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Abstract

This paper analyzes various stochastic recursions that arise in queueing and insurance
risk models with a ‘semi-linear’ dependence structure. For example, an interarrival
time depends on the workload, or the capital, immediately after the previous arrival;
or the service time of a customer depends on her waiting time. In each case we derive
and solve a fixed-point equation for the Laplace-Stieltjes transform of a key perfor-
mance measure of the model, like waiting time or ruin time.

Keywords: M/G/1 queue; waiting time; workload; Cramér-Lundberg insurance risk
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1 Introduction

One of the most fundamental relations in queueing theory is the Lindley recursion,
which is a recursive relation between the waiting times Wi and Wi+1 of the i-th and
(i+1)-st customers in the single-server queue. With (Bi)i a sequence of service times,
and (Ai)i a sequence of interarrival times, the sequence (Wi)i satisfies

Wi+1 = max(Wi + Bi −Ai, 0), i = 1, 2, . . . . (1)

One alternatively says that (Wi)i is a random walk with increments (Bi − Ai)i re-
flected at zero. The Lindley recursion has been studied in much generality when it
comes to the specific distributional assumptions imposed on the random sequences
(Bi)i and (Ai)i. However, in the vast majority of all papers it is assumed that both se-
quences consist of independent and identically distributed (i.i.d.) random variables,
that both sequences are independent, and in addition that all Ai and Bi are indepen-
dent of all Wj , for j 6 i.

The goal of the present paper is to explore a class of stochastic recursions (1) in
which some of the above mentioned independence assumptions are lifted and for
which, nevertheless, a detailed exact analysis can be provided. Below we briefly dis-
cuss the models under consideration.
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• In Sections 2 and 3 we assume that Ai = c(Wi + Bi) + Ai, where (Ai)i is an
independent sequence of exponentially distributed random variables (in both
sections some relaxation of the exponentiality assumption is possible) and where
0 < c < 1. We thus model a positive correlation between a customer’s sojourn
time Wi +Bi and the time until the next customer arrives. The key performance
measure under consideration in Section 2 is the steady-state waiting time; its
LST (Laplace-Stieltjes transform) is presented in Theorem 2.1. We also derive an
asymptotic expansion of the probability of zero waiting time, and of the waiting
time moments, in the paramater c = ε ↓ 0 that indicates how close the model is
to the classical M/G/1 queue.
The key performance measure in Section 3 is the time τ(x) until the system be-
comes empty, when the initial capital is x. In this section we also reinterpret the
model as a so-called dual risk model. The dual risk model is used to study the
possible ruin of companies, and accordingly the time until the queue becomes
empty translates into the time a company gets ruined when its initial capital is
x. The Laplace transform (with respect to that initial capital x) of the ruin time
LST Ee−sτ(x), is derived in Theorem 3.1.

• Section 4 studies the Cramér-Lundberg (CL) insurance risk model. In this model,
generally distributed claims arrive according to a Poisson process, and in be-
tween claims the capital of the insurance company increases at a fixed premium
rate. The field of insurance risk has much in common with queueing theory;
and in particular the CL model is known to be dual to the M/G/1 queue (cf.
Chapter III.2 of [5]). We consider the following dependency structure in the CL
model. The interarrival time between the ith and (i+ 1)st claim depends on the
capital y of the insurance company right after the ith claim, in very much the
same way as the interarrival time depends on the workload in Sections 2 and
3 (but taking into account that now jumps are downward and the linear slope
is upward): when the capital, right after the i-th claim, equals y, then the next
interclaim time Ai = max(0, Ai− cy), where (Ai)i is an independent sequence of
exp(λ) distributed random variables. In Theorem 4.1 we determine the Laplace
transform, with respect to initial capital x, of the ruin time LST Ee−sτ(x).

• Finally, in Section 5, we turn to the single-server queue in which the service time
of a customer depends, in a somewhat similar way as above, on her waiting
time. We assume that Bi = max(Bi − cWi, 0), where (Bi)i is an independent
sequence of exp(µ) distributed random variables. The negative correlation be-
tween waiting and service time includes the feature of zero service time (aban-
donment) if the waiting time is too large. We derive the steady-state waiting
time and workload LST (Theorem 5.1).

All the above-sketched models exhibit a ‘semi-linear’ dependence structure, and in all
these models we arrive at a fixed-point equation for the LST ω(s) of the steady-state
waiting time W , or for the Laplace transform of the ruin time LST, of the following
form:

ω(s) = G(s)ω(ζ(s)) +H(s), (2)

for known functions G(s) and H(s). In the setting of Section 2, we have that ζ(s) =

(1 − c)s, while we consider ζ(s) = s + λc in Section 4 and ζ(s) = s + µc in Section 5.
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Such fixed-point equations (and similar ones with non-linear f(·) functions) also arise
naturally in various branching-type models and related queueing models (like queues
with vacations and polling systems), giving rise to a solution in terms of an infinite
product of known Laplace transforms. In some of our recent work [9–11] we have also
come across similar fixed-point equations in the context of reflected autoregressive
processes and related queueing systems.

Related literature. The stochastic recursion (1) may be handled successfully when
Bi−Ai has a ‘nice’ distribution (while Bi−Ai are independent ofWj for all j ≤ i); ob-
serve that Bi and Ai appear in (1) as a difference. Examples are the papers of Conolly
and Choo [15, 20, 21, 24]. Conolly and Choo [15] study an M/M/1 queue in which
Ai and Bi have a bivariate exponential distribution. For this last model Hadidi [20]
shows that the waiting times are hyperexponentially distributed, while Hadidi [21]
studies the sensitivity of the waiting time distribution to the value of the correlation
coefficient and Langaris [24] considers the busy period distribution. The case in which
Bi depends on the previous Ai−1 has only been studied in a few cases; see the queue-
ing studies [8, 13, 14]. For a broad discussion of dependence phenomena in queueing
models of packet networks (dependence between successive interarrival times, or be-
tween successive service times, or between interarrival and service times), we refer to
Fendick et al. [18]. A single-server queue in which the service rate of a customer with
exponential service time distribution depends on her waiting time has been analyzed
in [26]. There it is assumed that the service rate is µ(w) if the waiting time equals w,
and assumes moreover that µ(w) is a step function.

In insurance risk, more than in queueing, attention has been given to models with
various forms of dependence. We refer to Chapter XIII of Asmussen and Albrecher [5]
for an overview, and to [3] (generalizing [23]) for a rather general class of Markovian
risk models, in which claim interarrival times and claim sizes have a joint distribution
that depends on the state of some underlying finite Markov chain. A similar queueing
model with a Markov dependence structure was studied by Adan and Kulkarni [2];
see also [14]. A special case of the dependence structure in [3] is an insurance risk
model in which an interarrival time depends on the previous claim size via a threshold
mechanism; the queueing dual of that model was studied in [12]. We finally remark
that, if one is satisfied with asymptotic results, more general forms of dependence
may be allowed; see, e.g., [6, 22].

2 The M/G/1 queue with interarrival times dependent
on workload

In this section we study the M/G/1 queue with the special feature that the time be-
tween the arrivals of customers n and n + 1 depends on the workload found by cus-
tomer n. More specifically, if the workload just after the arrival of customer n equals
x > 0, then the next interarrival time equals cx plus an independent, exponentially
distributed time. A brief model description (Subsection 2.1) is followed by an analysis
of the LST of the steady-state workload (Subsection 2.2). Subsection 2.3 presents an
asymptotic analysis for the case c ↓ 0; of course in the limiting case of c = 0 the model
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reduces to the classical M/G/1 queue.

2.1 Model description

Consider the following variant of the classical M/G/1 queue. If the workload just
after the i-th arrival (i.e., the sojourn time) equals x > 0, then the next interarrival time
equals cx (for some c ∈ (0, 1); if c ≥ 1 then all waiting times are zero) increased by
an independent, exponentially distributed term Ai with mean 1/λ. This construction
has the interesting feature that there is a positive correlation between a customer’s
sojourn time and the time until the next customer arrives. The successive service times
constitute a sequence of i.i.d. random variables (Bi)i, which are also independent of
the sequence (Ai)i; their LST is denoted by β(·).

2.2 Analysis

Let Wi denote the waiting time of the i-th arriving customer. It is readily verified that
the sequence (Wi)i obeys the recursion

Wi+1 = [Wi +Bi − c(Wi +Bi)−Ai]+, i = 1, 2, . . . , (3)

x+ denoting max(0, x) (similarly, below x− denotes min(0, x)). In the following we
assume that the steady-state waiting time distribution exists, which we claim to hold
for any c > 0 as long as EB1 < ∞ (and actually even if E log(1 + B1) < ∞; see the
account of this issue for a very similar model in [10]).

Now we let i → ∞ in (3), and study the limiting random variable W ; let ω(s)

denote the LST corresponding to W . With A,B denoting generic random variables
with the same distribution as A1, B1, we have, using that x+ + x− = x and that
A ∼ exp(λ),

ω(s) = E[e−s[(1−c)(W+B)−A]+ ]

= E[e−s[(1−c)(W+B)−A]] + 1− E[e−s[(1−c)(W+B)−A]− ]

= ω((1− c)s)β((1− c)s) λ

λ− s
+ 1−

{ λ

λ− s
P(W = 0) + P(W > 0)

}
= ω((1− c)s)β((1− c)s) λ

λ− s
− s

λ− s
P(W = 0). (4)

This fixed-point equation is very similar to the ones which were solved in [9, 11]. The
solution procedure is to iterate (4), successively expressing ω((1 − c)js) into ω((1 −
c)j+1s), and to prove the convergence of the resulting infinite sum of products. It
should be noticed that the motivation here is different from that in [9,11]: here we wish
to model a dependence between sojourn time and next interarrival time. However, we
can translate (3) into the equation Wi+1 = [aWi + Bi − Ai]+ studied in [11] by taking
a := 1− c and Bi := (1− c)Bi. In this way, by adapting Theorem 2.7 of [11], we obtain
the following result. Define

Φj(s) :=
λβ((1− c)j+1s)

λ− (1− c)js
, Ψm(s) :=

(1− c)ms
λ− (1− c)ms

.
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Theorem 2.1. The stationary waiting time LST ω(s) = Ee−sW is given by

ω(s) =

∞∏
j=0

Φj(s) − P(W = 0)

∞∑
m=0

Ψm(s)

m−1∏
j=0

Φj(s), (5)

where

P(W = 0) = β((1− c)λ)ω((1− c)λ)

=

β((1− c)λ)

∞∏
j=0

Φj+1(c)

1 + β((1− c)λ)

∞∑
m=0

Ψm+1(c)

m−1∏
j=0

Φj+1(c)

. (6)

Remark 2.2. It should be observed that one way to obtain the identity (6), is to deduce
from (3) that P(W = 0) = P((1 − c)(W + B) < A). Then ω((1 − c)λ) follows by
substituting s = (1− c)λ into (5) and using (6).

Remark 2.3. At first sight it would seem that in (5) all sj = λ/(1− c)j , for j = 0, 1, . . . ,
are singularities. However, as proven in [11], these are removable singularities.

Remark 2.4. A generalization of (3) is to let the i-th interarrival time be given by
f(Wi + Bi) + Ai when the i-th sojourn time is Wi + Bi, with f(·) such that for h(·),
with h(x) = x− f(x) it holds that

E[e−sh(W+B)] = E[e−δ(s)(W+B)]

for some δ(·); put differently, we are considering a Lévy process. Equation (4) is now
replaced by

ω(s) = ω(δ(s))β(δ(s))
λ

λ− s
− s

λ− s
P(W = 0). (7)

Again, there is a relation to an earlier study, namely [9], where one has to take service
times with LST β(δ(s)) instead of β(s).

Remark 2.5. Starting from (3) and considering the transient behavior of Wn via its
transform

∑∞
n=1 r

nE[e−sWn |W1 = w], the same recursion procedure will enable us
to derive an expression for the latter transform; cf. Section 2.1 of [11] for a similar
approach. We also refer to [11] for a generalization to the case in which the Ai have a
hypo-exponential distribution.

2.3 Asymptotic expansions

In this subsection we are interested in the performance measures P(W = 0) and EW k,
k = 1, 2, . . . in the regime that c is small, i.e., a perturbation of the classical M/G/1

queue. For such values of c, there is a rather weak dependence between sojourn time
(workload just after an arrival) and the subsequent interarrival time, while c = 0

concerns the case without dependence. In view of the rather complicated form of the
exact expressions for the above-mentioned performance measures, we are interested
in obtaining good asymptotic expansions of them in the parameter c.
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Remark 2.6. Our interest in these asymptotic expansions was strengthened by the
fact that the French hydrologist E. Mouche has indicated (personal communication;
cf. also [25]) that the model and analysis of [11] are relevant in certain hydrology
models, in particular when a is close to one – which corresponds to our c being close
to zero. It should be observed, though, that analyzing the model of [11] for a close to
one is not precisely the same as analyzing the model of the present section for c close
to zero, because the model translation also involves replacing Bi by (1− c)Bi.

Our starting-point for the asymptotic analysis for c = ε ↓ 0 is (4), which can be
rewritten as

(λ− s)ω(s) = λβ((1− ε)s)ω((1− ε)s)− sP(W = 0). (8)

Denote the steady-state waiting time when ε = 0, corresponding to the classical
M/G/1 queue, by W̃ . Assuming that the first K moments of W are well-defined,
we can give a Taylor series development of P(W = 0) and of those K moments of W
up to εm terms for some m ∈ N. In other words, for ε ↓ 0 and k ∈ {1, . . . ,K},

P(W = 0) = P(W̃ = 0) +

m∑
h=1

R0,hε
h + o(εm), (9)

EW k = EW̃ k +

m∑
h=1

Rk,hε
h + o(εm). (10)

Differentiating both sides of (8) with respect to s, substituting s = 0, and multiplying
by −1, we obtain that

1 + λEW = λ(1− ε)EB + λ(1− ε)EW + P(W = 0), (11)

and hence, with ρ := λEB:

EW =
P(W = 0)− (1− ρ)− ρε

λε
. (12)

Substituting (9), and (10) for k = 1, into (12) gives us R0,1:

R0,1 = λEW̃ + ρ =
λ2EB2

2(1− ρ)
+ ρ; (13)

recognize in the latter expression the mean queue length in the M/G/1 queue. Fur-
thermore, by equating the εh powers in both sides of (12) for h = 2, 3, . . . , we obtain:

λR1,h−1 = R0,h, h = 2, 3, . . . (14)

Both sides of (4) are subsequently differentiated k = 2, . . . ,K times with respect to s,
after which s = 0 is substituted. After some calculations we obtain, for k = 2, . . . ,K,

[λ− λ(1− ε)k]EW k = −kEW k−1 + λ(1− ε)k
k−1∑
j=0

(
k − 1

j

)
EW jEBk−j +

λ(1− ε)k
k−1∑
j=1

(
k − 1

j − 1

)
EW jEBk−j

= −kEW k−1 + λ(1− ε)k
k−1∑
j=0

(
k

j

)
EW jEBk−j . (15)
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In particular, we recover the following familiar M/G/1 result [19] by inserting ε = 0:

0 = −kEW̃ k−1 + λ

k−1∑
j=0

(
k

j

)
EW̃ jEBk−j , k = 2, . . . ,K; (16)

observe that from this expression all moments EW̃ k can be computed recursively.
Substituting (10) into (15) and using (16) gives, for k = 2, . . . ,K:

[λ− λ(1− ε)k](EW̃ k +

m∑
h=1

Rk,hε
h) = −k

m∑
h=1

Rk−1,hε
h + (17)

λ(1− ε)k
k−1∑
j=0

(
k

j

)
EBk−j

m∑
h=1

Rj,hε
h +

[λ(1− ε)k − λ]

k−1∑
j=0

(
k

j

)
EBk−jEW̃ j ,

and hence

[λ− λ(1− ε)k]

m∑
h=1

Rk,hε
h = −k

m∑
h=1

Rk−1,hε
h + (18)

λ(1− ε)k
k−1∑
j=0

(
k

j

)
EBk−j

m∑
h=1

Rj,hε
h +

[λ(1− ε)k − λ]

k∑
j=0

(
k

j

)
EBk−jEW̃ j .

We return to our objective of identifying the coefficients Rk,h.

• Equating ε factors on both sides allows us to expressRk−1,1 intoRk−2,1, . . . , R0,1

and known terms; regarding the latter, recall that all moments of W̃ can be ob-
tained recursively from (16). We have, for k = 2, . . . ,K:

Rk−1,1 =
1

1− λEB

[λ
k

k−2∑
j=0

(
k

j

)
EBk−jRj,1 − λ

k∑
j=0

(
k

j

)
EBk−jEW̃ j

]
. (19)

Since R0,1 has been derived in (13), all Rk,1 can be obtained.

• By equating εh factors, h = 2, 3, . . . , on both sides of (17), we can express Rk−1,h
into Rk,h−1 and in terms Rj,l with j + l ≤ k− 2 + h. We give the recursion for ε2

terms:

Rk−1,2 =
1

1− λEB

[
− λRk,1 +

λ

k

k−2∑
j=0

(
k

j

)
EBk−jRj,2 + λ

k−1∑
j=0

(
k

j

)
EBk−JRj,1 +

λ
k − 1

2

k∑
j=0

(
k

j

)
EBk−jEW̃ j

]
. (20)

Considering the matrix (Rg,i)g>0,i>1, we thus first obtain the element R0,1 in
the upper left corner; then the first column of elements Rk,1; and then succes-
sively all the ‘anti-diagonals’ (where an anti-diagonal corresponds to the entries
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of which the sum of the indices is equal). In particular, R1,1 gives R0,2, subse-
quently we use R2,1 to obtain R1,2, R0,3; then we use R3,1 to obtain R2,2, R1,3

and R0,4; etc.

3 The dual risk model

The classical Cramér-Lundberg insurance risk model is often viewed as being dual to
the M/G/1 queue: the reserve level process grows linearly with the premium rate in
between downward Poisson jumps, with these jumps (to be thought of as claim sizes)
stemming from a general distribution. When there is equality between the arrival
rates of the two Poisson processes, the two jump size distributions and the slopes, we
have the remarkable property (cf. Section III.2 of [5]) that the ruin probability in the
Cramér-Lundberg model when starting with initial capital x, equals the probability
that the steady-state waiting time in the M/G/1 queue exceeds x.

However, in the insurance risk literature there is also some interest in a model,
called the dual risk model, that has exactly the same sample path behavior as theM/G/1

queue, until level zero is first reached: jumps upward and a constant slope downward
between jumps. Such a dual risk model represents the surplus of a company with
a fixed expense rate and occasional gains; examples are pharmaceutical, R & D and
petroleum companies. Various performance measures of the dual risk model have
been studied since the seminal work by Avanzi et al. [7].

In the present section we consider a dual risk model in which we make the ex-
act same assumptions as in Section 2. It is evident that from a ruin probability point
of view, nothing interesting happens: the ruin probability is 1 (see also Remark 3.2
below). However, it is interesting to determine the distribution of the time to ruin
τ(x), when starting (immediately after an upward jump) at level x. Observe that
this is equivalent with determining the distribution of the busy period of the model’s
M/G/1 counterpart, when starting at level x right after a jump (i.e., a customer ar-
rival). Denote the LST of this ruin time τ(x) byK(s, x). Let Ts denote an exponentially
distributed random variable with mean 1/s. Observe that K(s, x) can be interpreted
as the probability that the ruin time τ(x) occurs before Ts.

Let us first restrict ourselves to the case of exp(µ) jumps upward, i.e., the corre-
sponding distribution function is given by B(z) = 1 − e−µz . By looking ahead to the
next jump, we can write

K(s, x) = e−sxe−λ(1−c)x +

∫ x

t=cx

e−st
∫ ∞
z=0

µe−µzλe−λ(t−cx)K(s, x− t+ z) dtdz (21)

= e−(s+λ(1−c))x + λµ

∫ (1−c)x

y=0

∫ ∞
z=0

e−s(x−y)e−λ[(1−c)x−y]e−µzK(s, y + z) dy dz.

Introducing k(s, α) :=
∫∞
x=0

e−αxK(s, x) dx, we obtain by interchanging the integra-
tions over x and y and substantial calculus that

k(s, α) =
1

s+ λ(1− c) + α

(
1 + λµ

∫ ∞
y=0

∫ ∞
z=0

e−ζ(α) ye−µzK(s, y + z)dydz

)
= G(s, α) +H(s, α) k(s, ζ(α)), (22)
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with f(s, α) := s+ λ(1− c) + α,

ζ(α) ≡ ζ(s, α) :=
α

1− c
+

cs

1− c
, (23)

G(s, α) :=
1

f(s, α)

(
1− λµ k(s, µ)

µ− ζ(α)

)
, (24)

H(s, α) :=
λµ

f(s, α)

1

µ− ζ(α)
. (25)

Writing ζ(j)(α) := ζ(ζ(j−1)(α)) with ζ(0)(α) := α, we obtain

ζ(j)(α) =
α

(1− c)j
+

j∑
i=1

cs

(1− c)i
, j = 1, 2, . . . . (26)

Iteration of (22), which again has the form (2), finally results in the following theorem.

Theorem 3.1. The Laplace transform of the ruin time LST K(s, x) = E[e−sTx ] is given by

k(s, α) =

∞∑
j=0

G(s, ζ(j)(α))

j−1∏
i=0

H(s, ζ(i)(α)), (27)

where an empty product is defined to be one, and where the remaining unknown k(s, µ) is
determined by substituting α = µ in (27).

In relation to the last statement of the theorem, observe that k(s, µ) appears with
a prefactor in all G(s, ζ(j)(α)) terms in (27). It is easily seen that the sum of products
in (27) converges, because both G(s, ·) and H(s, ·) decrease geometrically fast (with a
factor 1−c) to zero. Finally, we would like to remark that µk(s, µ) can be interpreted as
the LST of a busy period starting from an empty system with an exp(µ) jump upward –
or, equivalently, the LST of the ruin time in the dual risk model with exp(µ) distributed
initial capital.

Remark 3.2. Notice that K(0, x) equals the probability that ruin ever occurs, starting
at level x. It is intuitively clear that this probability should be one for all c > 0. Indeed,
substituting k(0, α) = 1/α and k(0, µ) = 1/µ in (22) gives an identity.

Remark 3.3. When c = 0, the queueing system reduces to an ordinaryM/M/1 queue,
and µk(s, µ) =

∫∞
0
µe−µxK(s, x) dx should equal the LST of an ordinaryM/M/1 busy

period: as the initial level x now is the value of the first exp(µ) service time:

µk(s, µ) =
1

2λ
[s+ λ+ µ−

√
(s+ λ+ µ)2 − 4λµ]. (28)

It is readily verified that, for c = 0, (22) becomes

k(s, α)
[
1− 1

s+ λ+ α

λµ

µ− α

]
= − λµ

s+ λ+ α

k(s, µ)

µ− α
+

1

s+ λ+ α
. (29)

Taking α = µ gives an identity, but observing that the term between square brackets
in the left hand side of (29) has exactly one zero in the right half α-plane, viz.

α = α1 :=
1

2
[µ− λ− s+

√
(µ− λ− s)2 + 4µs],

and that α1 should also be a zero of the right hand side of (29), quickly leads to (28).
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Remark 3.4. See [16] for a numerical recipe to numerically invert two-dimensional
Laplace transforms; cf. also the practical guidelines presented in [4, 17]. Using these
techniques one can reliably determine the density or distribution function of τ(x) from
our expression for k(s, α).

So far in this section, we have assumed that the upward jumps are exponentially
distributed. In the remainder of this section we generalize this to the hyperexponen-
tial and Erlang cases.

• The hyperexponential case. In this case the cumulative distribution function reads
B(x) =

∑K
i=1 pi(1− e−µix). It is quite straightforward to see that in this case

k(s, α) =
1

f(s, α)

1 + λ

K∑
i=1

piµi
k(s, ζ(α))− k(s, µi)

µi − ζ(α)

 . (30)

The iterative approach that we applied for the exponential case in this section
works in exactly the same way for the hyperexponential case. Formula (22) still
holds, with now

G(s, α) :=
1

f(s, α)

1− λ
K∑
i=1

piµi
k(s, µi)

µi − ζ(α)

 , (31)

H(s, α) :=
λ

f(s, α)

K∑
i=1

piµi
µi − ζ(α)

. (32)

The only difference is that we now end up with K unknowns, namely k(s, µi),
i = 1, . . . ,K. These can be determined by substituting α = µi, i = 1, . . . ,K in
the equivalent of (27).

• The Erlang case. In the case of an Erlang-K distribution, the cumulative distribu-
tion function reads

B(x) = 1−
K−1∑
n=0

(µx)n

n!
e−µx.

In this Erlang-K case, too, it is straightforward to find k(s, α). Observing that

zK−1e−µz = (−1)K−1
dK−1

dµK−1
e−µz,

we obtain

k(s, α) =
1

f(s, α)

(
1 + λµK(−1)K−1

dK−1

dµK−1
k(s, ζ(α))− k(s, µ)

µ− ζ(α)

)
. (33)

The iterative approach that we applied for the exponential case can be applied in
the exact same way for the Erlang-K case. Again Formula (22) still holds, with
now

G(s, α) :=
1

f(s, α)

(
1− λµK(−1)K

dK−1

dµK−1
k(s, µ)

µ− ζ(α)

)
, (34)

H(s, α) :=
λµK

f(s, α)

dK−1

dµK−1
1

µ− ζ(α)
. (35)
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The only difference is that the K unknowns we end up with are k(s, µ) and its
first K − 1 derivatives. These are obtained by differentiating the equivalent of
(27) 0, 1, . . . ,K − 1 times with respect to α, each time followed by substituting
α = µ. This results in K linear equations for these K unknowns.

Remark 3.5. It is straightforward to combine these two cases further to the case of the
distribution functionB(·) corresponding to a weighted sum of Erlang-k distributions.
It is well known that distributions from this class can approximate the distribution of
any non-negative random variable arbitrarily close.

4 The Cramér-Lundberg model with dependence between
capital and interclaim times

In this section we consider the following variant of the Cramér-Lundberg risk model.
Claim sizes are i.i.d. with a non-specified cumulative distribution function B(·) and
LST β(·), independent of everything else. In between claims, the capital grows at a
constant rate, which is assumed (without losing any generality) to be one. When the
capital right after the i-th claim takes some value y > 0, then the next interclaim time
equals max(0, Ai − cy), where c > 0 and (Ai)i are i.i.d. exp(λ) distributed random
variables, independent of everything else.

It is directly seen that the underlying mechanism is such that a large capital gives
rise to a relatively small interclaim time. This means that eventual ruin is certain
in this model (when the capital is large, there is a cascade of claims, so the capi-
tal is pulled down; whereas if the capital is small, the model effectively behaves as
the conventional Cramér-Lundberg model). Below we shall study the ruin time LST
R(s, x) := E[e−sτ(x)], where τ(x) is the ruin time when starting with capital x > 0

immediately after a claim.
Conditioning on the value of Ai, and in particular distinguishing between this

quantity being smaller than cx (leading to an immediate claim arrival) or larger than
cx, we obtain,

R(s, x) =

∫ cx

t=0

λe−λt
[ ∫ x

z=0

R(s, x− z) dB(z) + B̄(x)
]
dt+ (36)∫ ∞

t=cx

λe−λte−s(t−cx)
[ ∫ x+t−cx

z=0

R(s, x+ t− cx− z) dB(z) + B̄(x+ t− cx)
]
dt,

with B̄(x) := 1−B(x). Introducing r(s, α) :=
∫∞
x=0

e−αxR(s, x) dx, we have

r(s, α) = AI +AII, (37)

where

AI :=

∫ ∞
x=0

e−αx(1− e−λcx)
[ ∫ x

z=0

R(s, x− z)dB(z) + B̄(x)
]
dx, (38)

AII :=

∫ ∞
x=0

e−αx
∫ ∞
y=0

λe−λ(y+cx)e−sy
[ ∫ x+y

z=0

R(s, x+ y − z)dB(z) + B̄(x+ y)
]
dy dx.

(39)
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Recognizing convolutions in both AI and AII, and remembering that the Laplace
transform of B̄(x) equals (1− β(α))/α, we obtain

AI = β(α) r(s, α)− β(λc+ α) r(s, λc+ α) +
1− β(α)

α
− 1− β(λc+ α)

λc+ α
, (40)

and, after some interchange of integrations, with f(s, α) = s+ λ(1− c) + α,

AII =
λ

f(s,−α)

[
β(λc+ α) r(s, λc+ α)− β(λ+ s) r(s, λ+ s) +

1− β(λc+ α)

λc+ α
− 1− β(λ+ s)

λ+ s

]
. (41)

Notice that the zero α = s + λ(1 − c) of f(s,−α) is a removable singularity of AII, as
it also makes the numerator of AII zero. It is readily verified that r(0, α) = 1/α, as it
should. Combination of (38), (40) and (41) yields

r(s, α) = M(s, α) +N(s, α) r(s, λc+ α), (42)

with

M(s, α) :=
1

1− β(α)

[
1− β(α)

α
− 1− β(λc+ α)

λc+ α
+ (43)

λ

f(s,−α)

(
1− β(λc+ α)

λc+ α
− 1− β(λ+ s)

λ+ s

)
−

λ

f(s,−α)
β(λ+ s) r(s, λ+ s)

]
,

N(s, α) :=
1

1− β(α)

λc+ α− s
f(s,−α)

β(λc+ α). (44)

Iteration of (42) finally results in the following theorem.

Theorem 4.1. The Laplace transform of the ruin time LST R(s, x) = E[e−sτ(x)] is given by

r(s, α) =

∞∑
j=0

M(s, α+ jλc)

j−1∏
i=0

N(s, α+ iλc). (45)

with an empty product defined to be one. The remaining unknown r(s, λ + s) is determined
by substituting α = λ+ s into (45) and solving the resulting linear equation.

Note that all M(s, α+ jλc) contain terms

− λβ(λ+ s)

s+ λ(1− c)− (α+ jλc)
r(s, λ+ s).

It is easily seen that the above sum of products converges. Both N(s, α + iλc) and
M(s, α+ iλc) converge to zero as i→∞; the convergence of the sum of products is at
least geometrically fast for any α > 0, as the absolute value of the product is bounded
by a constant times [β(λc+ α)]j .
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5 The single-server queue with service time dependent
on waiting time

This last section considers the following variant of the classical M/M/1 queue. Cus-
tomers arrive according to a Poisson process with rate λ. If the waiting time Wi of
the i-th arriving customer equals x > 0, then her service time equals [Bi − cWi]

+ =

[Bi − cx]+, where c > 0 and where (Bi)i is a sequence of independent, exponentially
distributed random variables with mean 1/µ, independent of anything else. Notice
that there is a negative correlation between a customer’s waiting time and her service
requirement; in particular, when the waiting time is very large, the service require-
ment is likely to be zero, which can be viewed as an abandonment. The abandonment
probability is P(Bi < cWi); if a customer does not abandon, then her service require-
ment equals an exp(µ) quantity, due to the memoryless property of the exponential
distribution.

Observe that for any c > 0 the steady-state waiting time distribution exists; note
that the workload drifts downward when it is very high. Let φ(s) denote the LST of
this distribution. By PASTA, this also equals the steady-state workload LST. Let W
denote a random variable with LST φ(s), and let A,B denote random variables that
are, respectively, exp(λ) and exp(µ) distributed. Using the same reasoning as the one
underlying (3),

φ(s) = E[e−s(W+[B−cW ]+−A)] + 1− E[e−s[W+[B−cW ]+−A]−]]

=
λ

λ− s
E[e−s(W+[B−cW ]+)] + 1−

( λ

λ− s
P(W = 0) + P(W > 0)

)
=

λ

λ− s
E[e−s(W+[B−cW ]+)]− s

λ− s
P(W = 0). (46)

We next rewrite the first term in the last line:

E[e−s(W+[B−cW ]+)] =

∫ ∞
x=0

∫ ∞
t=0

µe−µte−s(x+[t−cx]+)dtdP(W < x)

=

∫ ∞
x=0

(1− e−µcx)e−sxdP(W < x) +

∫ ∞
x=0

∫ ∞
t=cx

µe−µte−s(x+t−cx)dtdP(W < x)

= (φ(s)− φ(s+ µc)) +
µ

µ+ s
φ(s+ µc). (47)

Combining (46) and (47) we obtain, with π0 := P(W = 0):

φ(s) =
λ

µ+ s
φ(s+ µc) + π0. (48)

Substituting s = 0 yields φ(µc) = (1 − π0)/(λ/µ) = (1 − π0)µ/λ; notice that also
φ(µc) = P(B > cW ). Iteration of (48), observing that φ(s)→ 0 when s→∞, gives

φ(s) = π0 +
λ

µ+ s

[
π0 +

λ

µ+ µc+ s
φ(s+ 2µc)

]
= . . . = π0

∞∑
j=0

j−1∏
i=0

λ

µ+ iµc+ s
, (49)

an empty product denoting one. Then note that π0 follows from φ(0) = 1:

π0 =
[ ∞∑
j=0

j−1∏
i=0

λ

µ

1

1 + ic

]−1
, (50)
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We conclude the following.

Theorem 5.1. The steady-state waiting time and workload LST is given by

φ(s) =

∞∑
j=0

j−1∏
i=0

λ

µ+ iµc+ s

∞∑
j=0

j−1∏
i=0

λ

µ

1

1 + ic

. (51)

Apparently the distribution of W is an infinite weighted sum of exponential dis-
tributions with rates µ(1 + ic), i = 0, 1, . . . . Differentiating (51) and substituting s = 0

gives the mean waiting time:

E[W ] =
1

µ

∞∑
j=0

(λ/µ)j
j−1∏
i=0

1

1 + ic

j−1∑
k=0

1

1 + kc

∞∑
j=0

(λ/µ)j
j−1∏
i=0

1

1 + ic

. (52)

When c = 0, φ(s) reduces to the familiar M/M/1 result

φ(s) = π0
µ+ s

µ+ s− λ
,

where one has to require that λ < µ and where π0 = 1− λ/µ.

Remark 5.2. The transient behavior corresponding to the (Wi)i sequence can be found
by following a similar procedure as in Section 2.1 of [11], cf. also Remark 2.5, yielding∑∞
n=1 r

n E[e−sWn |W1 = w]. Notice that, after multiplication by (1 − r)/r, this also
gives the LST of WN with N being geom(r) distributed.

Remark 5.3. When the Bi have a general distribution, the calculations in (47) become
much more involved, and so far we have not been able to arrive at any tractable recur-
sion. The hyperexponential case seems doable, though. If P(B > x) =

∑K
i=1 pie

−µix

then (47) should be replaced by

E[e−s(W+[B−cW ]+)] = φ(s)−
K∑
i=1

pis

µi + s
φ(s+ µic), (53)

and (48) generalizes to

φ(s) = λ

K∑
i=1

pi
µi + s

φ(s+ µic) + π0. (54)

In [1] recursions of exactly this type are treated. The commutativity of ζi(s) := s+µic

and ζj(s) := s+ µjc, i.e., ζi(ζj(s)) = ζj(ζi(s)), makes the recursion (54) relatively easy
even though in each iteration step a term φ(s+

∑K
i=1 biµic) gives rise to K new terms.
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