation*}
U(t)=\operatorname{inverfi}\left(t \sqrt{\frac{2}{\pi}}\right), \quad t \geq 0 \tag{6}
\end{equation*}
$$

where inverfi is the inverse of the function

$$
\begin{equation*}
i \operatorname{erf}(y / i)=\frac{2}{\sqrt{\pi}} \int_{0}^{y} e^{v^{2}} d v \quad \text { with } \quad \operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-s^{2}} d s \tag{7}
\end{equation*}
$$

In the research effort, from which [1] and [2] resulted, properties and results about the sequence $V_{n}, n=0,1, \ldots$, have been conjectured and proved by first establishing these for the analytically more tractable function $f_{0}(z)$. For instance, we have from the asymptotics

$$
\begin{equation*}
I(y) \sim \frac{e^{y^{2}}}{2 y}\left(1+\frac{1}{2 y^{2}}+\frac{3}{4 y^{4}}+\ldots\right), \quad y \rightarrow \infty \tag{8}
\end{equation*}
$$

(asymptotic series) that

$$
\begin{equation*}
f_{0}(t)=t(2 \ln t)^{1 / 2}\left(1+O\left(\frac{\ln (\ln t)}{\ln t}\right)\right), \quad t \rightarrow \infty \tag{9}
\end{equation*}
$$

This leads to the conjecture that for fixed $k>0$, and with n in (1) allowed to tend to ∞,

$$
\begin{equation*}
V_{n} \sim n(2 k \ln n)^{1 / 2}, \quad n \rightarrow \infty \tag{10}
\end{equation*}
$$

The latter result will be proved in all detail in [2].

2 Basic properties and bounds of Dawson's integral

We shall now give basic properties and bounds for Dawson's integral $F(y)=e^{-y^{2}} I(y)$ and the intgral $I(y)$ in (3), as far as relevant for our purposes. We refer to [3], Ch. 7 for an extensive account, with references, of the properties of the error function and Dawson's integral. We have
A. $\quad I(y)=\sum_{l=0}^{\infty} \frac{y^{2 l+1}}{l!(2 l+1)}=y\left(1+\frac{1}{3} y^{2}+\frac{1}{10} y^{4}+\frac{1}{42} y^{6}+\ldots\right), \quad y \geq 0$,
B. $I(y) \sim \frac{e^{y^{2}}}{2 y} \sum_{k=0}^{\infty} \frac{1 \cdot 3 \cdot \ldots \cdot(2 k-1)}{\left(2 y^{2}\right)^{k}}=\frac{e^{y^{2}}}{2 y} \sum_{k=0}^{\infty} \frac{\Gamma(k+1 / 2)}{\Gamma(1 / 2)} y^{-2 k}$

$$
\begin{equation*}
=\frac{e^{y^{2}}}{2 y}\left(1+\frac{1}{2 y^{2}}+\frac{3}{4 y^{4}}+\frac{15}{8 y^{6}}+\ldots\right), \quad y \rightarrow \infty . \tag{12}
\end{equation*}
$$

The series in (12) is an asymptotic series; see [4], (2.8) and further, for a Cauchy principal value integral for the remainder when finitely many terms of the series are included. When for a particular $y>0$ the series is truncated at the integer k nearest to $y^{2}-1 / 2$, the truncation error is of the order

$$
\begin{equation*}
\frac{\Gamma(k+3 / 2)}{\Gamma(1 / 2)} y^{-2 k-2} \approx e^{-y^{2}} \sqrt{2} \tag{13}
\end{equation*}
$$

(for $y=8$ this is $\approx 2 \times 10^{-28}$ with $k=64$).
C. In [3], $\S 7.8$ some bounds on $I(y)$ are given, viz.

$$
\begin{gather*}
I(y)<\frac{1}{3 y}\left(2 e^{y^{2}}+y^{2}-2\right), \quad y>0, \tag{14}\\
I(y)<\frac{e^{y^{2}}-1}{y}, \quad y>0, \tag{15}
\end{gather*}
$$

The right-hand side of (14) has Taylor series

$$
\begin{equation*}
\frac{1}{3 y}\left(2 e^{y^{2}}+y^{2}-2\right)=y\left(1+\frac{1}{3} y^{2}+\frac{1}{9} y^{4}+\frac{1}{36} y^{6}+\ldots\right), \quad y \geq 0 \tag{16}
\end{equation*}
$$

and the bound in (14) is therefore sharp, see (11), at $y=0$; the bound in (14) is not sharp as $y \rightarrow \infty$, see (12). The right-hand side of (15) has Taylor series

$$
\begin{equation*}
\frac{e^{y^{2}}-1}{y}=y\left(1+\frac{1}{2} y^{2}+\frac{1}{6} y^{4}+\ldots\right), \quad y \geq 0 \tag{17}
\end{equation*}
$$

and the bound in (15) is therefore sharp at $y=0$ (though not as sharp as (16)). In [5], 2° on p. 180, there is given the bound

$$
\begin{equation*}
I(y)<\frac{\pi^{2}}{8 y}\left(e^{y^{2}}-1\right), \quad y>0 \tag{18}
\end{equation*}
$$

Since $\frac{\pi^{2}}{8}=1.2337 \ldots$, the bound 18) is not sharp at $y=0$ nor at $y=\infty$. I haven't seen lower bounds on $I(y)$.
D. We now present some simple lower and upper bounds. We have

$$
\begin{equation*}
\frac{e^{y^{2}}-1}{2 y} \leq I(y) \leq \frac{e^{y^{2}}-1}{y}, \quad y \geq 0 \tag{19}
\end{equation*}
$$

Indeed,

$$
\begin{equation*}
\frac{e^{y^{2}}-1}{y}=\sum_{l=0}^{\infty} \frac{y^{2 l+1}}{(l+1)!} \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{2 \cdot(l+1)!}<\frac{1}{l!(2 l+1)} \leq \frac{1}{(l+1)!}, \quad l=0,1, \ldots \tag{21}
\end{equation*}
$$

so (19) follows from (11). The lower bound in (19) is sharp at $y=\infty$ and not sharp at $y=0$; the upper bound in (19) is sharp at $y=0$ and not sharp at $y=\infty$. The lower bound in (19) can be sharpened to

$$
\begin{equation*}
I(y)>\frac{\sinh \left(y^{2}\right)}{y}=\frac{e^{y^{2}}-e^{-y^{2}}}{2 y}, \quad y>0 \tag{22}
\end{equation*}
$$

Indeed, we have for $y>0$

$$
\begin{align*}
e^{-y^{2}} I(y) & =e^{-y^{2}} \int_{0}^{y} e^{v^{2}} d v=\int_{0}^{y} e^{(v+y)(v-y)} d v \\
& >\int_{0}^{y} e^{2 y(v-y)} d v=\frac{1}{2 y}\left(1-e^{-2 y^{2}}\right) \tag{23}
\end{align*}
$$

The bound in (22) is sharp at both $y=0$ and $y=\infty$. As a result of a numerical computation, it is found that the minimum of $\sinh \left(y^{2}\right) /(y I(y))$ over $y \geq 0$ equals $0.766769724 \ldots$ and is assumed at $y=1.386079411 \ldots$.

The lower bound in (22) arose in an early version of [1] (Nov. 2, 2021) where the Distflow and linearized Distflow models were compared. For this, it was required that

$$
\begin{equation*}
H(y):=\frac{1}{\sqrt{e^{2 y^{2}}-1}} \int_{0}^{y} e^{v^{2}} d v=\frac{I(y)}{\sqrt{e^{2 y^{2}}-1}} \tag{24}
\end{equation*}
$$

is strictly decreasing in $y>0$. One computes

$$
\begin{equation*}
H^{\prime}(y)=\frac{1}{\sqrt{e^{2 y^{2}}-1}}\left(-\frac{2 y e^{2 y^{2}}}{e^{2 y^{2}}-1} I(y)+e^{y^{2}}\right) \tag{25}
\end{equation*}
$$

and this negative for all $y>0$ if and only if (22) holds.

3 More advanced bounds and approximations

We consider now the functions, with $\gamma \geq 0$,

$$
\begin{equation*}
B(y ; \gamma)=\frac{e^{y^{2}}-1}{2 y} /\left(1-\frac{1-e^{-\gamma y^{2}}}{2 \gamma y^{2}}\right), \quad y \geq 0 \tag{26}
\end{equation*}
$$

as potential lower and upper bounds for $I(y)$ for all $y \geq 0$. The function $B(y ; \gamma)$, case $\gamma=1$, arises naturally when one wants to show that, see (19),

$$
\begin{equation*}
I(y) /\left(\frac{e^{y^{2}}-1}{y}\right), \quad y \geq 0 \tag{27}
\end{equation*}
$$

(strictly) decreases from 1 at $y=0$ to $1 / 2$ at $y=\infty$.
Lemma 1 We have for $y>0$

$$
\begin{equation*}
\left(I(y) /\left(\frac{e^{y^{2}}-1}{y}\right)\right)^{\prime}<0 \Leftrightarrow I(y)>B(y ; 1)=\frac{e^{y^{2}}-1}{2 y} /\left(1-\frac{1-e^{-y^{2}}}{2 y^{2}}\right) \tag{28}
\end{equation*}
$$

Proof. We have for $y>0$

$$
\begin{equation*}
\left(I(y) /\left(\frac{e^{y^{2}}-1}{y}\right)\right)^{\prime}=\frac{e^{y^{2}}-1-2 y^{2} e^{y^{2}}}{\left(e^{y^{2}}-1\right)^{2}} I(y)+\frac{y e^{y^{2}}}{e^{y^{2}}-1}, \tag{29}
\end{equation*}
$$

and this is negative if and only if

$$
\begin{equation*}
I(y)>\frac{y\left(e^{y^{2}}-1\right) e^{y^{2}}}{2 y^{2} e^{y^{2}}-\left(e^{y^{2}}-1\right)} . \tag{30}
\end{equation*}
$$

The right-hand side of (30) equals $B(y ; 1)$ and this completes the proof.
We next list a number of properties of the $B(y ; \gamma)$.

Proposition 1 (a) We have, see (19),

$$
\begin{equation*}
B(y ; 0)=\frac{e^{y^{2}}-1}{y}, \quad y \geq 0 ; \quad \lim _{y \rightarrow \infty} B(y ; \gamma)=\frac{e^{y^{2}}-1}{2 y}, \quad y>0 . \tag{31}
\end{equation*}
$$

(b) For $y \geq 0$ fixed, we have that $B(y ; \gamma)$ is a decreasing function of $\gamma \geq 0$.
(c) We have for fixed $\gamma>0$ that

$$
\begin{equation*}
B(y ; \gamma) /\left(\frac{e^{y^{2}}-1}{y}\right) \tag{32}
\end{equation*}
$$

decreases in $y \geq 0$ from 1 at $y=0$ to $1 / 2$ at $y=\infty$.
(d) We have for $\gamma \geq 0$

$$
\begin{align*}
B(y ; \gamma)= & y\left(1+\frac{1}{2}(1-\gamma) y^{2}+\left(\frac{5}{12} \gamma^{2}-\frac{1}{4} \gamma+\frac{1}{6}\right) y^{4}\right. \\
& +\left(-\frac{1}{3} \gamma^{3}+\frac{5}{24} \gamma^{2}-\frac{1}{12} \gamma+\frac{1}{24}\right) \gamma^{6}+\ldots \\
= & I(y)\left(1+O\left(y^{2}\right)\right), \quad y \downarrow 0 . \tag{33}
\end{align*}
$$

(e) We have (asymptotic equivalence)

$$
\begin{equation*}
B(y ; 0) \sim \frac{e^{y^{2}}}{y}\left(1+\frac{0}{y^{2}}+\frac{0}{y^{4}}+\frac{0}{y^{6}}+\ldots\right), \quad y \rightarrow \infty \tag{34}
\end{equation*}
$$

and, for fixed $\gamma>0$,

$$
\begin{align*}
B(y ; \gamma) \sim \frac{e^{y^{2}}}{2 y} \frac{1}{1-\left(2 \gamma y^{2}\right)^{-1}} & =\frac{e^{y^{2}}}{2 y}\left(1+\frac{1}{2 \gamma y^{2}}+\frac{1}{4 \gamma^{2} y^{4}}+\frac{1}{8 \gamma^{3} y^{6}}+\ldots\right) \\
& =I(y)\left(1+O\left(\frac{1}{y^{2}}\right)\right), \quad y \rightarrow \infty \tag{35}
\end{align*}
$$

The proofs of these results are straightforward. It is used that the function $x \geq 0 \mapsto\left(1-e^{-x}\right) / x$ decreases from 1 at $x=0$ to 0 at $x=\infty$. Furthermore, it is used that $\exp \left(-y^{2}\right)$ and $\exp \left(-\gamma y^{2}\right), \gamma>0$, are exponentially small as $y \rightarrow \infty$ and thus are asymptotically equivalent with $0 / y^{2}+0 / y^{4}+\ldots$.

Theorem 1 (a) $B(y ; \gamma) \leq I(y)$ for all $y \geq 0 \Leftrightarrow \gamma \geq 1$.
(b) $B(y ; \gamma) \geq I(y)$ for all $y \geq 0 \Leftrightarrow 0 \leq \gamma \leq 1 / 3$.

Proof. (a) It follows from (12) and (35) that $B(y ; \gamma) \leq I(y)$ for all $y \geq 0$ implies that $1 / 2 \gamma \leq 1 / 2$, i.e., $\gamma \geq 1$. Furthermore, from Proposition 1(b)
we have that $B(y ; \gamma) \leq B(y ; 1)$ for all $y \geq 0$ and all $\gamma \geq 1$. Hence, it is sufficient to show that $B(y ; 1) \leq I(y), y \geq 0$. We have $I(0)=0=B(0 ; 1)$, and so it is sufficient to show that for $y>0$

$$
\begin{equation*}
I^{\prime}(y)=e^{y^{2}}>\left(\frac{y\left(e^{y^{2}}-1\right)}{2 y^{2}-\left(1-e^{-y^{2}}\right)}\right)^{\prime}=B^{\prime}(y ; 1) \tag{36}
\end{equation*}
$$

We compute for $y>0$

$$
\begin{align*}
& \left(\frac{y\left(e^{y^{2}}-1\right)}{2 y^{2}-\left(1-e^{y^{2}}\right)}\right)^{\prime} \\
& =\frac{-4 x\left(e^{x}-1\right)+4 x^{2} e^{x}-\left(e^{x}-1\right)\left(1-e^{-x}\right)+2 x\left(1-e^{-x}\right)}{\left(2 x-\left(1-e^{-x}\right)\right)^{2}} \tag{37}
\end{align*}
$$

where we have set $x=y^{2}>0$. Thus (36) is equivalent with

$$
\begin{equation*}
-4 x\left(e^{x}-1\right)+4 x^{2} e^{x}-\left(e^{x}-1\right)\left(1-e^{-x}\right)+2 x\left(1-e^{-x}\right)<e^{x}\left(2 x-\left(1-e^{-x}\right)\right)^{2}, \tag{38}
\end{equation*}
$$

with $x=y^{2}>0$. The right-hand side of (38) equals

$$
\begin{equation*}
4 x^{2} e^{x}-4 x\left(e^{x}-1\right)+e^{x}\left(1-e^{-x}\right)^{2}, \tag{39}
\end{equation*}
$$

and so, cancelling the $4 x^{2} e^{x}-4 x\left(e^{x}-1\right)$ from both sides of (38) and dividing through by a factor $1-e^{-x}$, we have that (36) is equivalent with

$$
\begin{equation*}
-\left(e^{x}-1\right)+2 x<e^{x}\left(1-e^{-x}\right), \quad x=y^{2}>0 \tag{40}
\end{equation*}
$$

i.e., with $\left(e^{x}-1\right) / x>1$ for $x>0$. This is obviously true.
(b) It follows from (11) and (33) that $B(y ; \gamma) \geq I(y)$ for all $y \geq 0$ implies that $\frac{1}{2}(1-\gamma) \geq 1 / 3$, i.e., $\gamma \leq 1 / 3$. Furthermore, from Proposition 1 (b), we have that $B(y ; \gamma) \geq B(y ; 1 / 3)$ for all $y \geq 0$ and all $\gamma, 0 \leq \gamma \leq 1 / 3$. Hence, it is sufficient to show that $B(y ; 1 / 3) \geq I(y), y \geq 0$. We have $I(0)=0=B(0 ; 1 / 3)$, and so it is sufficient to show that for all $y>0$

$$
\begin{equation*}
I^{\prime}(y)=e^{y^{2}}<\left(\frac{\gamma y\left(e^{y^{2}}-1\right)}{2 \gamma y^{2}-\left(1-e^{-\gamma y^{2}}\right)}\right)^{\prime}=B^{\prime}(y ; \gamma), \quad \gamma=1 / 3 \tag{41}
\end{equation*}
$$

We compute for $y>0$

$$
\begin{align*}
\left(\frac{\gamma y\left(e^{y^{2}}-1\right)}{2 \gamma y^{2}-\left(1-e^{-\gamma y^{2}}\right)}\right)^{\prime}= & \gamma\left\{-2 \gamma x\left(e^{x}-1\right)+4 \gamma x^{2} e^{x}-\left(e^{x}-1\right)\left(1-e^{-\gamma x}\right)\right. \\
& \left.-2 x e^{x}\left(1-e^{-\gamma x}\right)+2 \gamma x\left(e^{x}-1\right) e^{-\gamma x}\right\} / \\
& \left\{\left(2 \gamma x-\left(1-e^{-\gamma x}\right)\right)^{2}\right\}, \tag{42}
\end{align*}
$$

where we have set $x=y^{2}>0$. Thus (41) is equivalent with

$$
\begin{align*}
\frac{1}{\gamma}\left(2 \gamma x-\left(1-e^{-\gamma x}\right)\right)^{2} e^{x}< & -2 \gamma x\left(e^{x}-1\right)+4 \gamma x^{2} e^{x}-\left(e^{x}-1\right)\left(1-e^{-\gamma x}\right) \\
& -2 x e^{x}\left(1-e^{-\gamma x}\right)+2 \gamma x\left(e^{x}-1\right) e^{-\gamma x} \tag{43}
\end{align*}
$$

with $x=y^{2}>0$. The left-hand side of (43) equals

$$
\begin{equation*}
4 \gamma x^{2} e^{x}-4 x\left(1-e^{-\gamma x}\right) e^{x}+\frac{1}{\gamma}\left(1-e^{-\gamma x}\right)^{2} e^{x} \tag{44}
\end{equation*}
$$

while the right-hand side of (43) equals

$$
\begin{align*}
4 \gamma x^{2} e^{x} & -2 x\left(1-e^{-\gamma x}\right) e^{x}-\left(e^{x}-1\right)\left(1-e^{-\gamma x}\right) \\
& -2 \gamma x\left(e^{x}-1\right)+2 \gamma x\left(e^{x}-1\right) e^{-\gamma x} . \tag{45}
\end{align*}
$$

Simplifying then in (43), we get that (41) is equivalent with

$$
\begin{align*}
& -2 x\left(1-e^{-\gamma x}\right) e^{x}+\frac{1}{\gamma}\left(1-e^{-\gamma x}\right)^{2} e^{x} \\
& <-2 \gamma x\left(e^{x}-1\right)\left(1-e^{-\gamma x}\right)-\left(e^{x}-1\right)\left(1-e^{-\gamma x}\right), \quad x=y^{2}>0 . \tag{46}
\end{align*}
$$

Dividing through in (46) by $1-e^{-\gamma x}$, we have that (41) is equivalent with

$$
\begin{equation*}
-2 x e^{x}+\frac{1}{\gamma}\left(1-e^{-\gamma x}\right) e^{x}<-2 \gamma x\left(e^{x}-1\right)-\left(e^{x}-1\right), \tag{47}
\end{equation*}
$$

i.e., with

$$
\begin{equation*}
-2(1-\gamma) x e^{x}+\left(\frac{1}{\gamma}+1\right) e^{x}-\frac{1}{\gamma} e^{(1-\gamma) x}<1+2 \gamma x \tag{48}
\end{equation*}
$$

with $x=y^{2}>0$. We have equality in (48) for $x=0$, and so, taking derivatives in (48), it is sufficient to show that

$$
\begin{equation*}
-2(1-\gamma) e^{x}-2(1-\gamma) x e^{x}+\left(\frac{1}{\gamma}+1\right) e^{x}-\frac{1-\gamma}{\gamma} e^{(1-\gamma) x}<2 \gamma, \quad x>0 \tag{49}
\end{equation*}
$$

i.e., that

$$
\begin{equation*}
\left(\frac{1}{\gamma}+2 \gamma-1\right) e^{x}-2(1-\gamma) x e^{x}-\frac{1-\gamma}{\gamma} e^{(1-\gamma) x}<2 \gamma, \quad x>0 . \tag{50}
\end{equation*}
$$

We have equality in (50) for $x=0$, and so, taking derivatives in (50), it is sufficient to show that

$$
\begin{equation*}
\left(\frac{1}{\gamma}+2 \gamma-1\right) e^{x}-2(1-\gamma) e^{x}-2(1-\gamma) x e^{x}-\frac{(1-\gamma)^{2}}{\gamma} e^{(1-\gamma) x}<0 \tag{51}
\end{equation*}
$$

i.e., that

$$
\begin{equation*}
\left(\frac{1}{\gamma}+4 \gamma-3\right) e^{x}-2(1-\gamma) x e^{x}-\frac{(1-\gamma)^{2}}{\gamma} e^{(1-\gamma) x}<0, \quad x>0 \tag{52}
\end{equation*}
$$

The left-hand side of (52) equals $3 \gamma-1$ at $x=0$ and thus vanishes at $x=0$ since $\gamma=1 / 3$, For $\gamma=1 / 3$, the left-hand side of (52) becomes

$$
\begin{equation*}
\frac{4}{3}\left(e^{x}-x e^{x}-e^{\frac{2}{3} x}\right), \tag{53}
\end{equation*}
$$

and this is negative for $x>0$ since $e^{x}(1-x)<1<e^{\frac{2}{3} x}, x>0$. This completes the proof.

We have the Taylor developments, relevant for small $y>0$,

$$
\begin{gather*}
I(y)=y\left(1+\frac{1}{3} y^{2}+\frac{1}{10} y^{4}+\frac{1}{42} y^{6}+\ldots\right), \tag{54}\\
B(y ; 1)=y\left(1+0 \cdot y^{2}+\frac{1}{3} y^{4}-\frac{1}{12} y^{6}+\ldots\right), \tag{55}\\
B(y ; 1 / 3)=y\left(1+\frac{1}{3} y^{2}+\frac{7}{54} y^{4}+\frac{2}{81} y^{6}+\ldots\right), \tag{56}
\end{gather*}
$$

and the asymptotic expansions, relevant for $y \rightarrow \infty$,

$$
\begin{gather*}
I(y) \sim \frac{e^{y^{2}}}{2 y}\left(1+\frac{1}{2 y^{2}}+\frac{3}{4 y^{4}}+\frac{15}{8 y^{6}}+\ldots\right), \tag{57}\\
B(y ; 1) \sim \frac{e^{y^{2}}}{2 y}\left(1+\frac{1}{2 y^{2}}+\frac{1}{4 y^{4}}+\frac{1}{8 y^{6}}+\ldots\right), \tag{58}\\
B(y ; 1 / 3) \sim \frac{e^{y^{2}}}{2 y}\left(1+\frac{3}{2 y^{2}}+\frac{9}{4 y^{4}}+\frac{27}{8 y^{6}}+\ldots\right) . \tag{59}
\end{gather*}
$$

Thus, in particular

$$
\begin{equation*}
\frac{B(y ; 1 / 3)}{I(y)}=1+\frac{8}{270} y^{4}+O\left(y^{6}\right), \quad y \downarrow 0, \tag{60}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{B(y ; 1)}{I(y)}=1-\frac{1}{2 y^{4}}+O\left(\frac{1}{y^{6}}\right), \quad y \rightarrow \infty . \tag{61}
\end{equation*}
$$

Compare Proposition 1 (e).
By a numerical effort, it has been found that

$$
\begin{gather*}
\min _{y \geq 0} \frac{B(y ; 1)}{I(y)}=\frac{B\left(Y_{1} ; 1\right)}{I\left(Y_{1}\right)}=0.852634652 \ldots, \tag{62}\\
\max _{y \geq 0} \frac{B(y ; 1 / 3)}{I(y)}=\frac{B\left(Y_{1 / 3} ; 1 / 3\right)}{I\left(Y_{1 / 3}\right)}=1.135207141 \ldots, \tag{63}
\end{gather*}
$$

with $Y_{1}=1.180392274 \ldots$ and $Y_{1 / 3}=2.324381951 \ldots$.
In Figure 1, we present plots of

$$
\begin{equation*}
R(y ; \gamma)=\frac{B(y ; \gamma)}{I(y)}, \quad y \in[0,9] \tag{64}
\end{equation*}
$$

with $\gamma=1 / 3,0.54$ and 1 , illustrating that $B(y ; 1 / 3)$ is an upper bound for $I(y), y \geq 0$, and that $B(y ; 1)$ is a lower bound for $I(y), y \geq 0$, with maximal absolute relative errors of less than 15%. The choice $\gamma=0.54$ has

$$
\begin{equation*}
\max _{y \geq 0}(R(y ; \gamma)-1) \approx \max _{y \geq 0}(1-R(y ; \gamma)) \approx 0.044 \tag{65}
\end{equation*}
$$

4 Bounding and approximating $f_{0}(t)$

We recall that

$$
\begin{equation*}
f_{0}(t)=\exp \left(U^{2}(t)\right), \quad y=U(t)=\left(\ln \left(f_{0}(t)\right)\right)^{1 / 2}, \quad t \geq 0 \tag{66}
\end{equation*}
$$

where $U(t)$ is defined implicitly by

$$
\begin{equation*}
\int_{0}^{U(t)} e^{v^{2}} d v=\frac{t}{\sqrt{2}}, \quad t \geq 0 \tag{67}
\end{equation*}
$$

Suppose we have a bound (or approximation) $B(y)$ for

$$
\begin{equation*}
I(y)=\int_{0}^{y} e^{v^{2}} d v, \quad y \geq 0 \tag{68}
\end{equation*}
$$

Then we can find a bound (or approximation)

$$
\begin{equation*}
z_{B}(t)=\exp \left(y_{B}^{2}(t)\right), \quad y_{B}(t)=\left(\ln \left(z_{B}(t)\right)\right)^{1 / 2} \tag{69}
\end{equation*}
$$

of $f_{0}(t)$ by letting $y=y_{B}(t)$ solve the equation

$$
\begin{equation*}
B(y)=\frac{t}{\sqrt{2}} . \tag{70}
\end{equation*}
$$

With reference to (19) and to Theorem 1 in Section 3, we shall consider the lower bounds

$$
\begin{equation*}
\frac{e^{y^{2}}-1}{2 y}=B(y ; \infty) \quad \text { and } \quad \frac{e^{y^{2}}-1}{2 y}\left(1-\frac{1-e^{-y^{2}}}{2 y^{2}}\right)^{-1}=B(y ; 1), \tag{71}
\end{equation*}
$$

the upper bound

$$
\begin{equation*}
\frac{e^{y^{2}}-1}{2 y}\left(1-\frac{1-e^{-y^{2} / 3}}{2 y^{2} / 3}\right)^{-1}=B(y ; 1 / 3) \tag{72}
\end{equation*}
$$

and the approximation

$$
\begin{equation*}
\frac{e^{y^{2}}-1}{2 y}\left(1-\frac{1-e^{-\gamma y^{2}}}{2 \gamma y^{2}}\right)^{-1}=B(y ; \gamma), \quad \gamma=0.54 \tag{73}
\end{equation*}
$$

as bound or approximation of $I(y)$.
Evidently, when $B(y)$ is a lower (upper) bound for $I(y), y \geq 0$, we have from $I(U(t))=t / \sqrt{2}=B\left(y_{B}(t)\right)$ that $y_{B}(t) \geq(\leq) U(t)$.

First consider the lower bound $B(y ; \infty)$ in (71). Then solving $y=y_{\infty}(t)$ from the equation

$$
\begin{equation*}
\frac{e^{y^{2}}-1}{2 y}=\frac{t}{\sqrt{2}}, \tag{74}
\end{equation*}
$$

yields for $z=z_{\infty}(t)=\exp \left(y_{\infty}^{2}(t)\right)$ the fixed-point equation

$$
\begin{equation*}
z=1+t(2 \ln z)^{1 / 2}=: F_{\infty}(z ; t) \tag{75}
\end{equation*}
$$

With $t>1$ being fixed, it is elementary to show that the mapping $z \geq$ $1 \mapsto F_{\infty}(z ; t)$ has two fixed-points $z \in[1, \infty)$, viz. $z=1$ and $z=z_{\infty}(t)>$ 1. To compute the latter fixed-point, we iterate by successive substitution according to

$$
\begin{equation*}
z^{(0)}=t(2 \ln t)^{1 / 2} ; \quad z^{(j+1)}=1+t\left(2 \ln z^{(j)}\right)^{1 / 2}, \quad j=0,1, \ldots, \tag{76}
\end{equation*}
$$

where the initial value $z^{(0)}$ is suggested by the asymptotic result (9) for $f_{0}(t)$.
Next consider the general function $B(y ; \gamma)$ from Section 3 with $1 / 3 \leq$ $\gamma \leq 1$. Now solving $y=y_{\gamma}(t)$ from the equation

$$
\begin{equation*}
B(y ; \gamma)=\frac{e^{y^{2}}-1}{2 y}\left(1-\frac{1-e^{-\gamma y^{2}}}{2 \gamma y^{2}}\right)^{-1}=\frac{t}{\sqrt{2}}, \tag{77}
\end{equation*}
$$

yields for $z=z_{\gamma}(t)=\exp \left(y_{\gamma}^{2}(t)\right)$ the fixed-point equation

$$
\begin{equation*}
z=1+t(2 \ln z)^{1 / 2}-t \frac{1-z^{-\gamma}}{\gamma(2 \ln z)^{1 / 2}}=: F_{\gamma}(z ; t) \tag{78}
\end{equation*}
$$

We have for $F_{\gamma}(z ; t)$ with fixed $t>1$ the following:

- $F_{\gamma}(1 ; t)=1$,
- $F_{\gamma}(z ; t)>z$ for z in a right-neighbourhood of 1 ,
$-\frac{d}{d z}\left[F_{\gamma}(z ; t)\right]$ is positive and decreasing in $z \geq 1$ when $0<\gamma \leq 1$.
As to the latter property, one computes explicitly

$$
\begin{align*}
\frac{1}{t} \frac{d}{d z}\left[F_{\gamma}(z ; t)\right] & =z^{-1}\left(1-z^{-\gamma}\right)\left((2 \ln z)^{-1 / 2}+\frac{1}{\gamma}(2 \ln z)^{-3 / 2}\right) \\
& =\frac{e^{-y^{2}}}{y \sqrt{2}}\left(2 \gamma y^{2}+1\right) \cdot \frac{1-e^{-\gamma y^{2}}}{2 \gamma y^{2}} \tag{79}
\end{align*}
$$

where we have set $z=\exp \left(y^{2}\right)$ with $y \geq 0$. Now

$$
\begin{equation*}
\frac{d}{d y}\left[\frac{e^{-y^{2}}}{y}\left(2 \gamma y^{2}+1\right)\right]=\frac{e^{-y^{2}}}{y^{2}}\left(2 \gamma y^{2}-1-2 y^{2}-4 \gamma y^{4}\right)<0 \tag{80}
\end{equation*}
$$

for all $y>0$ when $0<\gamma \leq 1$, and this shows that the first factor on the second line of (79) decreases in $y>0$ when $0<\gamma \leq 1$. The second factor on the second line of (79) decreases in $y>0$ for all $\gamma>0$.

We conclude that the mapping $z \geq 1 \mapsto F_{\gamma}(z ; t)$ has two fixed-points $z \in[1, \infty)$, viz. $z=1$ and $z=z_{\gamma}(t)>1$. The latter fixed-point can again be computed iteratively by successive substitution using (78) with $z^{(0)}=$ $t(\ln t)^{1 / 2}$ as initial value.

We illustrate all this for the case that $t=10$. We have

$$
\begin{equation*}
f_{0}(10)=19.25011998, \quad U(10)=1.719743380 ; \quad z^{(0)}=21.45966026 \tag{81}
\end{equation*}
$$

We find then

1. Lower bound $B(y ; \infty)$ yields, using 12 iterations in (76) with initial value $z^{(0)}$,

$$
\begin{equation*}
z_{\infty}(10)=26.61881448, \quad y_{\infty}(10)=\left(\ln z_{\infty}(10)\right)^{1 / 2}=1.811523745 \tag{82}
\end{equation*}
$$

2. Lower bound $B(y ; 1)$ yields, using 12 iterations based on the fixedpoint equation (78) with $\gamma=1$ and with initial value $z^{(0)}$,

$$
\begin{equation*}
z_{1}(10)=22.03097612, \quad y_{1}(10)=\left(\ln z_{1}(10)\right)^{1 / 2}=1.758536172 . \tag{83}
\end{equation*}
$$

3. Upper bound $B(y ; 1 / 3)$ yields using 15 iterations based on the fixedpoint equation (78) with $\gamma=1 / 3$ and with initial value $z^{(0)}$,

$$
\begin{equation*}
z_{1 / 3}(10)=17.133554664, \quad y_{1 / 3}(10)=\left(\ln z_{1 / 3}(10)\right)^{1 / 2}=1.685537995 \tag{84}
\end{equation*}
$$

4. Approximation $B(y ; 0.54)$ yields, using 14 iterations based on the fixed-point equation (78) with $\gamma=0.54$ and with initial value $z^{(0)}$,

$$
\begin{equation*}
z_{0.54}(10)=19.24791149, \quad y_{0.54}=\left(\ln z_{0.54}(10)\right)^{1 / 2}=1.719710022 . \tag{85}
\end{equation*}
$$

It is observed that in all cases (except, perhaps, in case 1), the y-values obtained are (quite) close to $U(10)$ in (81), already for the relatively small value 10 of t. This observation can be used to do a quality assessment of the estimates z of $f_{0}(t)$, for values of $t=10$ and larger. We recall that, given an approximation $B(y)$ of $I(y)$, we solve $y=y_{B}$ from

$$
\begin{equation*}
B\left(y_{B}\right)=\frac{t}{\sqrt{2}}=\int_{0}^{U(t)} e^{v^{2}} d v \tag{86}
\end{equation*}
$$

Now

$$
\begin{equation*}
B\left(y_{B}\right)=R_{B}\left(y_{B}\right) \int_{0}^{y_{B}} e^{v^{2}} d v . \tag{87}
\end{equation*}
$$

where the R_{B}-function, compare Figure 1 , is given by

$$
\begin{equation*}
R_{B}(y)=\frac{B(y)}{\int_{0}^{y} e^{v^{2}} d v}, \quad y \geq 0 \tag{88}
\end{equation*}
$$

In all considered cases, this R_{B}-function is a well-behaved smooth function. Next we have in terms of the Dawson function $F(y)$

$$
\begin{equation*}
I(y)=\int_{0}^{y} e^{v^{2}} d v=e^{y^{2}} F(y), \quad y \geq 0 \tag{89}
\end{equation*}
$$

The function F is, compared to $\exp \left(y^{2}\right)$, a mildly varying function in the sense that $F^{\prime}(y) / F(y)$ is not large when y is away from 0 . Now, from (86, 87, 89)

$$
\begin{equation*}
e^{U^{2}(t)} F(U(t))=R_{B}\left(y_{B}\right) e^{y_{B}^{2}} F\left(y_{B}\right) . \tag{90}
\end{equation*}
$$

Hence, using

$$
\begin{equation*}
f_{0}(t)=\exp \left(U^{2}(t)\right), \quad z_{B}=\exp \left(y_{B}^{2}\right), \tag{91}
\end{equation*}
$$

we get

$$
\begin{equation*}
\frac{z_{B}}{f_{0}(t)}=R_{B}^{-1}\left(y_{B}\right) \frac{F(U(t))}{F\left(y_{B}\right)} \approx R_{B}^{-1}\left(y_{B}\right) \approx R_{B}^{-1}(U(t)), \tag{92}
\end{equation*}
$$

where the latter two near-equalities hold when y_{B} is close to $U(t)$ and mild variation of F and R_{B}.

We conclude that the relative error, made by approximating $f_{0}(t)$ by z_{B}, can be read off accurately from the R-plots in Figure 1. Thus we find

1. $\frac{z_{\infty}(10)}{f_{0}(10)}=1.38 \approx 1.33=R^{-1}(U(t) ; \infty)$,
2. $\frac{z_{1}(10)}{f_{0}(10)}=1.14 \approx 1.12=R^{-1}(U(t) ; 1)$,
3. $\frac{z_{1 / 3}(10)}{f_{0}(10)}=0.89 \approx 0.91=R^{-1}(U(t) ; 1 / 3)$,
4. $\frac{z_{0.54}(10)}{f_{0}(10)}=1.00=R^{-1}(U(t) ; 0.54)$.
by looking at the values of the R-functions in Figure 1 at $y=U(10)=1.72$ (for the first case, a separate consideration is required).

The first identity in (92) can be explored further by elaborating the factor $F(U(t)) / F\left(y_{B}\right)$, yielding improved estimates of $f_{0}(t)$.

References

[1] M.H.M. Christianen, J. Cruise, A.J.E.M. Janssen, S. Shneer, M. Vlasiou, and B. Zwart. Comparison of stability regions for a line distribution network with stochastic load demands, in preparation 2021.
[2] M.H.M. Christianen, A.J.E.M. Janssen, M. Vlasiou, and B. Zwart. In preparation.
[3] F.W.J. Olver, D.W. Lozier, R.F. Boisvert, and C.W. Clark. NIST Handbook of Mathematical Functions. Cambridge University Press, New York, 2010.
[4] W.J. Cody, K.A. Paciorek, and H.C. Thacher. Chebyshev approximations for Dawson's integral. Mathematics of Computation 24 (no. 109), 1970, pp. 171-178.
[5] D.S. Mitrinović. Analytic Inequalities. Springer, Berlin, 1970.

Figure 1: The ratio $R(y ; \gamma)=B(y ; \gamma) / I(y)$ in the range $0 \leq y \leq 9$ for $\gamma=1 / 3,0.54$ and 1 .

