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Abstract

In this paper we consider three classes of interacting particle systems on Z: independent random
walks, the exclusion process, and the inclusion process. We allow particles to switch their jump rate
between 1 and ε ∈ [0, 1]. The switch between the two jump rates happens at rate γ ∈ (0,∞). In the
exclusion process, the interaction is such that each site can be occupied by at most one particle of each
type. In the inclusion process, the interaction takes places between particles of the same type at different
sites and between particles of different type at the same site.

We derive the macroscopic limit equations for the three systems, obtained after scaling space by N−1,
time by N2, the switching rate by N−2, and letting N → ∞. The limit equations for the macroscopic
densities associated to the fast and slow particles is the well-studied double diffusivity model. This
system of reaction-diffusion equations was introduced to model polycrystal diffusion and dislocation pipe
diffusion, with the goal to overcome the limitations imposed by Fick’s law. In order to investigate the
microscopic out-of-equilibrium properties, we analyse the system on two copies of [N] = {1, . . . ,N},
adding boundary reservoirs at sites 1 and N in both layers. Inside [N] particles move as before, but now
particles are injected at site 1 and absorbed at site N at prescribed rates that depend on the layer. We
compute the steady-state distribution and the steady-state current. It turns out that uphill diffusion is
possible, i.e., the total flow can be opposite to the gradient imposed by the total injection rate and the
total absorption rate. This phenomenon, which cannot occur in a single-layer system, is a violation of
Fick’s law made possible by the switching between the layers. We rescale the microscopic steady-state
distribution and steady-state current and obtain the steady-state solution of a boundary-value problem for
the double diffusivity model.
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1 Introduction
Section 1.1 provides the background and the motivation for the paper. Section 1.2 defines the model.
Section 1.3 identifies the dual and the stationary measures. Section 1.4 gives a brief outline of the remainder
of the paper.

1.1 Background and motivation
Interacting particle systems are used to model and analyse properties of non-equilibrium systems, such
as macroscopic profiles, long-range correlations and macroscopic large deviations. Some models have
additional structure, such as duality or integrability properties, which allow for a study of the fine details of
non-equilibrium steady states, such as microscopic profiles and correlations. Examples include zero-range
processes, exclusion processes, and models that fit into the algebraic approach to duality, such as inclusion
processes and related diffusion processes, or models of heat conduction, such as the Kipnis-Marchioro-
Presutti model [8, 18, 19, 27, 34]. Most of these models have indistinguishable particles that are preserved,
and so the relevant macroscopic quantity is the density of particles.

Turning to more complex models of non-equilibrium, various exclusion processes with multi-type par-
ticles have been studied [21, 22, 36], as well as reaction-diffusion processes [6, 7, 16, 14, 15], where
non-linear reaction-diffusion equations are obtained in the hydrodynamic limit, and large deviations around
such equations have been analysed. In the present paper, we focus on a reaction-diffusion model that on
the one hand is simple enough such that via duality a complete microscopic analysis of the non-equilibrium
profiles can be carried out, but on the other hand exhibit interesting phenomena, such as uphill diffusion and
boundary-layer effects. In our model we have two types of particles, type 0 and type 1, that jump at rate
1 and ε ∈ [0, 1], respectively. Particles of identical type are allowed to interact via exclusion or inclusion.
There is no interaction between particles of different type that are at different sites. Each particle can change
type at a rate that is adapted to the particle interaction (inclusion or exclusion), and is therefore interacting
with particles of different type at the same site. An alternative and equivalent view is to consider two layers
of particles, where the layer determines the jump rate and where on each layer the particles move according
to exclusion or inclusion, and particles can change layer at a rate that is appropriately chosen in accordance
with the interaction. In the limit as ε ↓ 0, particles are immobile on the top layer.

We show that the hydrodynamic limit of all three dynamics is a linear reaction-diffusion system known
under the name of double diffusivity model, namely,

(1.1)

∂tρ0 = ∆ρ0 + Υ(ρ1 − ρ0),
∂tρ1 = ε∆ρ1 + Υ(ρ0 − ρ1),
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where ρi, i ∈ {0, 1}, are the macroscopic densities of the two types of particles, and Υ ∈ (0,∞) is the scaled
switching rate. The above system was introduced in [1] to model polycrystal diffusion (more generally,
diffusion in inhomogeneous porous media) and dislocation pipe diffusion, with the goal to overcome the
restrictions imposed by Fick’s law. Non-Fick behaviour is immediate from the fact that the total density
ρ = ρ0 + ρ1 does not satisfy the classical diffusion equation.

The double diffusivity model was studied extensively in the PDE literature [30, 31, 33], while its dis-
crete counterpart was analysed in terms of a single random walk switching between two layers [32]. The
same macroscopic model was studied independently in the mathematical finance literature in the context of
switching diffusion processes [42]. Thus, we have a family of interacting particle systems whose macro-
scopic limit is relevant in several contexts. Another context our three dynamics fit into are models of
interacting active random walks with an internal state that changes randomly (e.g. activity, internal source
of energy) and that determines their diffusion rate and or drift [13, 25, 29, 35, 38, 40].

An additional motivation to study two-layer models comes from population genetics. Individuals live
in colonies, carry different genetics types, and can be either active or dormant. While active, individuals
resample by adopting the type of a randomly sampled individual in the same colony, and migrate between
colonies by hopping around. Active individuals can become dormant, after which they suspend resampling
and migration, until they become active again. Dormant individuals reside in what is called a seed bank. The
overall effect of dormancy is that extinction of types is slowed down, and so genetic diversity is enhanced by
the presence of the seed bank. A wealth of phenomena can occur, depending on the parameters that control
the rates of resampling, migration, falling asleep and waking up [5, 28]. Dormancy not only affects the
long-term behaviour of the population quantitatively. It may also lead to qualitatively different equilibria
and time scales of convergence. For a panoramic view on the role of dormancy in the life sciences, we refer
the reader to [37].

From the point of view of non-equilibrium systems driven by boundary reservoirs, switching interacting
particle systems have not been studied. On the one hand, such systems have both reaction and diffusion
and therefore exhibit a richer non-equilibrium behaviour. On the other hand, the macroscopic equations are
linear and exactly solvable in one dimension, and so these systems are simple enough to make a detailed
microscopic analysis possible. As explained above, the system can be viewed as an interacting particle
system on two layers. Therefore duality properties are available, which allows for a detailed analysis
of the system coupled to reservoirs, dual to an absorbing system. In one dimension the analysis of the
microscopic density profile reduces to a computation of the absorption probabilities of a simple random
walk on a two-layer system absorbed at the left and right boundaries, which can be computed analytically.
From the analytic solution, we can identify both the density profile and the microscopic stationary current
in the system. This leads to two interesting phenomena. The first phenomenon is uphill diffusion (see e.g.
[2, 11, 17]), i.e., in a well-defined parameter regime the current can go against the particle density gradient:
when the total density of particles at the left end is higher than at the right end, the current can still go from
right to left. The second phenomenon is boundary-layer behaviour: in the limit as ε ↓ 0, in the macroscopic
stationary profile the densities in the top and bottom layer are equal, which for unequal boundary conditions
in the top and bottom layer results in a discontinuity in the stationary profile. Corresponding to this jump in
the macroscopic system, in the microscopic system we see a boundary layer of size

√
ε log(1/ε) where the

densities are unequal. The quantification of the size of this boundary layer is an interesting corollary of the
exact microscopic analysis via duality.

1.2 Three models
For σ ∈ {−1, 0, 1} we introduce an interacting particle system on Z where the particles randomly switch
their jumping rate between two possible values, 1 and ε, with ε ∈ [0, 1]. For σ = −1 the particles are
subject to the exclusion interaction, for σ = 0 the particles are independent, while for σ = 1 the particles
are subject to the inclusion interaction. Let

η0(x) := number of particles at site x jumping at rate 1,
η1(x) := number of particles at site x jumping at rate ε.

The configuration of the system is

η := {η(x)}x∈Z ∈ X =

{0, 1}Z × {0, 1}Z, if σ = −1
NZ0 × N

Z
0 , if σ = 0, 1,
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where
η(x) := (η0(x), η1(x)), x ∈ Z.

We call η0 = {η0(x)}x∈Z and η1 = {η1(x)}x∈Z the configurations of fast particles, respectively, slow particles.
When ε = 0 we speak of dormant particles (see Fig. 3).

Figure 1: Schematic representation of switching independent random walks (σ = 0).

Definition 1.1. [Switching interacting particle systems] For ε ∈ [0, 1] and γ ∈ (0,∞), let Lε,γ be the
generator, acting on bounded cylindrical functions f : X → R, given by

(1.2) (Lε,γ f )(η) := L0 f (η) + εL1 f (η) + γL0l1 f (η)

with

(L0 f )(η) =
∑
|x−y|=1

{
η0(x)(1 + ση0(y))

[
f ((η0 − δx + δy, η1)) − f (η)

]
+ η0(y)(1 + ση0(x))

[
f ((η0 + δx − δy, η1)) − f (η)

]}
,

(L1 f )(η) =
∑
|x−y|=1

{
η1(x)(1 + ση1(y))

[
f ((η0, η1 − δx + δy)) − f (η)

]
+ η1(y)(1 + ση1(x))

[
f ((η0, η1 + δx − δy)) − f (η)

]}
,

(L0l1 f )(η) = γ
∑
x∈Zd

{
η0(x)(1 + ση1(x))

[
f ((η0 − δx, η1 + δx)) − f (η)

]
+ η1(x)(1 + ση0(x))

[
f ((η0 + δx, η1 − δx)) − f (η)

]}
.

The Markov process {η(t) : t ≥ 0} on state space X with

η(t) := {η(x, t)}x∈Z =
{
(η0(x, t), η1(x, t))

}
x∈Z

with hopping rates 1, ε and switching rate γ is called switching exclusion process for σ = −1, switching
random walks for σ = 0 (see Fig. 1), and switching inclusion process for σ = 1. ♠

1.3 Duality and stationary measures
The systems defined in (1.2) can be equivalently formulated as jump processes on the graph (see Fig. 2)
with vertex set {(x, i) ∈ Zd × I}, with I = {0, 1} labelling the two layers, and edge set given by the nearest-
neighbour relation

(x, i) ∼ (y, j) when

|x − y| = 1 and i = j,
x = y and |i − j| = 1.
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Figure 2: Schematic representation of the two-layer graph.

In this formulation the particle configuration is

η = (ηi(x))(x,i)∈Z×I

and the generator is given by

(1.3)

(L f )(η) :=
∑
i∈I

∑
|x−y|=1

ε iηi(x)(1 + σηi(y)) [ f (η − δ(x,i) + δ(y,i)) − f (η)]

+ ε iηi(y)(1 + σηi(x)) [ f (η − δ(y,i) + δ(x,i)) − f (η)]

+
∑
i∈I

∑
x∈Z

ηi(x)(1 + ση1−i) [ f (η − δ(x,i) + δ(x,1−i)) − f (η)].

Thus, a single particle (when no other particles are present) is subject to two movements:

i) Horizontal movement: In layer i = 0 and i = 1 the particle performs a nearest-neighbour random
walk on Z at rate 1, respectively, ε.

ii) Vertical movement: The particle switches layer at the same site at rate γ.

It is well known that for these systems there exists a one-parameter family of reversible product mea-
sures {

µθ = ⊗(x,i)∈Z×Iν(x,i),θ : θ ∈ Θ
}

with Θ = [0, 1] if σ = −1 and Θ = [0,∞) if σ ∈ {0, 1}, and with marginals given by

ν(x,i),θ =


Bernoulli (θ), σ = −1,

Poisson (θ), σ = 0,

Negative–Binomial (1, θ
1+θ

), σ = 1.

(1.4)

Moreover, the usual self-duality relation holds with self-duality function D : X × X → R given by

(1.5) D(ξ, η) :=
∏

(x,i)∈Zd×I

d(ξi(x), ηi(x)),

with

(1.6) d(k, n) :=
n!

(n − k)!
1

w(k)
1{k≤n}

and

(1.7) w(k) :=

 Γ(1+k)
Γ(1) , σ = 1,

1, σ = −1, 0.
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Remark 1.2. [Possible extensions] Note that we could allow for inhomogeneous rates and non-nearest
neighbour jumps as well, and the same duality relation would still hold (see e.g. [23] for an inhomogeneous
version of the exclusion process). More precisely, let {ωi({x, y})x,y∈Z and {αi(x)}x∈Z be collections of bounded
weights for i ∈ I. Then the interacting particle systems with generator (1.3), and with modified transitions
rates

η −→ (η0 − δx + δy, η1) at rate ω0({x, y}) η0(x) (α0(y) + ση0(y)),
η −→ (η0, η1 − δx + δy) at rate ω1({x, y}) η1(x) (α1(y) + ση1(y)),

are still self-dual with duality function as in (1.5), but with single-site duality functions given by d(x,i)(k, n) =
n!

(n−k)!
1

w(x,i)(k) 1{k≤n} with

w(x,i)(k) =



αi(x)!
(αi(x) − k)!

1l{k≤αi(x)}, σ = −1,

αi(x)k, σ = 0,
Γ(αi(x) + k)

Γ(αi(x))
, σ = 1.

In the present paper we prefer to stick to the homogeneous setting in order not to introduce extra notation.
The extension would not lead to qualitatively different behaviour. ♠

Figure 3: Schematic representation of the system of switching independent random walks with dormant
particles. On the bottom layer, particles move as independent random walks with jump rate 1. On the top
layer, particles do not move and sleep on top of each other.

1.4 Outline
Section 2 identifies and analyses the hydrodynamic limit of the system in Definition 1.1 after scaling space,
time and switching rate diffusively. We thereby exhibit a class of interacting particle systems whose mi-
croscopic dynamics scales to a macroscopic dynamics called the double diffusivity model. Moreover, we
provide a discussion on the solutions of this model, connecting mathematical literature applied to material
science and to financial mathematics. Section 3 looks at what happens, both microscopically and macro-
scopically, when boundary reservoirs are added, resulting in a non-equilibrium flow. Here the possibility
of uphill diffusion becomes manifest, which is absent in single-layer systems, i.e., the two-layers interact in
a way that allows for a violation of Fick’s law. We characterise the parameter regime for uphill diffusion.
Moreover, we show that, in the limit ε ↓ 0, the macroscopic stationary profile of the type-1 particles adapts
to the microscopic stationary profile of the type-0 particles, resulting in a discontinuity at the boundary in
the case of unequal boundary conditions on the top layer and the bottom layer. Appendix A provides the
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inverse of a certain boundary-layer matrix. Appendix B lists three models for which a similar analysis can
be carried through in principle. These include systems with infinitely many layers and with particles that
interact via a more complicated exclusion rule.

2 The hydrodynamic limit
In this section we scale space, time and switching diffusively, so as to obtain a hydrodynamic limit. In
Section 2.1 we scale space by 1/N, time by N2, the switching rate by 1/N2, introduce scaled microscopic
empirical distributions, and let N → ∞ to obtain a system of macroscopic equations. In Section 2.2 we
recall some known results for this system, namely, there exists a unique solution that can be represented
in terms of an underlying diffusion equation or, alternatively, via a Feynman-Kac formula involving the
switching diffusion process.

2.1 From microscopic to macroscopic
Let N ∈ N, and consider the scaled generator Lε,γN (recall (1.2) with γN = Υ/N2 for some Υ ∈ (0,∞),
i.e., the reaction term is slowed down by a factor N2 in anticipation of the diffusive scaling we are going to
consider.

In order to study the collective behaviour of the particles after scaling of space and time, we introduce
the following empirical density fields, which are Radon measure-valued processes that are right continuous
with left limits:

XN
0 (t) :=

1
N

∑
x∈Z

η0(x, tN2) δx/N , XN
1 (t) :=

1
N

∑
x∈Z

η1(x, tN2) δx/N .

These are microscopic quantities. Given a test function g ∈ C∞c (R), we have

〈XN
0 (t), g〉 =

1
N

∑
x∈Z

g(x/N) η0(x, tN2), 〈XN
1 (t), g〉 =

1
N

∑
x∈Z

g(x/N) η1(x, tN2).

The corresponding macroscopic quantities are

ρ0(x, t) := macroscopic density of fast particles,
ρ1(x, t) := macroscopic density of slow particles.

We put ρ(x, t) := ρ0(x, t) + ρ1(x, t) for the total density.
In order to derive the hydrodynamic limit for the switching interacting particle systems, we need the

following set of assumptions.

Assumption 2.1. [Compatible initial conditions] Let ρ̄0 : R → R+ and ρ̄1 : R → R+ be two given
continuous and bounded functions, called initial macroscopic profiles. We say that a sequence (µN)N∈N

of measures on X is a sequence of compatible initial conditions when

(i) For any N ∈ N,
EµN [η0(x)] = ρ̄0(x/N), EµN [η1(x)] = ρ̄1(x/N).

(ii) There exists a constant C < ∞ such that

(2.1) sup
(x,i)∈Z×I

EµN [η(x, i)2] ≤ C.

♠

Note that Assumption 2.1(ii) is the same as employed in [10, Theorem 1, assumption (b)]. As remarked
there, the bound in (2.1) implies that

(2.2)

EµN [D(ξ, ηt)] =

∫
X

Eη[D(ξ, ηt)]dµN(η) =

∫
X

Eξ[D(ξt, η)]dµN(η) = Eξ
[
EµN [D(ξt, η)]

]
≤ Eξ[C |ξt |] = C |ξ|,

where the last equality follows from the fact that the number of particles is conserved.
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Theorem 2.2. [Hydrodynamic scaling] Let ρ̄0, ρ̄1 ∈ C2
b(R;R+) be two macroscopic profiles, and let

(µN)N∈N be a sequence of compatible initial conditions. Let PN be the law of the measure-valued process

{XN(t) : t ≥ 0}, XN(t) := (XN
0 (t), XN

1 (t)),

induced by the initial measure µN . Then, for any T, δ > 0 and g ∈ C∞c (R),

lim
N→∞
PµN

(
sup

t∈[0,T ]

∣∣∣∣∣ 〈XN
i (t), g〉 −

∫
R

dx ρi(x, t)g(x)
∣∣∣∣∣ > δ) = 0, i ∈ I,

where ρ0 and ρ1 are the unique continuous and bounded strong solutions of the system

(2.3)

∂tρ0 = ∆ρ0 + Υ(ρ1 − ρ0),
∂tρ1 = ε∆ρ1 + Υ(ρ0 − ρ1),

with initial conditions

(2.4)

ρ0(x, 0) = ρ̄0(x),
ρ1(x, 0) = ρ̄1(x).

Proof. The proof is standard and goes through the steps that we sketch below. (We omit the technical
details, which can be found in the literature [10, 16, 41].)

First of all, note that the macroscopic equation (2.3) can be straightforwardly identified by computing
the action of the rescaled generator LN = Lε,Υ/N2 on cylindrical functions fi(η) := ηi(x) with i ∈ I, namely,

(LN fi)(η) = ε i [ηi(x + 1) − 2ηi(x) + ηi(x − 1)
]
+

Υ

N2

[
η1−i(x) − ηi(x)

]
,

and hence, for any g ∈ C∞c (R),∫ tN2

0
ds LN(〈XN

i (s), g〉) =

∫ tN2

0
ds

ε i

N

∑
x∈Z

ηi(x, s) 1
2
[
g((x + 1)/N) − 2g(x/N) + g((x − 1)/N)

]
+

∫ tN2

0
ds

1
N

∑
x∈Z

g(x/N)
Υ

N2

[
η1−i(x, s) − ηi(x, s)

]
,

where we applied the generator of simple random walk to the test function using reversibility w.r.t. the
counting measure. By the regularity of g, we have∫ tN2

0
ds LN(〈XN

i (s), g〉) =

∫ t

0
ds 〈XN

i (rN2), ε∆g〉 +
∫ tN2

0
ds

Υ

N2

[
〈XN

1−i(s), g〉 − 〈XN
i (s), g〉

]
+ o(N−2),

which is the discrete counterpart of the weak formulation of the right-hand side of (2.3), i.e.,∫ t

0
ds

∫
R

dx ρi∆g + Υ

∫ t

0
ds

∫
R

dx (ρ1−i − ρi)g.

Thus, as a first step, we show that

lim
N→∞
PµN

(
sup

t∈[0,T ]

∣∣∣∣∣∣ 〈XN
i (t), g〉 − 〈XN

i (t), g〉 −
∫ t

0
ds 〈XN

i (rN2), ε i∆g〉

−

∫ tN2

0
ds

Υ

N2

[
〈XN

1−i(s) − XN
i (s), g〉

] ∣∣∣∣∣∣ > δ
)

= 0.

In order to prove the above convergence, we employ Dynkin’s formula for Markov processes, which gives
that the process defined by

MN
i (g, t) := 〈XN

i (t), g〉 − 〈XN
i (0), g〉 −

∫ tN2

0
ds LN(〈XN

i (s), g〉)
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is a martingale w.r.t. the natural filtration generated by the process {ηt : t ≥ 0} and with predictable quadratic
variation expressed in terms of the carré du champ, i.e.,

〈MN
i (g, t),MN

i (g, t)〉 =

∫ t

0
dsEµN

[
ΓN

i (g, s)
]

with
ΓN

i (g, s) = LN(
〈XN

i (s), g〉
)2
− 〈XN

i (s), g〉 LN(
〈XN

i (s), g〉
)
.

By Chebyshev’s inequality and Doob’s martingale inequality, we have

(2.5)

PµN

(
sup

t∈[0,T ]

∣∣∣∣∣∣ 〈XN
0 (s), g〉 − 〈XN

0 (s), g〉

−

∫ t

0
ds 〈XN

0 (rN2), ε∆g〉 −
∫ tN2

0
ds

Υ

N2

[
〈XN

1 (s), g〉 − 〈XN
0 (s), g〉

] ∣∣∣∣∣∣ > δ
)

≤
1
δ2EµN

[
sup

t∈[0,T ]

∣∣∣MN
i (g, s)

∣∣∣2] ≤ 4
ε2EµN

[∣∣∣MN
i (g,T )

∣∣∣2] =
4
ε2EµN

[
〈MN

i (g,T ),MN
i (g,T )〉2

]
=

4
δ2N2EµN

∫ N2T

0
ds

∑
x∈Zd

ηi(x, s)(1 + Υηi(x ± 1, s))
[
g
(

x±1
N

)
− g

(
x
N

)]
+

4Υ

δ2N4EµN

∫ N2T

0
ds

∑
x∈Zd

(
ηi(x, s) + η1−i(x, s) + 2Υηi(x, s)η1−i(x, s)

)
g2

(
x
N

) ,
where in the last equality we explicitly computed the carré du champ. Let k ∈ N be such that the support of
g is in [−k, k]. Then, by the regularity of g, we have that (2.5) is bounded by

(2.6)
4

δ2N2 (N2T )(2k + 1)N‖∇g‖∞ sup
x,∈Z, s∈[0,N2T ]

EµN

[
ηi(x, s)(1 + Υηi(x + 1, s))

]
+

4Υ

δ2N4 (N2T )(2k + 1)N‖g‖∞ sup
x,∈Z, s∈[0,N2T ]

EµN

[
ηi(x, s) + η1−i(x, s) + 2Υηi(x, s)η1−i(x, s)

]
,

and using Assumption 2.1(ii) we obtain the desired convergence.
The proof is concluded after performing the following two steps:

(i) Tightness of the sequence of distributions of the processes {XN
i }N∈N, denoted by {QN}N∈N;

(ii) Concurrence of limit points: all limit points coincide and are supported by the unique path Xi(t, dx) =

ρi(x, t) dx with ρi the unique weak and strong solution of (2.3).

While for (i) we provide an explanation, we skip the proof of (ii) because it is standard and is based on PDE
arguments (we refer to [41, Lemmas 8.6–8.7 ] for further details).

Tightness of the sequence {QN}N∈N follows from the compact containment condition, i.e., for any δ > 0
and t > 0 there exists a compact set K ⊂ M such that PµN (XN

i ∈ K) > 1 − δ, and from the equi-continuity,
i.e., lim supN→∞ PµN (ω(XN

i , δ,T ) ≥ e) ≤ e for ω(α, δ,T ) := sup{dM(α(s), α(t)) : s, t ∈ [0,T ], |s − t| ≤ δ} with
dM the metric on Radon measure defined by

dM(ν1, ν2) :=
∑
j∈N

2− j
(
1 ∧

∣∣∣∣∣∫
R

φ jdν1 −

∫
R

φ jdν2

∣∣∣∣∣ )
for an appropriately chosen sequence of functions (φ j) j∈N in C∞c (R). We refer to [41, Section A.10] for de-
tails on the above metric and to the proof of [41, Lemma 8.5] for the proof of the equi-continuity condition.
We conclude by proving the compact containment condition. To that end, let us define

K :=
{
ν ∈ M such that ∃ k ∈ N such that ν[`, ` + 1] ≤ (2` + 1)`2 ∀ ` ∈ [k,∞] ∩ N

}
.

By [41, Proposition A.25], K is a pre-compact subset of M. Via the Markov inequality it follows that

PµN

(
XN

i ([−`, `]) ≥ (2` + 1)`2
)
≤

1
(2` + 1)`2EµN

[
XN

i ([−`, `])
]

=
1

(2` + 1)`2

∑
x∈[−`,`]∩ ZN

EµN

[
ηi(x, tN2)

]
,

and using Assumption 2.1(ii) we obtain that PµN

(
XN

i ([−`, `]) ≥ (2` + 1)`2
)
≤ θ

`2 . A Borel-Cantelli argument
gives that QN(K) = 1 for all N ∈ N. �
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Remark 2.3. [Total density] (i) If ρ0, ρ1 are smooth enough and satisfy (2.3) then, by taking extra deriva-
tives, we see that the total density ρ satisfies the thermal telegrapher equation

(2.7) ∂t (∂tρ + 2γρ) = −ε∆(∆ρ) + (1 + ε)∆ (∂tρ + ρ) ,

which is second order in ∂t and fourth order in ∂x (see [30, 31] for a derivation). Note that (2.7) shows that
the total density does not satisfy the usual diffusion equation. This fact will be investigated in detail in the
next section, where we will analyse the non-Fick property of ρ.
(ii) If ε = 1, then (2.7) simplifies to the heat equation ∂tρ = ∆ρ.
(iii) If ε = 0, then (2.7) reads

∂t (∂tρ + 2λρ) = ∆ (∂tρ + ρ) ,

which is known as the strongly damped wave equation. The term ∂t(2λρ) is referred to as frictional damping,
the term ∆(∂tρ) as Kelvin-Voigt damping (see [9]). ♠

2.2 Existence, uniqueness and representation of the solution
The existence and uniqueness of the solution of the system (2.3) can be proved by standard PDE arguments
(see e.g. [39]). Below we recall some known results that have a more probabilistic interpretation.

Stochastic representation of the solution. The system in (2.3) fits in the realm of switching diffusions
(see e.g. [42]) widely studied in the mathematical finance literature. Indeed, let {it : t ≥ 0} be the pure
jump process on the state space I = {0, 1} that switches at rate Υ, and whose generator acting on bounded
functions g : I → R is

(Ag)(i) := Υ(g(1 − i) − g(i)), i ∈ I.

Let {Xt : t ≥ 0} be the stochastic process on R solving the stochastic differential equation

dXt = ψ(it) dWt,

where {Wt : t ≥ 0} is standard Brownian motion and ψ : I → {D0,D1} is given by

ψ := D0 1{0} + D1 1{1},

with D0 = 1 and D1 = ε. Let L = Lε,Υ be the generator defined by

(L f )(x, i) := lim
t↓0

1
t
Ex,i[ f (Xt, it) − f (x, i)]

for f : R × I → R such that f (·, i) ∈ C2
b(R). Then, via a standard computation (see e.g. [26, Eq.(4.4)]), it

follows that
(L f )(x, i) = ψ(i)(∆ f )(x, i) + Υ[ f (x, 1 − i) − f (x, i)]

=

∆ f (x, 0) + Υ [ f (x, 1) − f (x, 0)], i = 0,
ε∆ f (x, 1) + Υ [ f (x, 0) − f (x, 1)], i = 1.

We therefore have the following result that corresponds to [26, Chapter 5, Section 4, Theorem 4.1](see also
[42, Theorem 5.2]).

Theorem 2.4. [Stochastic representation of the solution] Suppose that ρ̄i : R→ R for i ∈ I are continu-
ous and bounded. Then (2.3) has a unique solution given by

ρi(x, t) = E(x,i)[ρ̄it (Xt)], i ∈ I.

Note that if there is only one particle in the system (1.2), then we are left with a single random walk,
say {Yt : t ≥ 0}, whose generator, denoted by A, acts on bounded functions f : Z × I → R as

A f (y, i) = ψ(i)

∑
z∼y

[ f (z, i) − f (y, i)]

 + Υ [ f (y, 1 − i) − f (y, i)].
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After we apply the generator to the function f (y, i) = y, we get

(A f )(y, i) = 0,

i.e., the position of the random walk is a martingale. Computing the quadratic variation via the carré du
champ, we find

A(Y2
t ) = ψ(it)[(Yt + 1)2 − Y2

t ] + ψ(it)[(Yt − 1)2 − Y2
t ] = 2ψ(it).

Hence the predictable quadratic variation is given by∫ t

0
ds 2ψ(is).

Note that for ε = 0 the latter equals the total amount of time the random walk is fast up to time t.
When we diffusively scale the system (scaling the reaction term as before), then the quadratic variation

becomes ∫ tN2

0
dsψ(iN,s) =

∫ t

0
dr ψ(ir).

Thus, we have the following invariance principle statement:

Given the path of the process {it : t ≥ 0},

lim
N→∞

YN2t

N
= W∫ t

0 dr
√
ψ(ir),

where {Wt : t ≥ 0} is standard Brownian motion.

This fact is consistent with the classical invariance principle, i.e., after diffusive scaling, conditional on
the trajectory of the switching process, the single-particle motion converges to a time-changed Brownian
motion.

Thus, if we knew the path of the process {ir : r ≥ 0}, then we could express the solution of the system
(2.3) in terms of a time-changed Brownian motion. However, even though {ir : r ≥ 0} is a simple flipping
process, we cannot say much explicitly about the random time

∫ t
0 dr

√
ψ(ir). We therefore look for a simpler

formula, where the relation to a Brownian motion with different velocities is more explicit. We achieve this
by looking at the resolvent of the generator L in the following proposition.

Proposition 2.5. [Resolvent] Let f : R × I → R be a bounded and smooth function. Then, for ε ∈ (0, 1]
and i ∈ I,

(2.8)

(λI − L)−1 f (x, i)

=

∫ ∞

0
dt

1
ε i e−t`ε (Υ,λ)

(
cosh

(
t Υcε (λ)

2ε
)
Ex[ f (Wt, i)] + (−1)i (λ+1)(1−ε)

cε (λ) sinh
(
t Υcε (λ)

2ε
)
Ex[ f (Wt, i)]

)
+

∫ ∞

0
dt e−t`ε (Υ,λ)

(
2 sinh

(
t Υcε (λ)

2ε
)
Ex[ f (Wt, 1 − i)]

)
,

where cε(λ) :=
√

(1 − ε)2(λ + 1)2 + 4
ε

and `ε(λ) := σ
2ε , while for ε = 0,

(λI − L)−1 f (x, i) =

∫ ∞

0
dt

2e−Υt λ(λ+2)
λ+1

(λ + 1)i

(
Ex[ f (Wt, 0)] +

1
λ + 1

Ex[ f (Wt, 1)]
)
.(2.9)

Proof. The proof is split into two parts.

Case ε > 0. We can split the generator L as

L = ψ(i)L̃ = ψ(i)
(
∆ +

1
ψ(i)

A
)

= ψ(i)(∆ + Ã),

i.e., we decouple Xt and it in the action of the generator. We can now use the Feynman-Kac formula to
express the resolvent of the operator L in terms of the operator L̃. Denoting by Ẽ the expectation of the
process with generator L̃ and looking at the function

f (x, i) = ρ̄0(x) 1{0}(i) + ρ̄1(x) 1{1}(i),
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we have, for λ ∈ R,

(λI − L)−1 f (x) =

(
λI
ψ
− L̃

)−1 (
f (x, i)
ψ(i)

)
=

∫ ∞

0
dt Ẽ(x,i)

[
e−

∫ t
0 ds λ

ψ(is )
f (Xt, it)
ψ(it)

]
,

and by the decoupling of Xt and it under L̃, we get

(λI − L)−1 f (x, i)

=

∫ ∞

0
dt Ẽi

[
e−λ

∫ t
0 ds 1

ψ(is )
1{0}(it)
ψ(it)

]
Ex[ρ̄0(Wt)] +

∫ ∞

0
dt Ẽi

[
e−λ

∫ t
0

1
ψ(is )

1{1}(it)
ψ(it)

]
Ex[ρ̄1(Wt)]

=

∫ ∞

0
dt Ẽi

[
e−λ

∫ t
0 ds 1

ψ(is ) 1{0}(it)
]
Ex[ρ̄0(Wt)] +

1
ε

∫ ∞

0
dt Ẽi

[
e−λ

∫ t
0 ds 1

ψ(is) 1{1}(it)
]
Ex[ρ̄1(Wt)].

Defining

A :=
[
−Υ Υ

Υ −Υ

]
, ψε :=

[
1 0
0 ε

]
,

and using again the Feynman-Kac formula, we have

(λI − L)−1
[

f (x, 0)
f (x, 1)

]
=

∫ ∞

0
dt Kε(t, λ)

[
Ex[ f (Wt, 0)]
Ex[ f (Wt, 1)]

]
with Kε(t, λ) = etψ−1

ε (−λI+A)ψ−1.
Using the explicit formula for the exponential of a 2 × 2 matrix (see e.g. [3, Corollary 2.4]), we obtain

(2.10) etψ−1
ε (−λI+A)

= e−
Υt(λ+1)

2 ( 1+ε
ε )

 cosh(cε(t, λ)) +
Υt(λ+1)
2cε (t,λ)

1−ε
ε

sinh(cε(t, λ)) tΥ
cε (t,λ) sinh(cε(t, λ))

Υt
εcε (t,λ) sinh(cε(t, λ)) cosh(cε(t, λ)) − Υt(λ+1)

2cε (t,λ)
1−ε
ε

sinh(cε(t, λ))

 ,
with cε(t, λ) = 1

2
tΥ
ε

√
(1 − ε)2(λ + 1)2 + 4

ε
, from which we obtain (2.8).

Case ε = 0. For the case ε = 0 (sleeping particles on top), we derive K0(t, λ) by taking the limit for ε ↓ 0 in
the previous expression, i.e., K0(t, λ) = limε↓0 Kε(t, λ). We thus have that K0(t, λ) is equal to

lim
ε↓0

e−
Υt(λ+1)

2 ( 1+ε
ε )

 cosh(cε(t, λ)) +
Υt(λ+1)
2cε (t,λ)

1−ε
ε

sinh(cε(t, λ)) tσ
εcε (t,λ) sinh(cε(t, λ)

σt
εcε (t,λ) sinh(cε(t, λ)) 1

ε
cosh(cε(t, λ)) − σt(λ+1)

2cε (t,λ)
1−ε
ε2 sinh(cε(t, λ))


= 2e−Υt λ(λ+2)

λ+1

[
1 1

λ+1
1
λ+1

1
(λ+1)2

]
,

from which (2.9) follows. �

Remark 2.6. [Symmetric layers] Note that for ε = 1 we have

(λI − L)−1 f (x, i)
∫ ∞

0
dt e−λt

(
1 + e−2t

2
Ex[ f (Wt, i)] +

1 − e−2t

2
Ex[ f (Wt, 1 − i)]

)
.

♠

We conclude this section by noting that the system in (2.3) was studied in detail in [30, 31]. By taking
Fourier and Laplace transforms and inverting them, it is possible to deduce explicitly the solution, which is
expressed in terms of solutions to the classical heat equation. More precisely, using formula [31, Eq.2.2],
we have that, for γ = 1,

(2.11) ρ0(x, t) = e−Υt Ex[ρ̄0(B=(t))]

+
Υ

1 − ε
e−Υt

∫ t

εt
ds

(( s − εt
t − ε

)1/2
I1(υ(s))Ex[ρ̄0(B0(s))] + I0(υ(s))Ex[ρ̄1(B1(s))]

)
and

(2.12) ρ1(x, t) = e−ΥtEx[ρ̄1(B1(εt))]

+
Υ

1 − ε
e−σt

∫ t

εt
ds

(( s − εt
t − ε

)−1/2
I1(υ(s))Ex[ρ̄1(B1(s)] + I0(υ(s))Ex[ρ̄0(B0(s))]

)
,

where υ(s) = 2σ
1−ε ((t − s)(s − εt))1/2, I0(·) and I1(·) are the modified Bessel functions, and B0 and B1 are two

independent standard Brownian motions.
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3 The system with boundary reservoirs
In this section we consider a finite version of the switching interacting particle systems introduced in Def-
inition 1.1 to which boundary reservoirs are added. Section 3.1 defines the model. Section 3.2 identifies
the dual and the stationary measures. Section 3.3 derives the non-equilibrium profile, both for the mi-
croscopic system and the macroscopic system, and offers various simulations. Section 3.4 shows that for
certain choices of the rates there can be a flow of particles uphill, i.e., against the gradient imposed by the
reservoirs, both for the microscopic system and the macroscopic system.

3.1 Model
We consider the same system as in Definition 1.1, but restricted to V := {1, . . . ,N} ⊂ Z. In addition we set
V̂ := V ∪ {L,R} and attach a left-reservoir to L and a right-reservoir to R, both for fast and slow particles.
To be more precise, there are four reservoirs (see Fig. 4):

i) For the fast particles, a left-reservoir at L injects fast particles at x = 1 at rate ρL,0(1 +ση0(1, t)) and a
right-reservoir at R injects fast particles at x = N at rate ρR,0(1+ση0(N, t)). The left-reservoir absorbs
fast particles at rate 1 + σρL,0, while the right-reservoir does so at rate 1 + σρR,0.

ii) For the slow particles, a left-reservoir at L injects slow particles at x = 1 at rate ρL,1(1 + ση1(1, t))
and a right-reservoir at R injects slow particles at x = N at rate ρR,1(1 + ση1(N, t)). The left-reservoir
absorbs fast particles at rate 1 + σρL,1, while the right-reservoir does so at rate 1 + σρR,1.

Inside V , the particles move as before.

Figure 4: Case σ = 0, ε > 0 with boundary reservoirs.

For i ∈ I, x ∈ V and t ≥ 0, let ηi(x, t) denote the number of particles in layer i at site x at time t. For
σ ∈ {−1, 0, 1}, the Markov process {η(t) : t ≥ 0} with

η(t) = {η0(x, t), η1(x, t)}x∈V

has state space

X =

IV × IV , σ = −1,
NV

0 × N
V
0 , σ = 0, 1,

and generator

(3.1) L := Lε,γ,N = Lbulk + Lres

with

Lbulk := Lbulk
0 + εLbulk

1 + γLbulk
0l1(3.2)
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acting on bounded cylindrical function f : X → R as

(Lbulk
0 f )(η) =

N−1∑
x=1

{
η0(x)(1 + ση0(x + 1))

[
f (η0 − δx + δx+1, η1) − f (η0, η1)

]
+ η0(x + 1)(1 + ση0(x))

[
f (η0 − δx+1 + δx, η) − f (η0, η1)

]}
,

(Lbulk
1 f )(η) =

N−1∑
x=1

{
η1(x)(1 + ση1(x + 1))

[
f (η0, η1 − δx + δx+1) − f (η0, η1)

]
+ η1(x + 1)(1 + ση1(x))

[
f (η0, η1 − δx+1 + δx) − f (η0, η1))

]}
,

(Lbulk
0l1 f )(η) =

N∑
x=1

{
η0(x)(1 + ση1(x))

[
f (η0 − δx, η1 + δx) − f (η0, η1)

]
+ η1(x)(1 + ση0(x))

[
f (η0 + δx, η1 − δx) − f (η0, η1))

]}
,

and

Lres := Lres
0 + Lres

1(3.3)

with

(Lres
0 f )(η) = η0(1)(1 + σρL,0)

[
f (η0 − δ1, η1) − f (η0, η1)

]
+ ρL,0(1 + ση0(1))

[
f (η0 + δ1, η1) − f (η0, η1)

]
+ η0(N)(1 + σρR,0)

[
f (η0 − δN , η1) − f (η0, η1)

]
+ ρR,0(1 + ση0(N))

[
f (η0 + δN , η) − f (η0, η1)

]
,

(Lres
1 f )(η) = η1(1)(1 + σρL,1)

[
f (η0, η1 − δ1) − f (η0, η1)

]
+ ρL,1(1 + ση1(1))

[
f (η0, η1 + δ1) − f (η0, η1)

]
+ η1(N)(1 + σρR,1)

[
f (η0, η1 − δN) − f (η0, η1)

]
+ ρR,1(1 + σρR,N)

[
f (η0, η1 + δN) − f (η0, η1)

]
.

3.2 Duality and stationary measures
In [8] it was shown that a system of independent random walks on a finite set V , coupled with a left-reservoir
and a right-reservoir, is dual to the same particle system but with the reservoirs replaced by absorbing sites.
The same was proved in [24] for more general sets and for inhomogeneous rates. Our model is a particular
instance of the case treated in [24, Remark 2.2]), because we can think of the rate as conductances attached
to the edges.

More precisely, we consider the system where particles jump on two copies of

V̂ = V ∪ {L,R}

and follow the same dynamics as before in V , but with the reservoirs at L and R absorbing. We denote by ξ
the configuration

ξ = (ξ0, ξ1) := ({ξ0(x)}x∈V̂ , {ξ1(x)}x∈V̂ ),

where ξi(x) denotes the number of particles at site x in layer i. The state space is X = NV̂
0 × N

V̂
0 , and the

generator is

(3.4) L̂ := L̂ε,γ,N = L̂bulk + L̂L,R

with

L̂bulk := L̂bulk
0 + ε L̂bulk

1 + γL̂bulk
0l1
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Figure 5: Case σ = 0, ε > 0 with boundary reservoirs: two-layer representation.

acting on cylindrical functions f : X → R as

(Lbulk
0 f )(ξ) =

N−1∑
x=1

{
ξ0(x)(1 + σξ0(x + 1))

[
f (ξ0 − δx + δx+1, ξ1) − f (ξ0, ξ1)

]
+ ξ0(x + 1)(1 + σξ0(x))

[
f (ξ0 − δx+1 + δx, ξ1) − f (ξ0, ξ1)

]}
,

(Lbulk
1 f )(ξ) =

N−1∑
x=1

{
ξ1(x)(1 + σξ1(x + 1))

[
f (ξ0, ξ1 − δx + δx+1) − f (ξ0, ξ1)

]
+ ξ1(x + 1)(1 + σξ1(x))

[
f (ξ0, ξ1 − δx+1 + δx) − f (ξ0, ξ1)

]}
,

(L̂bulk
0l1 f )(η) =

N∑
x=1

{
ξ0(x)(1 + σξ1(x))

[
f (ξ0 − δx, ξ1 + δx) − f (ξ0, ξ1)

]
+ ξ1(x)(1 + σξ0(x))

[
f (ξ0 + δx, ξ1 − δx) − f (ξ0, ξ1)

]}
,

and

L̂L,R = L̂L,R
0 + L̂L,R

1

acting as

(L̂L,R
0 f )(ξ) = ξ0(1)

[
f (ξ0 − δ1, ξ1) − f (ξ0, ξ1)

]
+ ξ0(N)

[
f (ξ0 − δN , ξ1) − f (ξ0, ξ1)

]
,

(L̂L,R
1 f )(ξ) = ξ1(1)

[
f (ξ0, ξ1 − δ1) − f (ξ0, ξ1)

]
+ ξ1(N)

[
f (ξ0, ξ1 − δN) − f (ξ0, ξ1)

]
.

Proposition 3.1. [Duality] [8, Theorem 4.1] and [24, Proposition 2.3] The Markov processes

{η(t) : t ≥ 0}, η(t) = {η0(x, t), η1(x, t)}x∈V ,
{ξ(t) : t ≥ 0}, ξ(t) = {ξ0(x, t), ξ1(x, t)}x∈V ,

with generators L in (3.1) and L̂ in (3.4) are dual with duality function

D(ξ, η) :=

∏
i∈I

d(L,i)(ξi(L))

 × ∏
x∈V

d(ξi(x), ηi(x))

 × ∏
i∈I

d(R,i)(ξi(R))

 ,
where ξ = (ξ0, ξ1), η = (η0, η1) and, for k, n ∈ N and i ∈ I, d(·, ·) is given in (1.6) and

d(L,i)(k) =
(
ρL,i

)k , d(R,i)(k) =
(
ρR,i

)k .
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3.3 Non-equilibrium stationary profile
Also the existence and uniqueness of the non-equilibrium steady state has been established in [24, Theorem
3.3] and apply to our setting. More precisely, we have the following.

Theorem 3.2. [Stationary measure] [24, Theorem 3.3(a)] For σ ∈ {−1, 0, 1} there exists a unique sta-
tionary measure µstat for {η(t) : t ≥ 0}. Moreover, for σ = 0 and for any values of ρL,0, ρL,1, ρR,0, ρR,1,

(3.5) µstat =
∏

(x,i)∈V×I

ν(x,i), ν(x,i) = Poisson (θ(x,i)),

while µstat is in general not in product form for σ ∈ {−1, 1}, unless ρL,0 = ρL,1 = ρR,0 = ρR,1, for which

(3.6) µstat =
∏

(x,i)∈V×I

ν(x,i),θ,

where ν(x,i),θ are given in (1.4).

3.3.1 Stationary microscopic profile and absorption probability

In this section we provide an explicit expression for the stationary microscopic density of each type of
particles. To this end, let µstat be the unique non-equilibrium stationary measure of the process

{η(t) : t ≥ 0}, η(t) := {η0(x, t), η1(x, t)}x∈V ,

and let θx := (θ0(x), θ1(x)) be the stationary microscopic profile, i.e., for x ∈ V and i ∈ I,

(3.7) θi(x) = Eµstat [ηi(x, t)].

Write Pξ (and Eξ) to denote the law (and the expectation) of the dual Markov process

{ξ(t) : t ≥ 0}, ξ(t) := {ξ0(x, t), ξ1(x, t)}x∈V̂ ,

starting from ξ = {ξ0(x), ξ1(x)}x∈V̂ . For x ∈ V , set

(3.8)
~px :=

[
p̂(δ(x,0), δ(L,0)) p̂(δ(x,0), δ(L,1)) p̂(δ(x,0), δ(R,0)) p̂(δ(x,0), δ(R,1))

]T
,

~qx :=
[

p̂(δ(x,1), δ(L,0)) p̂(δ(x,1), δ(L,1)) p̂(δ(x,1), δ(R,0)) p̂(δ(x,1), δ(R,1))
]T
,

where

(3.9) p̂(ξ, ξ̃) = lim
t→∞
Pξ(ξ(t) = ξ̃), ξ = δ(x,i) for some (x, i) ∈ V × I, and ξ̃ ∈ {δ(L,0), δ(L,1), δ(R,0), δ(R,1)},

and let

(3.10) ~ρ :=
[
ρ(L,0) ρ(L,1) ρ(R,0) ρ(R,1)

]T
.

Note that p̂(δ(x,i), ·) is the probability of the dual process, starting from a single particle at site x at layer
i ∈ I, of being absorbed at one of the four reservoirs. Using Proposition 3.1 and Theorem 3.2, we obtain the
following.

Corollary 3.3. [Dual representation of stationary profile] For x ∈ V, the microscopic stationary profile
is given by

(3.11)
θ0(x) = ~px · ~ρ,

θ1(x) = ~qx · ~ρ,
x ∈ {1, . . . ,N},

where ~px, ~qx and ~ρ are as in (3.8)–(3.10).
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We next compute the absorption probabilities associated to the dual process in order to obtain more
explicit expression for the stationary microscopic profile θx. The absorption probabilities p̂ of the dual
process satisfy

(L̂p̂)(·, ξ̃)(ξ) = 0,

where L̂ is the dual generator defined in (3.4).
In matrix form, the above translates into the following systems of equations:

(3.12)

~p1 =
1

2 + γ
(~p0 + ~p2) +

γ

2 + γ
~q1,

~q1 =
ε

(1 + ε) + γ
~q2 +

1
(1 + ε) + γ

~q0 +
γ

(1 + ε) + γ
~p1,

~px =
1

2 + γ
(~px−1 + ~px+1) +

γ

2 + γ
~qx, x ∈ {2, . . . ,N − 1},

~qx =
ε

2ε + γ
(~qx−1 + ~qx+1) +

γ

2ε + γ
~px, x ∈ {2, . . . ,N − 1},

~pN =
1

2 + γ
(~pN−1 + ~pN+1) +

γ

2 + γ
~qN ,

~qN =
ε

(1 + ε) + γ
~qN−1 +

1
(1 + ε) + γ

~qN+1 +
γ

(1 + ε) + γ
~pN ,

where
~p0 :=

[
1 0 0 0

]T
, ~q0 :=

[
0 1 0 0

]T
,

~pN+1 :=
[

0 0 1 0
]T
, ~qN+1 :=

[
0 0 0 1

]T
.

We divide the analysis of the absorption probabilities into two cases: ε = 0 and ε > 0.

Case ε = 0.

Proposition 3.4. [Absorption probability for ε = 0] Consider the dual process

{ξ(t) : t ≥ 0}, ξ(t) = {ξ0(x, t), ξ1(x, t)}x∈V ,

with generator L̂ε,γ,N (see (3.4)) with ε = 0. Then for the dual process, starting from a single particle, the
absorption probabilities p̂(·, ·) (see (3.9)) are given by

(3.13)

p̂(δ(x,0), δ(L,0)) =
1 + γ

1 + 2γ

(
(1 + N) + (1 + 2N) γ

1 + N + 2Nγ
−

1 + 2γ
1 + N + 2Nγ

x
)
,

p̂(δ(x,0), δ(L,1)) =
γ

1 + 2γ

(
(1 + N) + (1 + 2N) γ

1 + N + 2Nγ
−

1 + 2γ
1 + N + 2Nγ

x
)
,

p̂(δ(x,0), δ(R,0)) =
1 + γ

1 + 2γ

(
−γ

1 + N + 2Nγ
+

1 + 2γ
1 + N + 2Nγ

x
)
,

p̂(δ(x,0), δ(R,1)) =
γ

1 + 2γ

(
−γ

1 + N + 2Nγ
+

1 + 2γ
1 + N + 2Nγ

x
)
,

(3.14)
p̂(δ(1,1), δ(L,0)) =

γ (N − γ + 2Nγ)
(1 + 2γ)(1 + N + 2Nγ)

, p̂(δ(1,1), δ(L,1)) =
1 + N + (1 + 3N)γ − (1 + 2N)γ2

(1 + 2γ)(1 + N + 2Nγ)
,

p̂(δ(1,1), δ(R,0)) =
γ(1 + γ)

(1 + 2γ)(1 + N + 2Nγ)
, p̂(δ(1,1), δ(R,1)) =

γ2

(1 + 2γ)(1 + N + 2Nγ)
,

and

(3.15) p̂(δ(x,1), δ(β,i)) = p̂(δ(x,0), δ(β,i)), x ∈ {2, . . . ,N − 1}, (β, i) ∈ {L,R} × I,

and

(3.16)
p̂(δ(N,1), δ(L,0)) = p̂(δ(1,1), δ(R,0)), p̂(δ(N,1), δ(L,1)) = p̂(δ(1,1), δ(R,1)),
p̂(δ(N,1), δ(R,0)) = p̂(δ(1,1), δ(L,0)), p̂(δ(N,1), δ(R,1)) = p̂(δ(1,1), δ(L,1)).
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Proof. Note that, for ε = 0, from the linear system in (3.12) we get

(3.17)
~px+1 − ~px = ~px − ~px−1,

~qx = ~px,
x ∈ {2, . . . ,N − 1}.

Thus, if we set ~c = ~p2 − ~p1, then it suffices to solve the following 4 equations with 4 unknowns ~p1, ~c, ~q1 and
~qN :

(3.18)

~p1 =
1

2 + γ
(~p0 + ~p1 + ~c) +

γ

2 + γ
~q1,

~q1 =
ε

(1 + ε) + γ
(~p1 + ~c) +

1
(1 + ε) + γ

~q0 +
γ

(1 + ε) + γ
~p1,

~p1 + (N − 1)~c =
1

2 + γ
(~p1 + (N − 2)~c + ~pN+1) +

γ

2 + γ
~qN ,

~qN =
ε

(1 + ε) + γ
(~p1 + (N − 2)~c) +

1
(1 + ε) + γ

~qN+1 +
γ

(1 + ε) + γ
((~p1 + N~c).

This gives the desired result. �

As a corollary, we obtain the stationary microscopic profile for the original process {η(t) : t ≥ 0}, η(t) =

{η0(x, t), η1(x, t)}x∈V when ε = 0.

Theorem 3.5. [Stationary microscopic profile for ε = 0]
The stationary microscopic profile (θ0(x), θ1(x))x∈V (see (3.7)) for the process {η(t) : t ≥ 0} with η(t) =

{η0(x, t), η1(x, t)}x∈V with generator Lε,γ,N (see (3.1)) and ε = 0 is given by

(3.19)
θ0(x) =

1 + γ

1 + 2γ

[(
(1+N)+(1+2N) γ

1+N+2Nγ −
1+2γ

1+N+2Nγ x
)
ρL,0 +

(
−γ

1+N+2Nγ +
1+2γ

1+N+2Nγ x
)
ρR,0

]
+

γ

1 + 2γ

[(
(1+N)+(1+2N) γ

1+N+2Nγ −
1+2γ

1+N+2Nγ x
)
ρ(L,1) +

(
−γ

1+N+2Nγ +
1+2γ

1+N+2Nγ x
)
ρ(R,1)

]
and

(3.20)

θ1(1) =
γ

1 + γ
θ0(1) +

1
1 + γ

ρ(L,1),

θ1(x) = θ0(x), x ∈ {2, . . . ,N − 1},

θ1(N) =
γ

1 + γ
θ0(N) +

1
1 + γ

ρ(R,1).

Proof. The proof directly follows from Corollary 3.3 and Proposition 3.4. �

Case ε > 0. We next compute the absorption probability for the dual process and the stationary micro-
scopic profile for the original process when ε > 0.

Proposition 3.6. [Absorption probability for ε > 0] Consider the dual process

{ξ(t) : t ≥ 0}, ξ(t) = {ξ0(x, t), ξ1(x, t)}x∈V ,

with generator L̂ε,γ (see (3.4)) with ε ∈ (0,∞). Let p̂(·, ·) (see (3.9)) be the absorption probabilities of the
dual process starting from a single particle, and let (~px, ~qx)x∈V be as defined in (3.8). Then

(3.21)
~px = ~c1 x + ~c2 + ε(~c3 α

x
1 + ~c4 α

x
2),

~qx = ~c1 x + ~c2 − (~c3 α
x
1 + ~c4 α

x
2),

x ∈ V,

where α1, α2 are the two roots of the equation

(3.22) εα2 − (γ(1 + ε) + 2ε)α + ε = 0,

and ~c1, ~c2, ~c3, ~c4 are vectors that depend on the parameters N, ε, α1, α2 (see (A.4) for explicit expressions).
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Proof. Applying the transformation

(3.23) ~τx := ~px + ε~qx, ~sx := ~px − ~qx,

we see that the system in (3.12) decouples in the bulk (i.e., the interior of V), and

(3.24) ~τx =
1
2

(~τx+1 + ~τx−1), ~sx =
ε

γ(1 + ε) + 2ε
(~sx+1 + ~sx−1), x ∈ {2, . . . ,N − 1}.

The solution of the above system of recursion equations takes the form

(3.25) ~τx = ~A1x + ~A2, ~sx = ~A3α
x
1 + ~A4α

x
2,

where α1, α2 are the two roots of the equation

(3.26) εα2 − (γ(1 + ε) + 2ε)α + ε = 0.

Rewriting the four boundary conditions in (3.12) in terms of the new transformations, we get

(3.27)
[
~A1 ~A2 ~A3 ~A4

]
= (1 + ε)(M−1

ε )T ,

where Mε is is given by

(3.28) Mε :=


0 1 ε ε

1 − ε 1 (ε − 1)α1 − ε (ε − 1)α2 − ε
N + 1 1 εαN+1

1 εαN+1
2

N + ε 1 −αN
1 (εα1 + (1 − ε)) −αN

2 (εα2 + (1 − ε))

 .
Since ~px = 1

1+ε
(~τx + ε~sx) and ~qx = 1

1+ε
(~τx − ~sx), by setting

~ci =
1

1 + ε
~Ai, i ∈ {1, 2, 3, 4},

we get the desired identities. �

Without loss of generality, from here onwards, we fix the choices of the roots α1 and α2 of the quadratic
equation in (3.22) as

(3.29) α1 = 1 +
γ

2

(
1 +

1
ε

)
−

√[
1 +

γ

2

(
1 +

1
ε

)]2

− 1, α2 = 1 +
γ

2

(
1 +

1
ε

)
+

√[
1 +

γ

2

(
1 +

1
ε

)]2

− 1.

Note that, for any ε, γ > 0, we have

(3.30) α1α2 = 1.

As a corollary, we get the expression for the stationary microscopic profile of the original process.

Theorem 3.7. [Stationary microscopic profile for ε > 0]
The stationary microscopic profile (θ0(x), θ1(x))x∈V (see (3.7)) for the process {η(t) : t ≥ 0} with η(t) =

{η0(x, t), η1(x, t)}x∈V with generator Lε,γ,N (see (3.1)) with ε > 0 is given by

(3.31)
θ0(x) = (~c1 . ~ρ)x + (~c2 . ~ρ) + ε(~c3 . ~ρ)αx

1 + ε(~c4 . ~ρ)αx
2,

θ1(x) = (~c1 . ~ρ)x + (~c2 . ~ρ) − (~c3 . ~ρ)αx
1 − (~c4 . ~ρ)αx

2,
x ∈ V,

where (~ci)1≤i≤4 are as in (A.4), and

~ρ :=
[
ρ(L,0) ρ(L,1) ρ(R,0) ρ(R,1)

]T
.

Proof. The proof directly follows from Corollary 3.3 and Proposition 3.6. �
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Remark 3.8. [Symmetric layers] For ε = 1, the inverse of the matrix Mε in the proof of Proposition 3.6
takes a simpler form. This is because for ε = 1 the system is fully symmetric. In this case, the explicit
expression of the stationary microscopic profile is given by

(3.32)

θ0(x) =
1
2

N + 1 − x
N + 1

+
αN+1−x

2 − αN+1−x
1

αN+1
2 − αN+1

1

 ρL,0 +
1
2

 x
N + 1

+
αx

2 − α
x
1

αN+1
2 − αN+1

1

 ρR,0

+
1
2

N + 1 − x
N + 1

−
αN+1−x

2 − αN+1−x
1

αN+1
2 αN+1

1

 ρ(L,1) +
1
2

 x
N + 1

−
αx

2 − α
x
1

αN+1
2 − αN+1

1

 ρ(R,1)

and

(3.33)

θ1(x) =
1
2

N + 1 − x
N + 1

−
αN+1−x

2 − αN+1−x
1

αN+1
2 − αN+1

1

 ρL,0 +
1
2

 x
N + 1

−
αx

2 − α
x
1

αN+1
2 − αN+1

1

 ρR,0

+
1
2

N + 1 − x
N + 1

+
αN+1−x

2 − αN+1−x
1

αN+1
2 − αN+1

1

 ρ(L,1) +
1
2

 x
N + 1

+
αx

2 − α
x
1

αN+1
2 − αN+1

1

 ρ(R,1).

However, note that

θ0(x) + θ1(x) = 2[(~c1.~ρ)x + (~c2.~ρ)] − (1 − ε)[(~c3 . ~ρ)αx
1 − (~c4 . ~ρ)αx

2],

which is linear in x only when ε = 1, and

θ0(x) − θ1(x) = (1 + ε)[(~c3 . ~ρ)αx
1 + (~c4 . ~ρ)αx

2]

which is purely exponential in x. ♠

3.3.2 Stationary macroscopic profile and boundary-value problem

Motivated by the hydrodynamic limit of the system without boundary (see Theorem 2.2), we may hope
for a similar result for the finite-volume system with boundary reservoirs when this is scaled diffusively.
Indeed, when space is scaled by 1/N, time is speeded up by N2, the switching rate γ scaled up such that
γN2 → Υ > 0 and the system is started from a suitable initial distribution µN , we expect that the empirical
distribution of the density of both types of particles in the system converges as N → ∞ to a deterministic
limit that is absolutely continuous w.r.t. the Lebesgue measure on [0, 1] and the associated densities satisfy
a PDE with fixed boundary conditions that are essentially imposed by the four reservoirs.

Assuming that the microscopic system with reservoirs do admit a hydrodynamic limit under the appro-
priate parameter scaling mentioned above, it should be the case that the two pointwise limits

ρ0(y) := lim
N→∞

θ(N)
0 (byNc), ρ1(y) := lim

N→∞
θ(N)

1 (byNc)

exist for any y ∈ [0, 1], where (ρ0(·), ρ1(·)) represents the “stationary macroscopic density” of the two types
of particles in the diffusive regime, where (θ(N)

0 (x), θ(N)
1 (x))1≤x≤N is the stationary microscopic profile of

the microscopic system with switching rate γN such that N2γN → Υ > 0. The following theorem indeed
confirms this and provides the expression for the limit.

Theorem 3.9. [Stationary macroscopic profile] Let (θ(N)
0 (x), θ(N)

1 (x))1≤x≤N be the stationary microscopic
profile (see (3.7)) for the process {η(t) : t ≥ 0}, η(t) = {η0(x, t), η1(x, t)}x∈V with generator Lε,γN ,N (see (3.1)),
where γN is such that N2γN → Υ as N → ∞ for some Υ > 0. Then, for each y ∈ [0, 1], the pointwise limits
(see Fig. 6 for illustrations)

(3.34) ρ0(y) := lim
N→∞

θ(N)
0 (byNc), ρ1(y) := lim

N→∞
θ(N)

1 (byNc)

exists and are given by

(3.35)

ρ0(y) = ρL,0 + (ρR,0 − ρL,0)y, y ∈ [0, 1],
ρ1(y) = ρ0(y), y ∈ (0, 1),
ρ1(0) = ρ(L,1), ρ1(1) = ρ(R,1),
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when ε = 0, ρ(L,1) = ρ(L,0) and ρ(R,1) = ρ(R,0), while

(3.36)
ρ0(y) =

ε

1 + ε

[
sinh

[
Bε,Υ (1 − y)

]
sinh

[
Bε,Υ

] (ρ(L,0) − ρ(L,1)) +
sinh

[
Bε,Υ y

]
sinh

[
Bε,Υ

] (ρ(R,0) − ρ(R,1))
]

+
1

1 + ε

[
ρ(R,0) y + ρ(L,0) (1 − y)

]
+

ε

1 + ε

[
ρ(R,1) y + ρ(L,1) (1 − y)

]
,

(3.37)
ρ1(y) =

1
1 + ε

[
sinh

[
Bε,Υ (1 − y)

]
sinh

[
Bε,Υ

] (ρ(L,1) − ρ(L,0)) +
sinh

[
Bε,Υ y

]
sinh

[
Bε,Υ

] (ρ(R,1) − ρ(R,0))
]

+
1

1 + ε

[
ρ(R,0) y + ρ(L,0) (1 − y)

]
+

ε

1 + ε

[
ρ(R,1) y + ρ(L,1) (1 − y)

]
,

when ε > 0, where sinh(x) = 1
2 (ex − e−x) and Bε,Υ :=

√
Υ(1 + 1

ε
).

Proof. [SN: To be added.] �

The following result tells us that for ε > 0 the stationary macroscopic profiles satisfy a stationary PDE
with fixed boundary conditions and also admit a stochastic representation in terms of an absorbing switching
Brownian motion.

Theorem 3.10. [Stationary boundary value problem] Consider the boundary value problem

(3.38)

0 = ∆u0 + Υ(u1 − u0),
0 = ε∆u1 + Υ(u0 − u1),

with boundary conditions

(3.39)

u0(0) = ρL,0, u0(1) = ρR,0,

u1(0) = ρL,1, u1(1) = ρR,1.

Then the PDE admits a unique strong solution given by

(3.40) ui(y) = ρi(y), y ∈ [0, 1],

where (ρ0(·), ρ1(·)) are as defined in (3.34). Furthermore, (ρ0(·), ρ1(·)) has the stochastic representation

(3.41) ρi(y) = E(y,i)[ψiτ (Xτ)],

where {it : t ≥ 0} is the pure jump process on state space I = {0, 1} that switches at rate Υ, the functions
ψ0, ψ1 : I → R+ are defined as

ψ0 = ρ(L,0) 1{0} + ρ(R,0) 1{1}, ψ1 = ρ(L,1) 1{0} + ρ(R,1) 1{1},

{Xt : t ≥ 0} is the stochastic process [0, 1] that satisfies the SDE

dXt = ψ(it) dWt

with {Wt : t ≥ 0} a standard Brownian motion, the switching Brownian motion (Xt, it : t ≥ 0} is killed at the
stopping time

τ := inf{t ≥ 0 : Xt ∈ I},

and ψ : I → {1, ε} is given by ψ := 1{0} + ε 1{1}.

Proof. [SN: To be added.] �

Note that, as a result of the above theorem, it follows that the four absorption probabilities of the
switching absorbed Brownian motion (Xt, it)t≥0 starting from (y, i) ∈ [0, 1] × I are indeed the respective
coefficients of ρ(L,0), ρ(L,1), ρ(R,0) and ρ(R,1) appearing in the expression of ρi(y).
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As a corollary of Theorem 3.10 and the results in [31, Section 3], note that the time-dependent boundary-
value problem

(3.42)

∂tρ0 = ∆ρ0 + Υ(ρ1 − ρ0),
∂tρ1 = ε∆ρ1 + Υ(ρ0 − ρ1),

with initial conditions

(3.43)

ρ0(x, 0) = ρ̄0(x),
ρ1(x, 0) = ρ̄1(x),

and boundary conditions

(3.44)

ρ0(0, t) = ρL,0, ρ0(1, t) = ρR,0,

ρ1(0, t) = ρL,1, ρ1(1, t) = ρR,1,

admits a unique solution given by

(3.45)

ρ0(x, t) = ρhom
0 (x, t) + ρstat

0 (x),
ρ1(x, t) = ρhom

1 (x, t) + ρstat
1 (x),

where

ρhom
0 (x, t) = e−Υth0(x, t) +

Υ

1 − ε
e−Υt

∫ t

εt
ds

(( s − εt
t − ε

)1/2
I1(η(s))h0(x, s) + I0(η(s))h1(x, s)

)
,

(3.46)

ρhom
1 (x, t) = e−Υth1(x, s) +

Υ

1 − ε
e−Υt

∫ t

εt
ds

(( s − εt
t − ε

)−1/2
I1(η(s))h1(x, s) + I0(η(s))h0(x, s)

)
,

(3.47)

(3.48) η(s) =
2Υ

1 − ε
((t − s)(s − εt))1/2,

h0(x, t), h1(x, t) are the solutions of

(3.49)



∂th0 = ∆h0,

∂th1 = ∆h1,

h0(x, 0) = ρ̄0(x) − ρstat
0 (x),

h1(x, 1) = ρ̄1(x) − ρstat
1 (x),

h0(0, t) = h0(1, t) = h1(0, t) = h1(1, t) = 0,

and ρstat
0 (x), ρstat

1 (x) are given in (3.37).
We conclude this section by proving that the solution of the time-dependent boundary-value problem in

(3.42) eventually converges to the stationary profile in (3.37).

Proposition 3.11. [Convergence to stationary profile] Let ρhom
0 (x, t) and ρhom

1 (x, t) be given in (3.46) and
(3.47), respectively, i.e., the solutions of the boundary-value problem (3.42) with zero boundary conditions
and initial conditions given by ρhom

0 (x, 0) = ρ̄0(x) − ρstat
0 (x) and ρhom

1 (x, 0) = ρ̄1(x) − ρstat
1 (x). Then, for any

k ∈ N,
lim
t→∞
‖ρhom

0 (x, t)‖Ck(0,1) + ‖ρhom
1 (x, t)‖Ck(0,1) = 0.

Proof. We show that
lim
t→∞
‖ρhom

0 (x, t)‖L2(0,1) + ‖ρhom
1 (x, t)‖L2(0,1) = 0,

after which the results will follows via Sobolev embedding theorems.
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Multiply the first equation of (3.42) by ρ0 and the second equation by ρ1. Integration by parts yields

(3.50)


∂t

(∫ 1
0 ρ2

0dx
)

= −
∫ 1

0 dx |∂xρ0|
2 + Υ

∫ 1
0 dx (ρ1ρ0 − ρ

2
0),

∂t

(∫ 1
0 dx ρ2

1(x, t)
)

= −ε
∫ 1

0 dx |∂xρ1|
2 + Υ

∫ 1
0 dx (ρ0ρ1 − ρ

2
1).

Summing the two equations above and defining E(t) :=
∫ 1

0 ρ2
0 + ρ2

1dx, we obtain

(3.51) ∂tE(t) = −

(∫ 1

0
dx |∂xρ0|

2 + ε

∫ 1

0
dx |∂xρ1|

2
)
− Υ

∫ 1

0
dx (ρ0 − ρ1)2.

The Poincaré inequality implies
∫ 1

0 dx |∂xρ0|
2 + ε

∫ 1
0 dx |∂xρ1|

2 ≥ CpE(t), in particular, ∂tE(t) ≤ −εCpE(t),
from which we obtain

E(t) ≤ e−CptE(0),

and so the first part of the proof is concluded.
From [39, Theorem 2.1] it follows that

A :=
[

∆ − Υ Υ

Υ ε∆ − Υ

]
,

with domain D(A) = H2(0, 1) ∩ H1
0(0, 1), generates a semigroup {S t : t ≥ 0}. If we set ~ρ(t) = S t(~̄ρ − ~ρhom),

then by the semigroup property we have

~ρ(t) = S t−1(S 1/k)k(~̄ρ − ~ρhom), t ≥ 1,

and hence Ak~ρ(t) = S t−1(AS 1/k)k(~̄ρ − ~ρhom). If we set ~p := (AS 1/k)k(~̄ρ − ~ρhom), then we obtain, by [39,
Theorem 5.2(d)],

‖Ak~ρ(t)‖L2(0,1) ≤ ‖S t−1~p‖L2(0,1),

where limt→∞ ‖S t−1~p‖L2(0,1) by the first part of the proof. The compact embedding

D(Ak) ↪→ H2k(0, 1) ↪→ Ck(0, 1), k ∈ N,

concludes the proof. �

3.4 The stationary current
In this section we compute the average current in the non-equilibrium steady state that is induced by different
densities at the boundaries. We consider the microscopic and macroscopic systems, respectively.

Microscopic system. We start by defining the notion of current. The microscopic currents are associated
with the edges of the underlying two-layered graph. Since the particles move between the two layers at the
same rate γ > 0, the current in the vertical direction is zero and therefore we only consider the current in the
horizontal direction. In our setting, we denote by J0

x,x+1(t) and J1
x,x+1(t) the instantaneous current through

the horizontal edge (x, x + 1), x ∈ V , of the bottom layer, respectively, top layer at time t. We obviously
have

J0
x,x+1 = η0(x, t) − η0(x + 1, t), J1

x,x+1 = ε[η1(x, t) − η1(x + 1, t)].

We are interested in the stationary currents J0
x,x+1(t), respectively, J1

x,x+1(t), which are obtained as

(3.52) J0
x,x+1 = Estat[η0(x) − η0(x + 1)], J1

x,x+1 = εEstat[η1(x) − η1(x + 1)],

where Estat denotes expectation w.r.t. the unique invariant probability measure of the microscopic system
{η(t) : t ≥ 0} with η(t) = {η0(x, t), η1(x, t)}x∈V . In other words, J0

x,x+1 and J1
x,x+1 give the average flux of

particles of type 0 and type 1 across the bond (x, x + 1) due to diffusion.
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Of course, the average number of particle at each site varies in time also as a consequence of the reaction
term:

d
dt
E[η0(x, t)] = E[J0

x−1,x(t) − J0
x,x+1(t)] + E[η1(x, t)] − E[η0(x, t)],

d
dt
E[η1(x, t)] = E[J1

x−1,x(t) − J1
x,x+1(t)] + E[η0(x, t)] − E[η1(x, t)].

Summing these equations, we see that there is no contribution of the reaction part to the variation of the
average number of particles at site x:

d
dt
E[η0(x, t) + η1(x, t)] = E[Jx−1,x(t) − Jx,x+1(t)].

The sum

(3.53) Jx,x+1 = J0
x,x+1 + J1

x,x+1,

with J0
x,x+1 and J1

x,x+1 defined in (3.52), will be called the stationary current between sites at x, x + 1, x ∈ V ,
which is responsible for the variation of the total average number of particles at each site, regardless of their
type.

Proposition 3.12. [Stationary microscopic current] For x ∈ {2, . . . ,N−1} the stationary currents defined
in (3.52) are given by

(3.54) J0
x,x+1 = −~c1 · ~ρ − ε[(~c3 · ~ρ)αx

1(α1 − 1) + (~c4 · ~ρ)αx
2(α2 − 1)]

and

(3.55) J1
x,x+1 = −ε~c1 · ~ρ + ε[(~c3 · ~ρ)αx

1(α1 − 1) + (~c4 · ~ρ)αx
2(α2 − 1)],

where ~c1, ~c3, ~c4 are the vectors defined in (A.4) of Appendix A, and α1, α2 are defined in (3.29). As a
consequence, the current Jx,x+1 = J0

x,x+1 + J1
x,x+1 is independent of x and is given by

(3.56) Jx,x+1 = −(1 + ε)
[
C1 (ρR,0 − ρL,0) + ε C2 (ρR,1 − ρL,1)

]
,

where

(3.57)

C1 =
[α1(1 − ε)(αN−1

1 − 1) + ε (αN+1
1 − 1)]

α1(1 − ε)(αN−1
1 − 1)(N + 1) + 2ε (αN+1

1 − 1)(N + ε)
,

C2 =
(αN+1

1 − 1)

α1(1 − ε)(αN−1
1 − 1)(N + 1) + 2ε (αN+1

1 − 1)(N + ε)
.

Proof. From (3.52) we have

(3.58) J0
x,x+1 = θ0(x) − θ0(x + 1), J1

x,x+1 = ε[θ1(x) − θ1(x + 1)],

where θ0(·), θ1(·) are the average microscopic profiles. Recall from (3.11) that θ0(x) = ~px · ~ρ and θ1(x) =

~qx · ~ρ, where ~px, ~qx, ~ρ are defined in (3.8)–(3.10). Using (3.23) and (3.25), we get

Jx,x+1 = (~px + ε ~qx) · ~ρ − (~px+1 + ε ~qx+1) · ~ρ = −(~τx+1 − ~τx) · ~ρ = − ~A1 · ~ρ,

where ~A1 is the first row of the matrix (1+ε)M−1
ε with Mε defined in (3.28). [SN: Complete the proof.] �

Macroscopic system. The microscopic current scale like 1/N. The current of the macroscopic system
can be obtained from the microscopic current by

(3.59) J0(y) = lim
N→∞

NJ0
byNc,byNc+1, J1(y) = lim

N→∞
NJ1
byNc,byNc+1.
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Proposition 3.13. [Stationary macroscopic current] For y ∈ (0, 1) the stationary currents defined in
(3.59) are given by

(3.60) J0(y) = ...

and

(3.61) J1(y) = ...

As a consequence, the current J(y) = J0(y) + J1(y) is constant and is given by

(3.62) J(y) = −
[
(ρR,0 − ρL,0) + ε (ρR,1 − ρL,1)

]
.

Proof. [SN: Complete the proof.] �

Remark 3.14. [Currents] Combining the expressions for the density profiles and the current, we see that

J0(y) = −
dρ0

dx
(y), J1(y) = −ε

dρ1

dx
(y).

♠

3.5 Discussion: Fick’s law and uphill diffusion
In this section we discuss the behaviour of the boundary-driven system as the parameter ε is varied. For
simplicity we restrict our discussion to the macroscopic setting, although similar comments hold for the
microscopic system as well.

In view of the previous results, we can rewrite the equations for the densities ρ0(y, t), ρ1(y, t) as
∂tρ0 = −∇J0 + Υ(ρ1 − ρ0),
∂tρ1 = −∇J1 + Υ(ρ0 − ρ1),
J0 = −∇ρ0,

J1 = −ε∇ρ1,

which are complemented with the boundary valuesρ0(0, t) = ρL,0, ρ0(1, t) = ρR,0,

ρ1(0, t) = ρL,1, ρ1(1, t) = ρR,1.

We will be concerned with the total density ρ = ρ0 + ρ1, whose evolution equation does not contain the
reaction part, and is given by

(3.63)

∂tρ = −∇J,
J = −∇(ρ0 + ερ1),

with boundary values

(3.64)

ρ(0, t) = ρL = ρL,0 + ρR,0,

ρ(1, t) = ρR = ρR,0 + ρR,1.

Non-validity of Fick’s law. From (3.63) we immediately see that Fick’s law of mass transport are satisfied
if and only if ε = 1. When we allow diffusion and reaction of slow and fast particles, i.e., 0 ≤ ε < 1, Fick’s
law breaks down, since the current associated to the total mass is not proportional to the gradient of the total
mass. Rather, the current J is the sum of a contribution J0 due to the diffusion of fast particles of type 0 and
a contribution J1 due to the diffusion of slow particles of type 1 (which is proportional to ε). Interestingly,
the breaking of Fick’s law opens up the possibility of several interesting phenomena.
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Equal boundary densities with non-zero current. In a system with diffusion and reaction of slow and
fast particles we may observe a non-zero current when the total density has the same value at the two
boundaries. This is different from what is observed in standard diffusive systems driven by boundary
reservoirs, where in order to have a stationary current it is necessary that the reservoirs have different
chemical potentials, and therefore different densities at the boundaries.

Let us, for instance, consider the specific case when ρL,0 = ρR,1 = 2 and ρL,1 = ρR,0 = 4, which indeed
implies equal densities at the boundaries ρL = ρR = 6. The density profiles and currents are displayed in
figure 6 for two values of ε, which shows the comparison between the Fick-regime ε = 1 (left panels) and
the regime with very slow particles ε = 0.001 (right panels). On the one hand, in the Fick-regime the profile
of both types of particles interpolates between the boundary values, with a slightly non-linear shape that
has been quantified precisely in [SN: Insert equation.] Furthermore, in the same regime ε = 1, the total
density profile is flat and the total current J vanishes because J1(y) = −J2(y) for all y ∈ [0, 1].

On the other hand, in the non-Fick regime ε = 0.001, the computation in [SN: Insert equation.] yields
a profile for the fast particles that (almost linearly) interpolates between the boundary values, whereas the
profile for the slow particles is non-monotone: it has two bumps at the boundaries and in the bulk closely
follows the other profile. As a consequence, the total density profile is not flat and has two bumps at the
boundaries. Most strikingly, the total current is J = −2, since now the current of the bottom layer J0 is
dominating, while the current of the bottom layer J1 is small (order ε).

density e12442.png density e0012442.png

Figure 6: Macroscopic density profile and associated current. Here ρ(L,0) = 2, ρ(L,1) = 4 and ρ(R,0) =

4, ρ(R,1) = 2,Υ = 1. For the left panel ε = 1 and for the right panel ε = 0.001.

Unequal boundary densities with uphill diffusion. By tuning the parameters ρ(L,0), ρ(L,1), ρ(R,0), ρ(R,1)
and ε, we can push the system into a regime where the total current J < 0 and the total densities are such
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that ρR < ρL, where ρR = ρ(R,0) + ρ(R,1) and ρL = ρ(L,0) + ρ(L,1). In this regime, the current goes uphill, since
the total density of particles at the right is lower than at the left, yet the average current is negative.

For an illustration, consider the case when ρL,1 = 6, ρR,0 = 4 and ρL,0 = ρR,1 = 2, which implies ρL = 8
and ρR = 6 and thus ρR < ρL. The density profiles and currents are shown in figure 7 for two values of ε,
in particular, a comparison between the Fick-regime ε = 1 (left panels) and the regime of with very slow
particles ε = 0.001 (right panels). [SF: Add more comments.]

density e12642.png density e0012642.png

Figure 7: Macroscopic density profile and associated current. Here ρ(L,0) = 2, ρ(L,1) = 6 and ρ(R,0) =

4, ρ(R,1) = 2,Υ = 1. For the left panel ε = 1 and for the right panel ε = 0.001.

The transition between downhill and uphill. We observe that in this example the change from downhill
to uphill diffusion occurs at ε = 1/2. The density profiles and currents are shown in figure 8 for two
additional values of ε, one in the “mild” downhill regime J > 0 for ε = 0.75 (left panels), the other in the
“mild” uphill regime e J > 0 for ε = 0.25(right panels). [SF: Add more comments.]

Identification of the uphill regime.

Definition 3.15. [Uphill diffusion] For parameters ρ(L,0), ρ(L,1), ρ(R,0), ρ(R,1) and 0 ≤ ε ≤ 1 we say the
system has an uphill current in stationarity if the total current J and the difference between the total density
of particles in the right and the left side of the system given by ρR − ρL have the same sign, where it is
understood that ρR = ρ(R,0) + ρ(R,1) and ρL = ρ(L,0) + ρ(L,1).
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Figure 8: Macroscopic density profile and associated current in ”mild” downhill and uphill regime. Here
ρ(L,0) = 2, ρ(L,1) = 6 and ρ(R,0) = 4, ρ(R,1) = 2,Υ = 1. For the left panel ε = 0.75 and for the right panel
ε = 0.25.



3 THE SYSTEM WITH BOUNDARY RESERVOIRS 29

Proposition 3.16. [Uphill regime] Let a0 := ρ(R,0) − ρ(L,0) and a1 := ρ(R,1) − ρ(L,1). Then the macroscopic
system admits an uphill current in stationarity if and only if the parameters satisfy the constraint

(3.65) a2
0 + (1 + ε) a0a1 + εa2

1 < 0.

If, furthermore, ε ∈ [0, 1], then:

(i) either a0 + a1 > 0 with a0 < 0, a1 > 0 or a0 + a1 < 0 with a0 > 0, a1 < 0,

(ii) or ε ∈
[
0,− a0

a1

]
.

Proof. Note that, by (3.62), there is an uphill current if and only if a0 + a1 and a0 + εa1 have opposite signs.
In other words, it happens if and only if

(a0 + a1)(a0 + ε a1) = a2
0 + (1 + ε) a0a1 + εa2

1 < 0.

The above constraint forces a0a1 < 0. Further simplification reduces the parameter regime to the following
four cases:

• a0 + a1 > 0 with a0 < 0, a1 > 0 and ε < − a0
a1

,

• a0 + a1 < 0 with a0 > 0, a1 < 0 and ε < − a0
a1

,

• a0 + a1 > 0 with a0 > 0, a1 < 0 and ε > − a0
a1

,

• a0 + a1 < 0 with a0 < 0, a1 > 0 and ε > − a0
a1

.

Thus, under the assumption ε ∈ [0, 1], only the first two of the above four cases survive. �

3.6 The width of the boundary layer
We have seen that for ε = 0 the microscopic density profile of the fast particles θ0(x) linearly interpolates
between ρL,0 and ρR,0, whereas the density profile of the dormant particles satisfies θ1(x) = θ0(x) for all
x ∈ {2, . . . ,N−1}. In the macroscopic setting this produces a macroscopic profile ρ0(y) = ρL,0 +(ρR,0−ρL,0)y
while the bottom-layer profile develops two discontinuities at the boundaries

ρ1(y) =
[
ρL,0 + (ρR,0 − ρL,0)y

]
1(0,1)(y) + ρL,11{1}(y) + ρR,11{0}(y).

For small but positive ε the curve is smooth and the discontinuity is turned into a boundary layer. In this
section we investigate the width of the boundary layer as ε ↓ 0.

We define the width y(ε) of the boundary layer as the point where the top-layer density profile (and
therefore also the total density profile) significantly differs from the bulk linear profile of the case ε = 0.
Since the bulk profile is essentially linear, this amount to requiring that, for some constant c > 0,

(3.66)

∣∣∣∣∣∣ d2

dy2 ρ1(y)

∣∣∣∣∣∣ = c,

or equivalently, due to the relation J1(y) := −ε ∂yρ1,

(3.67)
∣∣∣∣∣ d
dy

J1(y)
∣∣∣∣∣ = cε.

Recalling the expression of ρ1 given in [SF: Insert equation.] we get the condition

(3.68) cε = Υ(ρ(L,0) − ρ(L,1))
sinh

[√
Υ(1 + 1

ε
)(1 − y)

]
sinh

[√
Υ(1 + 1

ε
)
] .

Solving (3.68), we get

(3.69) y(ε) = 1 −
1√

Υ(1 + 1
ε
)

sinh−1


ε sinh

[√
Υ(1 + 1

ε
)
]

Υ|ρ(L,0) − ρ(L,1)|

 .
Hence y(ε) �

√
ε log(1/ε) as ε ↓ 0.
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A Inverse of the boundary-layer matrix
The inverse of the matrix Mε defined in (3.28) is given by (α1 and α2 are as in (3.29))

(A.1) M−1
ε :=

1
Z


−m13 −m14 m13 m14
m21 m22 m23 m24

m31(α2) m32(α2) m33(α2) m34(α2)
−m31(α1) −m32(α1) −m33(α1) −m34(α1)

 ,
where

(A.2)
Z := αN+1

1 [α2(1 − ε)(αN−1
2 + 1) + 2ε(αN+1

2 + 1)] [α2(1 + N)(1 − ε)(αN−1
2 − 1) + 2ε(N + ε)(α1+N

2 − 1)],

m13 := αN+1
1 [α2(1 − ε)(αN−1

2 + 1) + 2ε(αN+1
2 + 1)] [α2(1 − ε)(αN−1

2 − 1) + ε(αN+1
2 − 1)],

m14 := ε αN+1
1 [α2(1 − ε)(αN−1

2 + 1) + 2ε(αN+1
2 + 1)] (αN+1

2 − 1),

m21 := (1 + N)(1 − ε)2(αN−1
2 − αN−1

1 ) − ε(1 − ε)2(α2 − α1)

+ ε2(1 + 2N + ε)(αN+1
2 − αN+1

1 ) + ε(1 − ε)(2 + 3N + ε)(αN
2 − α

N
1 ),

m22 := ε [(1 − ε)(1 + N)(αN
2 − α

N
1 ) + ε(1 + 2N + ε)(αN+1

2 − αN+1
1 )],

m23 := ε (1 − ε)[(N + ε)(α2 − α1) − (1 − ε)(αN
2 − α

N
1 ) − ε(αN+1

2 − αN+1
1 )],

m24 := −ε(1 − ε)[(1 + N)(α2 − α1) + ε (αN+1
2 − αN+1

1 ),

and the polynomials m31(z),m32(z),m33(z),m34(z) are defined as

(A.3)

m31(z) := −(1 − ε)2 z − ε (1 − ε) + (1 − ε)(N + ε) zN − ε(1 − 2N − 3ε) zN+1,

m32(z) := −(1 − ε)(1 + N)zN − ε (1 − ε) − ε(1 + 2N + ε) zN+1,

m33(z) := (1 − ε)2 zN + ε (1 − ε) zN+1 − (1 − ε)(N + ε) z + ε(1 − 2N − 3ε),

m34(z) := (1 + N)(1 − ε) x + ε (1 − ε) zN+1 + ε(1 + 2N + ε).

We remark that most of the terms appearing in the inverse simplify because of (3.30). We define the four
vectors ~c1, ~c2, ~c3, ~c4 as the respective rows of M−1

ε , i.e.,

(A.4)
~c1 := (M−1

ε )T~e1, ~c2 := (M−1
ε )T~e2,

~c3 := (M−1
ε )T~e3, ~c4 := (M−1

ε )T~e4,

where
~e1 :=

[
1 0 0 0

]T
, ~e2 :=

[
0 1 0 0

]T
,

~e3 :=
[

0 0 1 0
]T
, ~e4 :=

[
0 0 0 1

]T
.

B Related models
In Appendices B.1–B.3 we put forward three related models, which we believe to be of interest for future
investigation.

B.1 Multi-layer switching interacting particle systems
The two-layer system introduced in Definition 1.1 can be extended to a multi-layer system in the obvious
manner. Fix M ∈ N, and consider jump rates D = {Di}0≤i≤M for M + 1 different types of particles. The
configuration is {η(x)}x∈Z with η(x) = {ηi(x)}0≤i≤M , and the generator is

(B.1)

(LD,γ f )(η) =

M∑
i=0

Di

∑
|x−y|=1

{
ηi(x)

[
f ((η0, . . . , ηi−1, ηi − δx + δy, ηi+1, . . . , ηM)) − f (η)

]
+ η0(y)

[
f ((η0 + δx − δy, η1)) − f (η)

]}
+

∑
|i− j|=1

∑
x∈Z

{
γ{i, j} η0(x)

[
f ((η0 − δx, η1 + δx)) − f (η)

]
+ η1(x)

[
f ((η0 + δx, η1 − δx)) − f (η)

]}
.
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Duality holds also for this model. The self-duality functions and the stationary measures are known as well
(see [24]). It is straightforward to extend all our results for the two-layer model to the multi-level model.

B.2 Interacting particle systems with infinitely many dormant layers
We consider a simple exclusion process on Z with infinitely many dormant layers. On each layer at most
one particle can go to sleep. We denote the configuration by η = {η(x)}x∈Z, where

η(x) = {η(x, i)}i∈N ∈ IN,

with
η(x, 0) = number of active particles at site x,

η(x, n) = number of dormant particles on dormant layern at site x, n ∈ N.

For n ∈ N, we let sn be the rate at which an active particle becomes dormant on layer n or a dormant particle
on layer n become active. Note that η(x, i) ∈ {0, 1} for i ∈ {0} ∪ N, and the generator is

(L f )(η) =
∑
x∼y

ω{x,y}
{
η(x, 0)(1 − η(y, 0))

[
f (ηx,y) − f (η)

]
+ η(y, 0)(1 − η(x, 0))

[
f (ηy,x) − f (η)

]}
+

∑
x∈Z

∑
n∈N

sn

{
η(x, 0)(1 − η(x, n))

[
f (η(x,0),(x,n)) − f (η)

]
+ η(x, n)(1 − η(x, 0))

[
f (η(x,n),(x,0)) − f (η)]

}
,

where

ηx,y(z, i) =


η(z, i), z < {x, y}, i ∈ N,
η(x, 0) − 1, z = x, i = 0,
η(y, 0) + 1, z = y, i = 0,

and

η(x,0),(x,n)(z, i) =


η(z, i), z < {x}, i ∈ N,
η(x, 0) − 1, z = x, i = 0,
η(x, n) + 1, z = x, i = n,

and

η(x,n),(x,0)(z, i) =


η(z, i), z < {x}, i ∈ N,
η(x, 0) + 1, z = x, i = 0,
η(x, n) − 1, z = x, i = n.

B.3 Exclusion process with bossy dormant particles and discouragement
We next consider an exclusion process on Z where the dormant particles discourage active particles to jump
on top of them. At any site there can be at most one active particle and at most one dormant particle. Let

η0(x) = number of active particles at site x,

η1(x) = number of dormant particles at site x.

The configuration is η = {η(x)}x∈Z with η(x) = (η0(x), η1(x)). The total number of particles at site x is
η0(x) + η1(x) ∈ {0, 1, 2}. The state space is X = IZ × IZ. Given ε ∈ (0, 1), the exclusion process with bossy
particles is the Markov process on X with generator

(Lε f )(η) =
∑
x∼y

{
η0(x)(1 − η0(y))(1 − νη1(y))

[
f (η0 − δx + δy, η1) − f (η)

]
+ η0(y)(1 − η0(x))(1 − νη1(x)

[
f (η0 + δx − δy, η1) − f (η)

]}
+

∑
x∈Z

{
η0(x)(1 − η1(x))

[
f (η0 − δx, η1 + δx) − f (η)

]
+ η1(x)(1 − η0(x))

[
f (η0 + δx, η1 − δx) − f (η)

]}
.
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We refer to the case ν = 1 as the exclusion process with bossy dormant particles and total discouragement,
for which the generator is

(Lε f )(η) =
∑
x∼y

{
η0(x)(1 − η0(y))(1 − η1(y))

[
f (η0 − δx + δy, η1) − f (η)

]
+ η0(y)(1 − η0(x))(1 − η1(x)

[
f (η0 + δx − δy, η1) − f (η)

]}
+

∑
x∈Z

{
η0(x)(1 − η1(x))

[
f (η0 − δx, η1 + δx) − f (η)

]
+ η1(x)(1 − η0(x))

[
f (η0 + δx, η1 − δx) − f (η)

]}
.

For small ν we may attempt the approach followed in [16] to deal with a mixture of Glauber dynamics and
Kawasaki dynamics, where the reaction term is a perturbation of the exclusion dynamics and an approx-
imative duality is exploited. In our case, the perturbation has the form of an extra term in the rate of the
exclusion dynamics. For the hydrodynamic limit, the parameter ν must be scaled.
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