Estimating Wasserstein distances, I

Jonathan Niles-Weed
Center for Data Science and Courant Institute, NYU
Statistical Optimal Transport

OT gives us distances, couplings, maps between distributions.

Basic statistical question: can I estimate these objects from data?

E.g., distributionally robust optimization: [Kuhn et al. ‘19; Blanchet et al. ‘21]

\[
\inf_{\theta \in \Theta} \mathbb{E}_\mu \ell(X, \theta) \quad \longrightarrow \quad \inf_{\theta \in \Theta} \sup_{\nu \in \mathcal{U}_\delta(\mu)} \mathbb{E}_\nu \ell(X, \theta)
\]

\[\mathcal{U}_\delta(\mu) = \{\nu : W_p(\mu, \nu) \leq \delta\}\] is "ambiguity set."

But all we have is \(X_1, \ldots, X_n \sim \mu\)! Can we estimate ambiguity set?
Law of large numbers

Classic LLN: \(\frac{1}{n} \sum_{i=1}^{n} \ell(X_i, \theta) \rightarrow \mathbb{E}_\mu \ell(X, \theta) \) at \(n^{-1/2} \) rate.

Implication: Empirical average is a good proxy for risk

“Wasserstein” LLN: Let \(\mu_n := \frac{1}{n} \sum_{i=1}^{n} \delta_{X_i} \). Does \(W_p(\mu_n, \nu) \rightarrow W_p(\mu, \nu) \)? How fast?
Law of large numbers

Classic LLN: \(\frac{1}{n} \sum_{i=1}^{n} \ell(X_i, \theta) \rightarrow \mathbb{E}_\mu \ell(X, \theta) \) at \(n^{-1/2} \) rate.

Implication: Empirical average is a good proxy for risk

“Wasserstein” LLN: Let \(\mu_n := \frac{1}{n} \sum_{i=1}^{n} \delta_{X_i} \). Does \(W_p(\mu_n, \nu) \rightarrow W_p(\mu, \nu) \)?

How fast?
Law of large numbers

Classic LLN: \(\frac{1}{n} \sum_{i=1}^{n} \ell(X_i, \theta) \rightarrow \mathbb{E}_\mu \ell(X, \theta) \) at \(n^{-1/2} \) rate.

Implication: Empirical average is a good proxy for risk

“Wasserstein” LLN: Let \(\mu_n := \frac{1}{n} \sum_{i=1}^{n} \delta_{X_i} \). Does \(W_p(\mu_n, \nu) \rightarrow W_p(\mu, \nu) \)?

How fast?
Law of large numbers

Classic LLN: $\frac{1}{n} \sum_{i=1}^{n} \ell(X_i, \theta) \to \mathbb{E}_\mu \ell(X, \theta)$ at $n^{-1/2}$ rate.
Implication: Empirical average is a good proxy for risk

"Wasserstein" LLN: Let $\mu_n := \frac{1}{n} \sum_{i=1}^{n} \delta_{X_i}$. Does $W_p(\mu_n, \nu) \to W_p(\mu, \nu)$?

How fast?

Analogous question arises whenever we want to use Wasserstein distances for statistics or ML task
Lecture I: Wasserstein law of large numbers

Goal: Explore Wasserstein LLN with goal of learning two main techniques—transport method and empirical process method.

Lecture II: Refined arguments for measures with special structure

Lecture III: Benefits and drawbacks of alternative distances

Note: ideally want much more than just LLN (distributional limits, optimal tail bounds, etc.), but many aspects still open.
Law of large numbers

Lecture I: Wasserstein law of large numbers

Goal: Explore Wasserstein LLN with goal of learning two main techniques—*transport method* and *empirical process method*.

Lecture II: Refined arguments for measures with special structure

Lecture III: Benefits and drawbacks of alternative distances

Note: ideally want much more than just LLN (distributional limits, optimal tail bounds, etc.), but many aspects still open.
Wasserstein LLN

Question: if μ_n consists of n i.i.d. samples from $\mu \in \mathcal{P}(\mathbb{R}^d)$, how does $W_p(\mu_n, \nu) - W_p(\mu, \nu)$ behave?

Observation I: random, need to understand bias and fluctuations

Observation II: since W_p satisfies triangle inequality,

$$\sup_{\nu} | W_p(\mu_n, \nu) - W_p(\mu, \nu) | = W_p(\mu_n, \mu)$$

Control of $W_p(\mu_n, \mu) \iff$ uniform control
A simple lower bound

How large is $\mathbb{E} W_p(\mu_n, \mu)$?

Claim: No smaller than $n^{-1/2p}$ in general.

Proof: Suppose μ is uniform measure on $\{x, y\}$. Then μ_n is supported on same two points, and any coupling between μ and μ_n must move mass $|\mu(\{x\}) - \mu_n(\{x\})|$ a distance of $|x - y|$.

Therefore $\mathbb{E} W_p(\mu_n, \mu) \geq |x - y| \mathbb{E} |\mu(\{x\}) - \mu_n(\{x\})|^{1/p} \gtrsim n^{-1/2p}$.
A more complicated lower bound

How large is $\mathbb{E}W_p(\mu_n, \mu)$?

Claim: If μ is absolutely continuous, no smaller than $n^{-1/d}$. [Dudley ’69]

Proof: If $\mu \ll \lambda$, then there exists $c_\mu > 0$ such that any set with $\mu(S) \geq 1/2$ satisfies $\lambda(S) \geq c_\mu$. A ball of radius ε around any point has λ mass at most $C_d\varepsilon^d$. If $C_d n \varepsilon^d < c_\mu$, then any coupling must move μ mass $1/2$ a distance ε.

Therefore $W_p^n(\mu_n, \mu) \geq \varepsilon^p/2$ if $\varepsilon = (c_\mu^{-1} C_d n)^{-1/d}$. (Almost sure bound!)
Basic rates of convergence

Theorem [Boissard & Le Gouic ’14, Fournier & Guillin ’15]: If μ has finite moments of all orders, then

$$\mathbb{E} W_p(\mu_n, \mu) \leq (\mathbb{E} W_p^p(\mu_n, \mu))^{1/p} \lesssim_{p,d} \begin{cases} n^{-1/d} & d > 2p \\ n^{-1/2p} (\log n)^{1/p} & d = 2p \\ n^{-1/2p} & d < 2p \end{cases}$$

Moment restrictions can be relaxed, constants improved [Lei ’20]

By our earlier arguments, these rates are essentially best possible.
Idea of proof

“Dyadic partitioning argument”: suppose supp(μ) ⊆ [0,1]^d.

Observation: \(W_p(\mu, \mu_n) \leq d^{p/2} \).
Idea of proof

“Dyadic partitioning argument”: suppose \(\text{supp}(\mu) \subseteq [0,1]^d \).

Observation: \(W_p^p(\mu, \mu_n) \leq d^{p/2} \).

And: if sub-cubes were all balanced, could improve by factor of \(2^p \).
Idea of proof

“Dyadic partitioning argument”: suppose $\text{supp}(\mu) \subseteq [0,1]^d$.

Observation: $W_p^p(\mu, \mu_n) \leq d^{p/2} \cdot \left(\frac{1}{2} \sum_{i=1}^{2^d} |\mu_n(Q) - \mu(Q)| + 2^{-p} \right)$.

And: if sub-cubes were all balanced, could improve by factor of 2^p.
Idea of proof

"Dyadic partitioning argument": suppose supp(μ) ⊆ [0,1]^d.

Observation: \(W_p^p(\mu, \mu_n) \leq d^{p/2} \cdot \left(\frac{1}{2} \sum_{i=1}^{2^d} |\mu_n(Q) - \mu(Q)| + 2^{-p} \right). \)

And: if sub-cubes were all balanced, could improve by factor of \(2^p \).

Idea: recurse!
Idea of proof

Let \(\{ Q_j \}_{j \geq 0} \) be dyadic partition of \([0,1]^d\), i.e., \(Q_j \) contains all \(2^{dj} \) sub-cubes of \([0,1]^d\) with side length \(2^{-j} \), corners at \(2^{-j} \cdot \nu, \nu \in \mathbb{Z}^d \).

Theorem [Weed & Bach ‘19]: For any \(\mu, \nu \in \mathcal{P}([0,1]^d) \),

\[
W^p_p(\mu, \nu) \leq d^{p/2} \left(\sum_{j=0}^{J-1} 2^{-jp} \sum_{Q \in \mathcal{Q}_{j+1}} |\mu(Q) - \nu(Q)| + 2^{-J} \right)
\]
Idea of proof

Theorem: For any $\mu, \nu \in \mathcal{P}([0,1]^d)$,

$$W_p^p(\mu, \nu) \leq d^{p/2} \left(\sum_{j=0}^{J-1} 2^{-jp} \sum_{Q \in Q_{j+1}} |\mu(Q) - \nu(Q)| + 2^{-J} \right)$$
We obtain

\[\mathbb{E} W_p^p(\mu, \mu_n) \lesssim_d \sum_{j=0}^{J-1} 2^{-jp} \sqrt{2^{dj} n} + 2^{-J} \]

If \(d < 2p \), first term dominates (“large scale” behavior dominates)
If \(d > 2p \), last term dominates (“small scale” behavior dominates)
If \(d = 2p \), all terms are of the same order (all scales contribute)
Basic rates of convergence

Theorem [Boissard & Le Gouic ’14, Fournier & Guillin ’15]: If μ has finite moments of all orders, then

$$\mathbb{E} W_p(\mu_n, \mu) \leq (\mathbb{E} W_p^p(\mu_n, \mu))^{1/p} \lesssim_{p,d} \begin{cases} n^{-1/d} & d > 2p \\ n^{-1/2p} (\log n)^{1/p} & d = 2p \\ n^{-1/2p} & d < 2p \end{cases}$$
Basic rates of convergence

Theorem [Boissard & Le Gouic ‘14, Fournier & Guillin ‘15]: If μ has finite moments of all orders, then

$$\mathbb{E} W_p(\mu_n, \mu) \leq \left(\mathbb{E} W_p^p(\mu_n, \mu) \right)^{1/p} \lesssim_{p,d} \begin{cases} n^{-1/d} & d > 2p \\ n^{-1/2p} (\log n)^{1/p} & d = 2p \\ n^{-1/2p} & d < 2p \end{cases}$$

\[=: r_{d,p}(n)\]
Any improvements?

“Worst case” examples suggest:

- $n^{-1/2p}$ rate may improve if support is connected
 (some results support this, but general story not clear) [Ledoux ‘19, Divol ‘21]

- $n^{-1/d}$ rate may improves if measure is singular
 (stay tuned)

- If μ has a density, then empirical measure is always “cursed”
Intrinsic dimension

Definition: Let $N_\varepsilon(S)$ be the smallest number of closed ε-balls needed to cover S. The (upper) Minkowski dimension $d_M(S)$ is

$$\limsup_{\varepsilon \to 0} \frac{\log N_\varepsilon(S)}{\log \varepsilon^{-1}}$$

Theorem [Weed & Bach, ’19]: If $d_M(\text{supp}(\mu)) < k$, then

$$\mathbb{E} W_p(\mu, \mu_n) \lesssim r_{k,p}(n)$$

Idea: only $\approx 2^{jk}$ elements of Q_j are non-empty

$$\sum_{Q \in \mathcal{Q}_{j+1}} \mathbb{E} |\mu(Q) - \mu_n(Q)| = \sum_{Q \in \mathcal{Q}_{j+1}, \mu(Q) > 0} \mathbb{E} |\mu(Q) - \mu_n(Q)| \lesssim \sqrt{2^{jk}/n}$$
Alternate proof methods

Dyadic partitioning argument is a "transportation method": prove $W_p(\mu_n, \mu)$ is small by constructing a candidate coupling.

Downside: challenging to prove non-uniform bounds

Theorem [Hundrieser et al. ’22a] If $\mu, \nu \in \mathcal{P}([0,1]^d)$ and $d_M(\text{supp}(\nu)) < k$ then,

$$\mathbb{E} | W_1(\mu_n, \nu) - W_1(\mu, \nu) | \lesssim r_{k,1}(n)$$

Proof idea: empirical process method, based on duality
Empirical process method

Two prerequisites:

• **Duality:** $W_1(\mu, \nu) = \sup_{f \in \text{Lip}} \int f(d\mu - d\nu)$, where $\text{Lip} = \text{Lip}(\mathbb{R}^d)$

• **Chaining:** for any set $\mathcal{F} \subseteq L^\infty$ and $\delta > 0$,

$$\mathbb{E} \sup_{f \in \mathcal{F}} \left| \int f(d\mu_n - d\mu) \right| \lesssim \delta + n^{-1/2} \int_\delta^1 \sqrt{\log N_\epsilon(\mathcal{F})} \, d\epsilon$$

If $\mathcal{F} = \text{Lip}(S)$ with $d_M(S) < k$, then $\log N_\epsilon(\mathcal{F}) \lesssim e^{-k}$.
Empirical process method

\[W_1(\mu_n, \nu) - W_1(\mu, \nu) = \sup_{f_n \in \text{Lip}} \int f_n(d\mu_n - d\nu) - \sup_{f \in \text{Lip}} \int f(d\mu - d\nu) \]

\[\leq \sup_{f \in \text{Lip}} \left(\int f(d\mu_n - d\nu) - \int f(d\mu - d\nu) \right) \]

\[= \sup_{f \in \text{Lip}} \int f(d\mu_n - d\mu) \]

Taking sup over Lip([0,1]^d) yields \(\inf_{\delta > 0} \left(\delta + n^{-1/2} \int_{\delta}^{1} e^{-d/2} d\epsilon \right) = r_{d,1}(n) \)
Empirical process method

\[W_1(\mu_n, \nu) - W_1(\mu, \nu) = \sup_{f_n \in \text{Lip}} \int f_n(d\mu_n - d\nu) - \sup_{f \in \text{Lip}} \int f(d\mu - d\nu) \]

\[\leq \sup_{f \in \text{Lip}} \left(\int f(d\mu_n - d\nu) - \int f(d\mu - d\nu) \right) \]

\[= \sup_{f \in \text{Lip}} \int f(d\mu_n - d\mu) = W_1(\mu_n, \mu) \]

Taking sup over Lip([0,1]^d) yields

\[\inf_{\delta > 0} \left(\delta + n^{-1/2} \int_{\delta}^{1} e^{-d/2} d\epsilon \right) = r_{d,1}(n) \]
Empirical process method

\[W_1(\mu_n, \nu) - W_1(\mu, \nu) = \sup_{f_n \in \text{Lip}} \int f_n(d\mu_n - d\nu) - \sup_{f \in \text{Lip}} \int f(d\mu - d\nu) \leq \sup_{f \in \text{Lip}} \left(\int f(d\mu_n - d\nu) - \int f(d\mu - d\nu) \right) \]

\[= \sup_{f \in \text{Lip}} \int f(d\mu_n - d\mu) \]
Empirical process method

\[W_1(\mu_n, \nu) - W_1(\mu, \nu) = \sup_{f_n \in \text{Lip}} \int f_n(d\mu_n - d\nu) - \sup_{f \in \text{Lip}} \int f(d\mu - d\nu) \]

\[\leq \sup_{f \in \text{Lip}} \left(\int f(d\mu_n - d\nu) - \int f(d\mu - d\nu) \right) \]

\[= \sup_{f \in \text{Lip}} \int f(d\mu_n - d\mu) \]

Idea: if \(\nu \) is low-dimensional, we can guarantee sup lies in \(\mathcal{F} \subseteq \text{Lip} \)
Empirical process method

$$W_1(\mu_n, \nu) - W_1(\mu, \nu) = \sup_{f_n \in \mathcal{F}} \int f_n(d\mu_n - d\nu) - \sup_{f \in \mathcal{F}} \int f(d\mu - d\nu)$$

$$\leq \sup_{f \in \mathcal{F}} \left(\int f(d\mu_n - d\nu) - \int f(d\mu - d\nu) \right)$$

$$= \sup_{f \in \mathcal{F}} \int f(d\mu_n - d\mu) \ll W_1(\mu_n, \mu)$$

What is \mathcal{F}?
Lipschitz extension

Let \(S = \text{supp}(\nu) \). Consider specifying \(f \in \text{Lip} \) by first choosing \(f|_S \).

\[
W_1(\rho, \nu) = \sup_{f \in \text{Lip}} \int f(d\rho - d\nu) = \sup_{g \in \text{Lip}(S)} \sup_{f \in \text{Lip}, f|_S = g} \int f(d\rho - d\nu)
\]

\[
= \sup_{g \in \text{Lip}(S)} \sup_{f \in \text{Lip}, f|_S = g} \left(\int f d\rho - \int g d\nu \right)
\]
Lipschitz extension

Let \(S = \text{supp}(\nu) \). Consider specifying \(f \in \text{Lip} \) by first choosing \(f|_S \).

\[
W_1(\rho, \nu) = \sup_{f \in \text{Lip}} \int f(d\rho - d\nu) = \sup_{g \in \text{Lip}(S)} \sup_{f \in \text{Lip}, f|_S = g} \int f(d\rho - d\nu) \\
= \sup_{g \in \text{Lip}(S)} \sup_{f \in \text{Lip}, f|_S = g} \int f d\rho - \int g d\nu
\]

Given \(g \in \text{Lip}(S) \), let \(\bar{g} \in \text{Lip} \) be largest Lipschitz function with \(\bar{g}|_S = g \).
Lipschitz extension

Let $S = \text{supp}(\nu)$. Consider specifying $f \in \text{Lip}$ by first choosing $f|_S$.

$$W_1(\rho, \nu) = \sup_{f \in \text{Lip}} \int f(d\rho - d\nu) = \sup_{g \in \text{Lip}(S) \forall f \in \text{Lip}, f|_S = g} \int f(d\rho - d\nu)$$

$$= \sup_{g \in \text{Lip}(S) \forall f \in \text{Lip}, f|_S = g} \int f d\rho - \int g d\nu$$

Given $g \in \text{Lip}(S)$, let $\tilde{g} \in \text{Lip}$ be largest Lipschitz function with $\tilde{g}|_S = g$.

$$= \sup_{g \in \text{Lip}(S)} \int \tilde{g} d\rho - \int g d\nu$$
Lipschitz extension

\[W_1(\mu_n, \nu) - W_1(\mu, \nu) = \sup_{g \in \text{Lip}(S)} \int \bar{g} \, d\mu_n - \int g \, d\nu - \sup_{g \in \text{Lip}(S)} \int \bar{g} \, d\mu - \int g \, d\nu \]

\[\leq \sup_{g \in \text{Lip}(S)} \left(\int \bar{g} \, d\mu_n - \int g \, d\nu - \int \bar{g} \, d\mu + \int g \, d\nu \right) \]

\[= \sup_{g \in \text{Lip}(S)} \int \bar{g} (d\mu_n - d\mu) \]

Fact: \(\mathcal{F} := \{ f : f = \bar{g}, g \in \text{Lip}(S) \} \) is much smaller than Lip. If \(d_{\text{M}}(S) < k < d \),

\[\log N_{\epsilon}(\mathcal{F}) \lesssim e^{-k} \ll e^{-d} = \log N_{\epsilon}(\text{Lip}) \]
Empirical process method

Benefits: easy to exploit $\mu \neq \nu$, partial extension to W_p for $p > 1$ via "c-concavity", easiest path to tail bounds on W_p^p [Weed & Bach ‘19], doorway to distributional limits [Hundrieser et al. ‘22b]

Challenges: primal interpretation less clear, fails to capture correct rate very near null, difficult to extend to unbounded setting [Manole & Niles-Weed ‘21]

Unified interpretation: [Sommerfeld et al. ‘19] transportation method is an empirical process method with tree-metric approximation of $\| \cdot \|_p$.
Optimality?

Is rate $r_{d,p}(n)$ optimal?

Yes, in two senses:

1. Examples where $\mathbb{E} W_p(\mu_n, \mu) \gtrsim n^{-1/2p}$ and $\mathbb{E} W_p(\mu_n, \mu) \gtrsim n^{-1/d}$

2. Minimax lower bound [Singh & Póczos '18]

$$\inf_{\hat{\mu}} \sup_{\mu \in \mathcal{P}([0,1]^d)} \mathbb{E} W_p(\hat{\mu}(X_1, \ldots, X_n), \mu) \gtrsim \max \{ n^{-1/d}, n^{-1/2p} \}$$
Optimality?

Minimax estimator implies that empirical measure μ_n is essentially the best possible estimate of μ in W_p without further assumptions.

But: improvements possible when we assume μ has smooth density.
Smooth densities

Idea: if μ is smooth, should use a smoother estimator $\hat{\mu}$

Example: [Liang ’17, Singh et al. ’18] If the density of μ lies in Sobolev space H^s, then an orthogonal series estimator $\hat{\mu}$ achieves

$$\mathbb{E} W_1(\mu, \hat{\mu}) \lesssim \begin{cases} n^{-\frac{1+s}{d+2s}} & d \geq 3 \\ n^{-1/2} \sqrt{\log n} & d = 2 \\ n^{-1/2} & d = 1 \end{cases}$$

Proof: Refined duality method
Orthogonal series estimators

Fix an orthogonal basis of L^2. E.g., for densities on $[0,1]^d$ (actually, torus), **Fourier basis:**

$$\phi_z(x) = e^{2\pi i \langle z, x \rangle} \quad z \in \mathbb{Z}^d$$

Write $\mu(x) = \sum_{z \in \mathbb{Z}^d} \beta_z \phi_z(x)$. Then $\mu \in H^s \iff \sum_{z \in \mathbb{Z}^d} |z|^{2s} |\beta_z|^2 < \infty$.

Important fact: $\hat{\beta}_z = \frac{1}{n} \sum_{i=1}^n \phi_z(X_i)$ is unbiased estimator of β_z.
Fix a threshold M. The orthogonal series estimator is

$$ \hat{\mu} := \sum_{z \in \mathbb{Z}^d, |z| \leq M} \hat{\beta}_z \phi_z $$

Then

$$ \mu(x) - \hat{\mu}(x) = \sum_{|z| \leq M} (\beta_z - \hat{\beta}_z) \phi_z(x) + \sum_{|z| > M} \beta_z \phi_z(x) $$

$O(M^d)$ terms of size $O(n^{-1/2})$

L^2 norm at most M^{-s}
If $f \in \text{Lip}([0,1]^d)$, then $f(x) = \sum_z \alpha_z(f) \phi_z(x)$ with $\left(\sum_z |z|^2 |\alpha_z(f)|^2 \right)^{1/2} \lesssim 1$.

\[
W_1(\mu, \hat{\mu}) = \sup_{f \in \text{Lip}} \int f(x)(\mu(x) - \hat{\mu}(x))dx
\]

\[
= \sup_{f \in \text{Lip}} \int \left(\sum_z \alpha_z(f) \phi_z(x) \right) \left(\sum_{|z| \leq M} (\beta_z - \hat{\beta}_z) \phi_z(x) + \sum_{|z| > M} \beta_z \phi_z(x) \right) dx
\]

\[
= \sup_{f \in \text{Lip}} \sum_{|z| \leq M} \alpha_z(f)(\beta_z - \hat{\beta}_z) + \sum_{|z| > M} \alpha_z(f)\beta_z
\]

\[
\lesssim \left(\sum_{|z| \leq M} |z|^{-2} |\beta_z - \hat{\beta}_z|^2 \right)^{1/2} + \left(\sum_{|z| > M} |z|^{-2} |\beta_z|^2 \right)^{1/2}
\]
W_1 bounds

$$W_1(\mu, \hat{\mu}) \lesssim \left(\sum_{|z| \leq M} |z|^{-2} |\beta_z - \hat{\beta}_z|^2 \right)^{1/2} + \left(\sum_{|z| > M} |z|^{-2} |\beta_z|^2 \right)^{1/2}$$

Second term bounded by $M^{-(s+1)}$

First term of order $n^{-1/2} \left(\sum_{|z| \leq M} |z|^{-2} \right)^{1/2} \approx n^{-1/2} \left(\sum_{1 \leq r \leq M} r^{-2} \cdot r^{d-1} \right)^{1/2}$

$$\lesssim n^{-1/2} \begin{cases} 1 & d = 1 \\ \sqrt{\log M} & d = 2 \\ M^{d/2-1} & d \geq 3 \end{cases}$$
Message:

- chose truncation to balance estimation & approximation error
- again, small scales dominate in high dimension, large scales in low
- $W_1(\mu, \hat{\mu})$ is small because $\|\mu - \hat{\mu}\|$ is small
- similar bound achievable via transportation method (worse log)

Surprisingly, this method does not work to get optimal rate for W_p.!
Consider $\mu \in \mathcal{P}([0,1]^d)$ with densities in Hölder class C^s

Subset of densities **bounded below**: $C^s(L; m) = C^s(L) \cap \{f : f \geq m\}$

Theorem: [Niles-Weed & Berthet '22] For any $p \geq 1$, $s \geq 0$, there exists estimator \hat{f} satisfying

$$\sup_{f \in \mathcal{C}^s(L;m)} \mathbb{E} W_p(f, \hat{f}) \lesssim \begin{cases} n^{-1+s \over d+2s} & d \geq 3 \\ n^{-1/2} \log n & d = 2 \\ n^{-1/2} & d = 1 \end{cases}$$

Matches $p = 1$ result up to logarithm.
Consider $\mu \in \mathcal{P}([0,1]^d)$ with densities in Hölder class C^s

Subset of densities **bounded below**: $C^s(L; m) = C^s(L) \cap \{f : f \geq m\}$

Theorem: [Niles-Weed & Berthet '22] For any $p \geq 1$, $s \geq 0$, there exists estimator \hat{f} satisfying

$$\sup_{f \in C^s(L; m)} \mathbb{E} W_p(f, \hat{f}) \lesssim \begin{cases}
 n^{-\frac{1+s}{d+2s}} & d \geq 3 \\
 n^{-1/2} \log n & d = 2 \\
 n^{-1/2} & d = 1
\end{cases}$$

Matches $p = 1$ result up to logarithm.
Consider $\mu \in \mathcal{P}([0,1]^d)$ with densities in Hölder class C^s

Subset of densities **bounded below**: $C^s(L; m) = C^s(L) \cap \{f : f \geq m\}$

Theorem: [Niles-Weed & Berthet ’22] For any $p \geq 1$, $s \geq 0$, there exists estimator \hat{f} satisfying

\[
\sup_{f \in C^s(L;m)} \mathbb{E} W_p(f, \hat{f}) \lesssim m^{-1/p'} \begin{cases}
 n^{-\frac{1+s}{d+2s}} & d \geq 3 \\
 n^{-1/2} \log n & d = 2 \\
 n^{-1/2} & d = 1
\end{cases}
\]

Matches $p = 1$ result up to logarithm.
W_p bounds

Theorem: [Niles-Weed & Berthet ’22] For any $p \geq 1$, $s \in [0,1)$,

$$\sup_{f \in C^s(L)} \mathbb{E} W_p(f, \hat{\mu}) \lesssim \begin{cases}
 n^{-1 + s/p} & d - s > 2p \\
 n^{-1/2p} \log n & d - s = 2p \\
 n^{-1/2p} & d - s < 2p
\end{cases}$$

Remarks:
- strictly worse than rate for $m > 0$ for all $p > 1$, $s > 0$
- elbow depending on p reappears
- both rates minimax optimal
Why different rates?

Intuition:

when density is bounded below, W_p is “norm-like”

when density is not bounded below, W_p^p is “norm-like”
f _______
\(\varepsilon \)
\[\varepsilon \]
\[W_p^p = \int \|x - y\|^p \, d\pi(x, y) \approx \varepsilon \cdot 1^p = \varepsilon \]
\(\varepsilon \)
\[W_p^p = \int \|x - y\|^p \, d\pi(x, y) \approx \varepsilon^p \cdot 1 = \varepsilon^p \]
$$W_p^p \asymp \|f - g\|$$

$$W_p \asymp \|f - g\|$$
Proof technique

Main tool: refined continuous transportation method, exploiting dynamic characterization of $W_p + \text{wavelet}$ decomposition.

Theorem: [Benamou & Brenier, ‘00]

$$W_p^p(\mu, \nu) = \inf_{\rho, E_t} \int_0^1 \int_0^1 \| v_t \|^p d\rho_t dt$$

such that $\rho_0 = \mu, \rho_1 = \nu$ and $\partial_t \rho_t + \nabla \cdot (v_t \rho_t) = 0$ (continuity eq).

Transport comes from dynamics $X_0 \sim \mu, \dot{X}_t = v_t(X_t)$.
Estimating Wasserstein distances, III

Jonathan Niles-Weed
Center for Data Science and Courant Institute, NYU
Estimation of the Wasserstein distance is generally slow in high dimensions, unless very strong assumptions are made.

Questions:

• Are other distances better?

• Does it matter?
Other distances?

We will survey some proposals for modifications of Wasserstein distance, and show why they can be estimated more easily than W_p.

Benefits and drawbacks compared to W_p.

Main theme: inherent tension between ease of estimation and discriminative power.
Discriminative power

A blessing and curse of Wasserstein distances is that they are strong: if $W_p(\mu, \nu)$ small, then μ and ν are very similar.

Formalization: [Weaver, ’18; Bing et al., ’22] W_1 is largest (most discriminative) jointly convex metric on $\mathcal{P}(\mathbb{R}^d)$ satisfying $W_1(\delta_x, \delta_y) = \|x - y\|$. Modifications of the Wasserstein distance with better statistical properties are necessarily less sensitive. (Possibly this is good!)
Entropic regularization

Blockbuster idea with many computational benefits. [Cuturi, ’13; Peyré & Cuturi ’19]

Gives rise to entropic OT cost:

\[
OT_\epsilon(\mu, \nu) = \inf_{\pi \in \Pi(\mu, \nu)} \int \|x - y\|^2 d\pi(x, y) + \epsilon D(\pi \| \mu \otimes \nu)
\]

and Sinkhorn divergence [Genevay et al., ’18; Feydy et al. ’19]:

\[
S_\epsilon(\mu, \nu) = OT_\epsilon(\mu, \nu) - \frac{1}{2}(OT_\epsilon(\mu, \mu) + OT_\epsilon(\nu, \nu))
\]

\((S_\epsilon(\mu, \nu) = 0 \iff \mu = \nu)\)
Entropic regularization

Empirical estimation is substantially easier with entropic regularization!

Theorem: [Genevay et al., ’19; Mena & Niles-Weed, ’19; Rigollet & Stromme, ’22; del Barrio et al., ’22] If μ and ν have compact support, then

\[
\mathbb{E} \left| OT_\epsilon(\mu_n, \nu) - OT_\epsilon(\mu, \nu) \right| \lesssim n^{-1/2}
\]

\[
\left| \mathbb{E} OT_\epsilon(\mu_n, \nu) - OT_\epsilon(\mu, \nu) \right| \lesssim n^{-1}
\]

\[
\mathbb{E} S_\epsilon(\mu_n, \mu) \lesssim n^{-1}
\]

Constant depends very poorly on ϵ. Proof: empirical process method.
Entropic regularization

Empirical estimation is substantially easier with entropic regularization!

Downside: From theory perspective, statistical benefits only visible when ϵ is large—in which case optimal coupling is very blurry.

(Heuristic: minimizing entropic OT cost corresponds to deconvolution problem with Gaussian of variance ϵI. [Rigollet & Weed, ’18])
Gaussian-smoothed Wasserstein

Given $t > 0$, define $W_p^{(t)}(\mu, \nu) = W_p(\mu \ast \rho_t, \nu \ast \rho_t)$

Common trick in analysis: compared with μ, the convolved measure has bounded, smooth density, nice characteristic function, ...

Investigated by [Weed ‘18; Goldfeld et al., ‘20; Goldfeld & Greenewald ‘20; Zhang et al., ‘21]. $W_p^{(t)}$ is a metric, recovers W_p in $t \to 0$ limit.
Gaussian-smoothed Wasserstein

Theorem [Goldfeld et al., ’20]: If μ is compactly supported and $p \leq 2$, then

$$\mathbb{E} W_p(t)(\mu, \mu_n) \lesssim n^{-1/2}$$

Proof idea: use that $\mu * \rho_t$ enjoys log-Sobolev inequality, which implies

$$W_2^2(\mu * \rho_t, \mu_n * \rho_t) \lesssim D(\mu_n * \rho_t \| \mu * \rho_t)$$
Gaussian-smoothed Wasserstein

Theorem [Goldfeld et al., ’20]: If μ is compactly supported and $p \leq 2$, then

$$\mathbb{E}W_p^{(t)}(\mu, \mu_n) \lesssim n^{-1/2}$$

Downside: No free lunch (implicit constant is exponential in d), not computationally feasible in high dimensions, no coupling
Integral probability metrics

Original “Wasserstein GAN” [Arjovsky et al., ‘17] consists of two neural nets: a generator \(f_G\) and discriminator \(f_D\), trained with the objective,

\[
\min_{f_G \in \mathcal{G}} \max_{f_D \in \mathcal{D}} \int f_D(x) d\mu(x) - \int f_D(f_G(z)) d\rho(z)
\]

where \(\rho\) is a “base” measure, e.g., \(\mathcal{N}(0, I)\). Enforce \(\mathcal{D} \approx \text{Lip}\) by “weight clipping”, so that GAN minimizes \(W_1(\mu, (f_G)_#\rho)\).

Observations: [Arora et al., ‘17]
1. Need a lot of data in high dimensions (“fail to generalize”)
2. But for real neural nets, \(\mathcal{D}\) is much smaller than \(\text{Lip}\)!
Integral probability metrics

Slow convergence of W_1 because $\log N_\epsilon(\text{Lip}) \approx \epsilon^{-d}$.

But if \mathcal{D} consists of neural networks with p parameters, then under sufficient regularity assumptions $\log N_\epsilon(\mathcal{D}) \approx p \log \epsilon^{-1}$.

Benefits in high dimensions: if $d_{\mathcal{D}}(\mu, \nu) = \sup_{f_d \in \mathcal{D}} \int f_d(d\mu - d\nu)$,

$$\mathbb{E}d_{\mathcal{D}}(\mu, \mu_n) \approx \sqrt{p/n} \ll \mathbb{E}W_1(\mu, \mu_n) \approx n^{-1/d}$$

(Still hopeless: StyleGAN3 [Karras et al., ’21] has 20m parameters.)
More generally, an integral probability metric [Müller, ’97] is any (pseudo)metric of the form

\[d_{\mathcal{F}}(\mu, \nu) = \sup_{f \in \mathcal{F}} \int f(d\mu - d\nu) \]

Smaller \(\mathcal{F} \): less discriminative, but fewer samples to estimate

E.g., in maximum mean discrepancy (MMD) [Gretton et al., ’06], \(\mathcal{F} \) is unit ball in RKHS \(H \), for which \(\log N_\varepsilon(\mathcal{F}) \leq C_H \log \varepsilon^{-1} \).

Downsides: not usually computationally efficient, no coupling
Sliced Wasserstein distances

“Low-dimensional” variant of W_1, proposed for computational reasons [Rabin et al., ‘11]

$$\text{SW}_1(\mu, \nu) = \int W_1(\mu_\theta, \nu_\theta) d\sigma(\theta)$$

projection to span(θ)

uniform distribution on \mathbb{S}_{d-1}

Inherits $n^{-1/2}$ rate from the $d = 1$ case. [Nadjahi et al., ‘20]

Other variants based on different ways of aggregating $W_1(\mu_\theta, \nu_\theta)$. [Xi & Niles-Weed, ‘22]
Sliced Wasserstein distances

Downsides: Extremely weak in high dimensions [Huber, ’85]

\[V_{j+1} = 65539 \cdot V_j \pmod{2^{31}} \]
Sliced Wasserstein distances

Downsides: Extremely weak in high dimensions [Huber, '85]

\[V_{j+1} = 65539 \cdot V_j \pmod{2^{31}} \]
Does it matter?

Cuturi: "distances matter less than couplings and gradients"

Poor estimates of $W_p(\mu, \nu)$ can still contain useful information! [Korotin et al., '22]

synthetic $d = 2^{12}$ dimensional benchmark data set
Does it matter?

Trained 10 standard neural network-based W_1 discriminators
Does it matter?

Trained 10 standard neural network-based W_1 discriminators

<table>
<thead>
<tr>
<th>N\Solver</th>
<th>WC</th>
<th>GP</th>
<th>LP</th>
<th>SN</th>
<th>LS</th>
<th>MM:B</th>
<th>MM:Bv2</th>
<th>MM</th>
<th>MM:R</th>
<th>DOT</th>
<th>True</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\gg 100$</td>
<td>212.07</td>
<td>211.62</td>
<td>178.77</td>
<td>33.22</td>
<td>15.17</td>
<td>86.06</td>
<td>$\gg 100$</td>
<td>37.92</td>
<td>66.03</td>
<td>58.24</td>
</tr>
<tr>
<td>16</td>
<td>$\gg 100$</td>
<td>64.38</td>
<td>66.01</td>
<td>78.77</td>
<td>3.15</td>
<td>2.60</td>
<td>51.05</td>
<td>$\gg 100$</td>
<td>41.24</td>
<td>53.54</td>
<td>29.78</td>
</tr>
</tbody>
</table>

\hat{W}_1 versus W_1
Does it matter?

Trained 10 standard neural network-based W_1 discriminators

<table>
<thead>
<tr>
<th>Solver</th>
<th>WC</th>
<th>GP</th>
<th>LP</th>
<th>SN</th>
<th>LS</th>
<th>MM:B</th>
<th>MM:Bv2</th>
<th>MM</th>
<th>MM:R</th>
<th>DOT</th>
<th>True</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>212.07</td>
<td>211.62</td>
<td>178.77</td>
<td>33.22</td>
<td>15.17</td>
<td>86.06</td>
<td>\gg100</td>
<td>\gg100</td>
<td>37.92</td>
<td>66.03</td>
</tr>
<tr>
<td>16</td>
<td>\gg100</td>
<td>64.38</td>
<td>66.01</td>
<td>78.77</td>
<td>3.15</td>
<td>2.60</td>
<td>51.05</td>
<td>\gg100</td>
<td>\gg100</td>
<td>41.24</td>
<td>53.54</td>
</tr>
</tbody>
</table>

\widehat{W}_1 versus W_1

<table>
<thead>
<tr>
<th>Solver</th>
<th>WC</th>
<th>GP</th>
<th>LP</th>
<th>SN</th>
<th>LS</th>
<th>MM:B</th>
<th>MM:Bv2</th>
<th>MM</th>
<th>MM:R</th>
<th>DOT</th>
<th>True</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.35</td>
<td>0.86</td>
<td>0.95</td>
<td>0.36</td>
<td>0.43</td>
<td>0.43</td>
<td>0.32</td>
<td>0.01</td>
<td>0.97</td>
<td>0.64</td>
<td>1.00</td>
</tr>
<tr>
<td>16</td>
<td>0.48</td>
<td>0.92</td>
<td>0.92</td>
<td>0.42</td>
<td>0.11</td>
<td>0.14</td>
<td>0.01</td>
<td>0.20</td>
<td>0.92</td>
<td>0.25</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Correlation between $\nabla \widehat{W}_1$ and ∇W_1
Does it matter?

More broadly, what works best for actual applications? [Korotin et al., ’21]

discrepancy, we further test the solvers in a setting of image generation. Our study reveals crucial limitations of existing solvers and shows that increased OT accuracy does not necessarily correlate to better results downstream.
Moral?

Existing statistical results are precise and mostly tight, but fail to capture important phenomena visible in practice.

Positive spin: much more to do!
References, I

- Arora, Ge, Liang, Ma, Zhang. “Generalization and Equilibrium in Generative Adversarial Nets (GANs),” 2017.
References, II