
 

 

 

 

 

 

 

 

EURANDOM PREPRINT SERIES 

 

2022-002 

March 21, 2022 

 

 

 

Functional equations with multiple recursive terms 

 

                             I.Adan, O.Boxma, J.Resing 

ISSN 1389-2355 



FUNCTIONAL EQUATIONS WITH MULTIPLE RECURSIVE TERMS

IVO ADAN, ONNO BOXMA, AND JACQUES RESING

Abstract. In this paper we study a functional equation for generating functions of the form
f(z) = g(z)

∑M
i=1 pif(αi(z)) + K(z), viz., a recursion with multiple recursive terms. We

derive and analyze the solution of this equation for the case that the αi(z) are commutative
contraction mappings. The results are applied to a wide range of queueing, autoregressive
and branching processes.

1. Introduction

In many applied probability models, in particular in queueing models, the following type
of recursion describes the behavior of a key performance measure:

Xn+1 =

Xn∑
k=1

Yk,n + Zn,

where the involved random variables are nonnegative and integer-valued. Under certain in-
dependence assumptions and ergodicity conditions, this gives rise to the following type of
functional equation for the probability generating function (pgf) f(z) of the steady-state
distribution of the Xn process:

(1) f(z) = g(z)f(α(z)) +K(z).

An example of such a model is a branching process with immigration (BPI). In that case the
function f(z) represents the pgf of the steady-state distribution of the number of individuals
and the function α(z) the pgf of the offspring distribution. If in all states except state 0
the pgf of the immigration distribution is given by g(z) while in the special state 0 the pgf
of the immigration distribution is given by g0(z), then the function f(z) satisfies (1) with
K(z) = f(0) (g0(z)− g(z)). Remark that in the special case that g0(z) = g(z), we have that
K(z) = 0.

The solution of (1) is given by an expression containing an infinite product and an infinite
sum (see equation (13) later on in this paper) which is obtained after iteration of equation
(1). Branching processes with immigration appear for example in the analysis of the M/G/1
queue with (single or multiple) gated vacations (see Takagi [18], section 2.5 of Chapter 2),
the M/G/1 queue with permanent customers (see Boxma and Cohen [3]) and, a multi-type
variant, in the analysis of polling systems (see Resing [15]).

In the case that the branching process with immigration evolves in an i.i.d. random envi-
ronment (BPIRE) in which the environment can be in M different states, the corresponding
functional equation is of the form

(2) f(z) = g(z)
M∑
i=1

pif(αi(z)) +K(z),

1
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where pi is the probability that the environment is in state i and αi(z) is the pgf of the
offspring distribution when the environment is in state i, i = 1, 2, . . . ,M .

In this paper we obtain the solution of functional equation (2) in the particular case that
the functions α1(z), . . . , αM (z) are commutative contraction mappings on the closed unit disk.
Although (2) with multiple recursive terms is a natural extension of (1) with only a single
recursive term, it is hardly studied in the queueing literature, probably because the number
of different terms after the n-th iteration of (2) grows exponentially. That is also the reason
why in this paper we restrict ourselves to the case in which the functions α1(z), . . . , αM (z)
are commutative.

In Adan, Hathaway and Kulkarni [1] a specific example of (2) was analysed in detail in
the study of a queueing system with two classes of impatient customers. The main goal of
the present paper is to give a general treatment of Equation (2) and to show how in the
commutative case the growth of the number of iteration terms can be handled. An additional
aim is to treat several queueing and branching-type examples in which (2) appears, also
allowing complications like the occurrence of a pole in g(z) and K(z).

Organization of the paper. In Section 2 we solve the recursion (2), both for the homoge-
neous case where K(z) ≡ 0 (Subsection 2.1) and for the inhomogeneous case (Subsection 2.2).
The results are applied in the subsequent sections. We start, in Section 3, with a particular
queueing model. Its choice is motivated by the fact that it provides a relatively simple illus-
tration of the theory for the homogeneous case, while still having a few features that deviate
from the setting of Section 2. Section 4 considers a special case of the branching process with
immigration in a random environment, also called random coefficient integer-valued autore-
gressive process of order 1, in which the offspring of an individual in each environmental state
can only be equal to 0 or 1. In Section 5 we consider an integer-valued reflected autoregressive
process, which may be viewed as a generalization of an embededded queue length process in
the M/G/1 queue. Section 6 is devoted to another reflected autoregressive process, this time
on [0,∞). Some topics for further research are mentioned in Section 7.

2. The recursion

In this section we study recursion (2) for the generating function f(z) of a non-negative dis-
crete random variable X with E[X] <∞, where g(z) and K(z) are analytic functions (and not
necessarily generating functions), p1, . . . , pM is a probability distribution, and α1(z), . . . , αM (z)
are commutative contraction mappings on the closed unit disk, i.e., there is a constant κ < 1
such that |αi(z)−αi(u)| ≤ κ|z− u| and αi(αj(z)) = αj(αi(z)) for each i and j. For example,
the mappings αi(z) = 1− ai + aiz with |ai| < 1 are contractions with κ = max(a1, . . . , aM ),
and they commute, since

αi(αj(z)) = 1− aiaj + aiajz = αj(αi(z)).

Note that the commutative property implies that the contractions αi(z) have the same fixed
point a. In the example above, we have a = 1. Equation (2) is suitable to iteratively determine
f(z). We distinguish between the following two cases.

2.1. The homogeneous case K(z) = 0. After n iterations of the homogeneous equation

(3) f(z) = g(z)
M∑
i=1

pif(αi(z)),
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we obtain

(4) f(z) =
∑

i1+···+iM=n+1

pi11 . . . p
iM
M Li1,...,iM (z)f(αi1,...,iM (z)),

where αi1,...,iM (z) = αi11 (αi22 (· · · (αiMM (z)) · · · )) and αni (z) is defined as the n-th iterate of αi(z).
In particular, α0,...,0(z) = z. The functions Li1,...,iM (z) are recursively defined by

(5) Li1,...,iM (z) =
M∑
k=1

g(αi1,...,ik−1,...iM (z))Li1,...,ik−1,...,iM (z),

with L0,...,0(z) = 1 and Li1,...,iM (z) = 0 if one of the indices equals −1. These functions
can be interpreted as follows. A path from (0, . . . , 0) to (i1, . . . , iM ) is defined as a sequence
of grid points that starts in (0, . . . , 0) and ends in (i1, . . . , iM ) by only taking unit steps
(0, . . . , 1, . . . , 0) with 1 at position k = 1, . . . ,M . Figure 1 shows a path from (0, 0) to (3, 2).

Clearly, there are
(
i1+···+iM
i1,...,iM

)
paths leading from (0, . . . , 0) to (i1, . . . , iM ). Now assign weight

g(αi1,...,ik−1,...iM (z)) to a step from any grid point (i1, . . . , ik − 1, . . . , iM ) to (i1, . . . , iM ) and
define the weight of a path as the product of weights of all steps in that path (cf. Figure 1).

Then Li1,...,iM (z) can be interpreted as the total weight of all
(
i1+···+iM
i1,...,iM

)
paths from (0, . . . , 0)

to (i1, . . . , iM ).

i2

i11

1

2

g(α0,0(z)) 2 3

g(α1,0(z))

g(α1,1(z)) g(α2,1(z))

g(α3,1(z))

Figure 1. Path from (0, 0) to (3, 2) consisting of the sequence of grid points
(0, 0), (1, 0), (1, 1), (2, 1), (3, 1), (3, 2). Its path weight is the product of the step
weights g(α0,0(z))g(α1,0(z))g(α1,1(z))g(α2,1(z))g(α3,1(z)).

To handle (4) we proceed as follows. Note that, when i1 + · · ·+ iM = n,

(6) |αi1,...,iM (z)− a| ≤ κn|z − a|,
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and hence,

|f(αi1,...,iM (z))− f(a)| = |
∫ a

αi1,...,iM
(z)
f ′(u)du|(7)

≤ |αi1,...,iM (z)− a| × max
[αi1,...,iM

(z),a]
|f ′(u)|

≤ |αi1,...,iM (z)− a|E[X]

≤ κn|z − a|E[X],

where the integral is along the segment connecting αi1,...,iM (z) with a. Next we rewrite (4)
as follows

f(z) =
∑

i1+···+iM=n+1

pi11 . . . p
iM
M Li1,...,iM (z)f(a)(8)

+
∑

i1+···+iM=n+1

pi11 . . . p
iM
M Li1,...,iM (z)(f(αi1,...,iM (z))− f(a)).

For given z, the second term in the right-hand side of (8) converges to zero for n→∞. This
can be seen as follows. By substituting z = a in (3) we get g(a) = 1. Hence, from (6), step
weight g(αi1,...,iM (z)) with i1 + · · · + iM = n is close to g(a) = 1 for all n sufficiently large,
say |g(αi1,...,iM (z)) − 1| < ε < κ−1 − 1. In other words, the weight of sufficiently long paths
grows at most with 1+ ε per step. So there is a constant C such that for all n, the weight of a
path from (0, . . . , 0) to (i1, . . . , iM ) with i1 + · · ·+ iM = n is bounded by C(1 + ε)n, implying

that Li1,...,iM (z) is bounded by
(
i1+···+iM
i1,...,iM

)
C(1+ ε)n. Then, from (7), we can conclude that the

second term in (8) is bounded by C(1 + ε)n+1κn+1|z− a|E[X], which goes to zero for n→∞.
We have thus proven the following theorem.

Theorem 1. (Homogeneous case) The generating function f(z) is given by

(9) f(z) = lim
n→∞

∑
i1+···+iM=n+1

pi11 . . . p
iM
M Li1,...,iM (z)f(a).

Remark 1. The unknown f(a) follows by substituting z = 1 in (9) and using f(1) = 1. This
gives

f(a)−1 = lim
n→∞

∑
i1+···+iM=n+1

pi11 . . . p
iM
M Li1,...,iM (1).

Remark 2. The first term in the right-hand side of (8) is a sum of
(
M+n
M−1

)
terms. This

number is O(nM−1), which grows quickly (polynomially) in n for already moderate values of
M . However, this is not as quickly as in the non-commutative case, in which case we would
have Mn+1 terms, growing exponentially in n.

Remark 3. Above we have seen that the second term in the right-hand side of (8) converges
to zero geometrically fast (with rate (1 + ε)κ). Hence, the first term in the right-hand side of
(8) will provide an accurate approximation for f(z) already for small values of n.
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2.2. The inhomogeneous case K(z) 6= 0. We now consider inhomogeneous Equation (2)
and obtain after n iterations,

f(z) =
∑

i1+···+iM=n+1

pi11 . . . p
iM
M Li1,...,iM (z)f(αi1,...,iM (z))(10)

+

n∑
k=0

∑
i1+···+iM=k

pi11 . . . p
iM
M Li1,...,iM (z)K(αi1,...,iM (z)).

The first term of (10) is the same as in the homogeneous case. For given z, we proved
that it converges if g(a) = 1. For convergence of the second term we need that either

K(αi1,...,iM (z))→ 0 (Case 1) or pi11 . . . p
iM
M Li1,...,iM (z)→ 0 (Case 2) as i1 + · · ·+ iM →∞. In

this subsection we successively consider both cases.
Case 1. Since K(αi1,...,iM (z))→ K(a), in this case we basically assume that K(a) = 0. Note
that, by substituting z = a in (2), this assumption implies that g(a) = 1 if f(a) 6= 0, and
thus that the first term in (10) converges. We now show that it also implies convergence of
the second term. Similar to (7), we have for i1 + · · ·+ iM = n,

(11) |K(αi1,...,iM (z))| = |K(αi1,...,iM (z))−K(a)| ≤ κn|z − a|D,
where D is the maximum value of |K ′(u)| in the closed disk with center a and radius |z − a|
(intersected with the closed unit disk). Then the k-th term in the double sum appearing in
(10) is bounded by C(1 + ε)kκk|z − a|D, and hence, the double sum converges for n → ∞.
We conclude that the following holds.

Theorem 2. (Inhomogeneous case) Provided K(a) = 0 and f(a) 6= 0, the generating function
f(z) is given by

f(z) = lim
n→∞

∑
i1+···+iM=n+1

pi11 . . . p
iM
M Li1,...,iM (z)f(a)(12)

+

∞∑
k=0

∑
i1+···+iM=k

pi11 . . . p
iM
M Li1,...,iM (z)K(αi1,...,iM (z)).

Remark 4. In case M = 1, Equation (2) becomes

f(z) = g(z)f(α1(z)) +K(z),

yielding

(13) f(z) =

∞∏
n=0

g(αn(z))f(a) +
∞∑
k=0

k−1∏
n=0

g(αn(z))K(αk(z)).

The infinite product
∏∞
n=0 g(αn(z)) converges iff

∑∞
n=0(1− g(αn(z)) converges (cf. Chapter I

of [19]). Since g(αn(z)) and K(αk(z)) converge geometrically fast to g(a) = 1 and K(a) = 0,
respectively (cf. (11)), we conclude that both the infinite product and the infinite sum of
products in (13) converge.

Case 2. We now assume that pi11 . . . p
iM
M Li1,...,iM (z) → 0 and show that the assumption

|g(a)| < 1 is sufficient for convergence of this term to zero. For all n sufficiently large, step
weight g(αi1,...,iM (z)) with i1 + · · · + iM = n is close to g(a), say |g(αi1,...,iM (z)) − g(a)| < ε
with |g(a)|+ ε < 1. Hence, the weight of sufficiently long paths grows at most with |g(a)|+ ε
per step. So there is a constant C such that for all n, the weight of a path from (0, . . . , 0) to
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(i1, . . . , iM ) with i1 + · · · + iM = n is bounded by C(|g(a)| + ε)n, implying that Li1,...,iM (z)

is bounded by
(
i1+···+iM
i1,...,iM

)
C(|g(a)| + ε)n. Then, indeed, pi11 . . . p

iM
M Li1,...,iM (z) → 0 as n → ∞.

Further, since K(αi1,...,iM (z)) → K(a), these terms are bounded, say by constant D. Hence,

we can conclude that the k-th term of the double sum in (10) is bounded by C(|g(a)|+ ε)kD,
and thus the double sum converges. The first term in (10) is bounded by C(|g(a)| + ε)n+1

which converges to zero as n→∞. This is summarized in the following theorem.

Theorem 3. (Inhomogeneous case) Provided |g(a)| < 1, the generating function f(z) is given
by

(14) f(z) =
∞∑
k=0

∑
i1+···+iM=k

pi11 . . . p
iM
M Li1,...,iM (z)K(αi1,...,iM (z)).

Remark 5. In this section we studied Equation (2) for a generating function f(z) of a non-
negative discrete random variable X. It is readily seen that Theorems 1-3 are also valid
in case f(z) is the Laplace-Stieltjes transform (LST) of a non-negative continuous random
variable X. Of course, then α1(z, . . . , αM (z)) are assumed to be contraction mappings on the
closed positive half space (instead of the closed unit disk).

3. The DM/G/1 shot-noise queue

In this section we consider the workload at arrival epochs for a specific queue. The analysis
of the LST of the workload gives rise to a simple recursion that has the form (2), in the
homogeneous variant. This section thus provides a relatively simple illustration of our theory
for the homogeneous case – while still having a few features that deviate from the setting of
Section 2. The model under consideration is the DM/G/1 shot-noise queue; we refer to [7]
for a recent survey on shot-noise queueing models. The DM/G/1 shot-noise queue is a single
server queue, in which the successive interarrival times A1, A2, . . . of customers are i.i.d., with
the distribution of a generic interarrival time A being given by

(15) P(A = Ti) = pi, i = 1, . . . ,M.

The service requirements of successive customers B1, B2, . . . are i.i.d. with finite mean, and
with LST β(·); all interarrival times and service times are independent. The special feature of
the model is that the server speed is workload-proportional (shot noise): when the workload
is x, the service speed is rx. Let Xn denote the workload just before the arrival of the nth
customer. It is well known [2] that, in between arrivals, the workload decreases exponentially;
hence

(16) Xn+1 = (Xn +Bn)e−rAn+1 , n = 1, 2, . . . .

It is readily verified that, due to the workload-proportional decrease, the steady-state distri-
bution of the {Xn, n = 1, 2, . . . } process exists. Stability conditions for queueing and storage
models with more general workload-dependent decay have been discussed, a.o., by Cinlar and
Pinsky [11] and Brockwell et al. [10].

Let X denote a random variable with as distribution the steady-state distribution of the
process {Xn, n = 0, 1, . . . }, with LST ξ(·); then

(17) ξ(s) =
M∑
i=1

piβ(ais)ξ(ais),
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with ai := e−rTi , i = 1, . . . ,M . Observe the differences with (3): we are now considering an
LST instead of a generating function, and β(ais) is inside the summation.

Let us first briefly consider the case of the D/G/1 shot-noise queue, i.e., M = 1. In that
case, iterating (17) n times gives, with a = a1:

(18) ξ(s) = β(as)ξ(as) = β(as)β(a2s)ξ(a2s) = ... = ξ(ans)

n∏
i=1

β(ais).

Now observe the following. Firstly, ξ(ans) → ξ(0) = 1 for n → ∞. Secondly, convergence is
geometric, as

(19) |1− ξ(ans)| ≤
∫ ∞
0
|1− e−a

nst|dP(X < t) ≤ ans
∫ ∞
0

tdP(X < t) = ansE[X].

Thirdly,
∏∞
i=1 gi converges iff

∑∞
i=1(1 − gi) converges (cf. Chapter I of [19]); hence the con-

vergence of the product in (18) follows from

(20)

∞∑
i=1

|1− β(ais)| ≤
∞∑
i=1

∫ ∞
0
|1− e−a

ist|dP(B < t) ≤ aisE[B].

We conclude that

(21) ξ(s) =
∞∏
i=1

β(ais).

Some thought will make it clear that the i-th term in this infinite product represents the
contribution to X from an arrival that occurred i arrivals before the present one.

Let us now turn to the general DM/G/1 shot-noise case, cf. (15). After n iterations, (17)
gives (very similarly to the analysis in Subsection 2.1)

(22) ξ(s) =
∑

i1+···+iM=n+1

pi11 . . . p
iM
M Li1,...,iM (s)ξ(ai11 . . . a

iM
M s),

where

(23) Li1,...,iM (s) = β(ai11 . . . a
iM
M s)

M∑
k=1

Li1,...,ik−1,...,iM (s),

(24) L0,0,...,1,0,...,0(s) = β(aks), k = 1, . . . ,M, with 1 on position k.

Notice that an (i1, . . . , iM ) term corresponds to a contribution to the workload (just before
an arrival epoch) from an arrival that occurred i1 + · · ·+ iM arrivals before the present one,
the total interval consisting of ik interarrival times of length Tk, k = 1, . . . ,M , in any of(
i1+···+iM
i1,...,iM

)
orders. It is readily seen that

(25) |Li1,...,iM (s)| ≤
(
i1 + · · ·+ iM
i1, . . . , iM

)
,

and hence the sum in (22) is bounded by one. Furthermore, letting a0 := max(a1, . . . , aM )

and observing that a0 = e−rmin(T1,...,TM ) < 1, it is seen in a similar way as above and as in
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Section 2 that ξ(ai11 . . . a
iM
M s) converges geometrically fast to ξ(0) = 1. Hence, rewriting (22)

as
(26)

ξ(s) =
∑

i1+···+iM=n+1

pi11 . . . p
iM
M Li1,...,iM (s)+

∑
i1+···+iM=n+1

pi11 . . . p
iM
M Li1,...,iM (s)(ξ(ai11 . . . a

iM
M s)−1),

we have the following theorem.

Theorem 4. The LST of the steady-state workload just before arrival epochs in the DM/G/1
shot-noise queue is given by

(27) ξ(s) = lim
n→∞

∑
i1+···+iM=n+1

pi11 . . . p
iM
M Li1,...,iM (s).

Remark 6. One could subsequently derive the steady-state workload LST at an arbitrary
epoch by averaging over one arrival interval, and using a stochastic mean-value theorem.

4. The BPIRE or RCINAR(1) process

In this section we consider a branching process with immigration in a random environment
(BPIRE process, see [14, 16]), also known as random coefficient integer-valued autoregressive
process of order 1 (RCINAR(1) process, see [17, 20]). This process {Xn, n = 0, 1, . . . } is
defined as follows:

(28) Xn+1 =

Xn∑
k=1

Yk,n + Zn,

where the Zn are nonnegative integer-valued random variables with finite mean. The Yk,n are
Bernoulli random variables with parameter ξn, i.e., P(Yk,n = 0) = 1−ξn and P(Yk,n = 1) = ξn;
but we assume the special feature that the ξn are themselves random variables, independent
and identically distributed with P (ξn = ai) = pi, i = 1, . . . ,M . Hence in generation n it holds
with probability pi, i = 1, . . . ,M , for all Yk,n that they are 1 with probability ai and 0 with
probability 1−ai. All Zj and Yk,m are also assumed to be independent. In Subsection 4.1 we
consider the steady-state distribution of the process {Xn, n = 0, 1, . . . } and in Subsection 4.2
we do this for the generalization in which the BPIRE process behaves differently at zero, i.e.,
when Xn = 0 for some n.

4.1. The steady-state case. The generating function, f(z), of the stationary distribution
of the process {Xn, n = 0, 1, . . . } satisfies the recursion

(29) f(z) = g(z)
M∑
i=1

pif(1− ai + aiz),

where g(z) is the pgf of the random variable Zn. Hence, we are in the homogeneous case (3)
with contraction mappings αi(z) = 1 − ai + aiz. In this case, the functions αi1,...,iM (z) =

αi11 (αi22 (· · · (αiMM (z)) · · · )) are given by

(30) αi1,...,iM (z) = 1−
M∏
j=1

a
ij
j (1− z).
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Define the functions Li1,...,iM (z) again recursively by (5) and use that the contraction mappings
αi(z) have fixed point a = 1 in this case, and hence f(a) = f(1) = 1. Theorem 1 now implies
the following theorem.

Theorem 5. The steady-state probability generating function f(z) of the BPIRE process is
given by

(31) f(z) = lim
n→∞

∑
i1+···+iM=n+1

pi11 . . . p
iM
M Li1,...,iM (z).

Remark 7. In the special case that p1 = 1 the recursion becomes

(32) f(z) = g(z)f(1− a1(1− z)),
yielding

(33) f(z) =
∞∏
j=0

g(1− aj1(1− z)).

In the special case that a2 = · · · = aM = 0 the recursion becomes

(34) f(z) = g(z)

[
p1f(1− a1(1− z))) +

M∑
i=2

pif(1)

]
= g(z) [p1f(1− a1(1− z)) + 1− p1] ,

and in this case the solution is given by

(35) f(z) =

∞∑
k=0

(1− p1)pk1
k∏
j=0

g(1− aj1(1− z)).

4.2. Deviating behaviour at zero. In this subsection we assume that the BPIRE process
behaves differently at zero, i.e., when Xn = 0 for some n. In particular we assume that

(36) Xn+1 = Vn when Xn = 0,

with V0, V1, . . . i.i.d. nonnegative integer random variables, with pgf g0(z). Vn is assumed to
be independent of all Yi,m, Zm and Xm, m = 0, 1, . . . , n. It is readily seen that the steady
state pgf f(z) in this case satisfies the recursion

(37) f(z) = g(z)
M∑
i=1

pif(1− ai + aiz) + f(0)[g0(z)− g(z)].

Hence we are in the inhomogeneous case of Equation (2) with K(z) := f(0)[g0(z)−g(z)]. For
future use we observe, by substituting z = 0 in (37), that

(38) f(0) =
g(0)

1 + g(0)− g0(0)

M∑
i=1

pif(1− ai).

We conclude that the following holds.

Theorem 6. The probability generating function f(z) is given by

f(z) = lim
n→∞

∑
i1+···+iM=n+1

pi11 . . . p
iM
M Li1,...,iM (z)(39)

+
∞∑
k=0

∑
i1+···+iM=k

pi11 . . . p
iM
M Li1,...,iM (z)K(1− ai11 . . . a

iM
M (1− z))
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with Li1,...,iM (z) recursively defined by (5) with L0,...,0(z) = 1 and Li1,...,iM (z) = 0 if one of
the indices equals −1. The constant f(0), featuring in K(z), is determined by substituting
z = 1− ai for i = 1, . . . ,M into (39), multiplying both sides by pi, summing over i and using
(38).

5. A reflected autoregressive process and an M/G/1 queue generalization

In this section we consider an integer-valued stochastic process {Xn, n = 0, 1, . . . } that
is very similar to the autoregressive process of the previous section, but includes a negative
component and has reflection at zero. It is determined by the following relation:

(40) Xn+1 = [

Xn∑
k=1

Yk,n + Zn − 1]+, n = 0, 1, . . . ,

with [x]+ = max(0, x), Z1, Z2, . . . i.i.d. nonnegative integer-valued random variables with pgf
C(z) and where Yk,n are i.i.d. Bernoulli distributed random variables: P(Yk,n = 1) = ξn,
P(Yk,n = 0) = 1 − ξn. In addition, we (again) assume the special feature that the ξn are
themselves random variables, independent and identically distributed with P(ξn = ai) = pi,

i = 1, . . . ,M , where
∑M

i=1 pi = 1. Hence in generation n it holds with probability pi, i =
1, . . . ,M , for all Yk,n that they are 1 with probability ai and 0 with probability 1 − ai. All
Zj and Yk,m are also assumed to be independent of each other and of all preceding Xr.

If all Yk,n are equal to one, then (40) can be interpreted as follows. Consider the number
of waiting customers in the M/G/1 queue, just after the beginning of the nth service. Let Xn

denote this number, and let Zn denote the number of arrivals during the nth service. Then
Xn+1 = [Xn + Zn − 1]+. If, in addition, each of the Xn customers becomes impatient with
probability 1−a during the nth service and leaves, then the sequence {Xn} satisfies (40) with
p1 = 1 and a1 = a, i.e., with ξn ≡ a.

Without the maximum operator we have the defining recursion of an INAR(1) (integer-
valued autoregressive) process, cf. Weiss [21]. We impose the stability condition that both
ai < 1 for all i = 1, . . . ,M and E[log(1 + Z)] <∞, cf. [6] for the case M = 1.

Below we show how the pgf f(z) of the steady-state distribution of the {Xn, n = 0, 1, . . . }
process can be obtained. It follows from (40), with [x]− = min(0, x) and X denoting a generic
random variable with pgf f(z), that

f(z) = E[z[
∑X

k=1 Yk+Z−1]+ ] = E[z
∑X

k=1 Yk+Z−1] + 1− E[z[
∑X

k=1 Yk+Z−1]− ]

=
C(z)

z

M∑
i=1

pif(1− ai + aiz) + 1−

[
P(

X∑
k=1

Yk + Z − 1 ≥ 0) +
1

z
P(

X∑
k=1

Yk + Z − 1 = −1)

]

=
C(z)

z

M∑
i=1

pif(1− ai + aiz) + (1− 1

z
)q−1,

(41)

where q−1 := P(
∑X

k=1 Yk+Z−1 = −1). After multiplication by z and subsequent substitution
of z = 0 we find:

(42) q−1 = C(0)

M∑
i=1

pif(1− ai),
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which makes sense probabilistically; the righthand side represents the probability that both
Z = 0 and

∑X
k=1 Yk = 0. We observe that (41) can be rewritten in the form

f(z) = g(z)

M∑
i=1

pif(1− ai + aiz) +K(z),

where g(z) = C(z)/z and K(z) = q−1(1 − 1
z ). Hence we have the exact same form as (2).

Furthermore, the fixed point of the iterates αi(z) = 1 − ai + aiz is z = 1, and we have that
K(1) = 0. Hence f(z) is given by Theorem 2.

Remark 8. It should be noticed that now g(z) and K(z) have a pole at zero. The iterate

K(1− ai11 . . . a
iM
M (1− z)) has a pole inside the unit circle if ai11 . . . a

iM
M ∈ (12 , 1). Typically this

will only be the case for the first few iterations. In [6], where the case M = 1 is treated, it is
shown that the singularities do not pose a real problem, as they are all removable singularities
which are exactly compensated. In the present more general case this can be shown in a similar
way, but that is beyond the scope of the present paper.

6. An M/G/1-type reflected autoregressive process

In this section we consider the following extension of a model of an autoregressive process,
studied in [8]:

(43) Rn+1 = max(AnRn +Gn, 0), n = 0, 1, ...,

where R0 = z and where, for n = 0, 1, · · · , Gn = Yn − Bn with all Bn independent random
variables which are exp(λ) distributed, and all Yn non-negative i.i.d. random variables with
distribution FY (·) and LST φY (·). In [8] one has An ≡ a with a ∈ (0, 1), but we now take
A0, A1, . . . i.i.d., with the following discrete distribution:

(44) P(A1 = ai) = pi, i = 1, . . . ,M, with all pi > 0 and

M∑
i=1

pi = 1, and all ai ∈ (0, 1).

In [8] both the transient and steady-state behavior of the Rn process with An ≡ a is studied,
via a Wiener-Hopf technique (cf. [12]) that leads to a recursion. We apply the same tools
in the extension defined by (43), (44). Below we first follow the approach of [8]. Introduce
Un := min(AnRn +Gn, 0) for n = 0, 1, . . . , and the transforms

(45) Rz(r, s) :=

∞∑
n=0

rnE[e−sRn |R0 = z], Uz(r, s) :=

∞∑
n=0

rnE[e−sUn |R0 = z].

The first transform is analytic for Re s ≥ 0 and the second one for Re s ≤ 0. Observing that
1 + ex = emax(x,0) + emin(x,0) we have for n = 0, 1, . . . :

e−sRn+1 = e−s(AnRn+Gn) + 1− e−sUn .

Taking expectations and realizing that Rn, An and Gn are independent, we can write

(46) E[e−sRn+1 |R0 = z] = E[e−sGn ]

M∑
i=1

piE[e−saiRn |R0 = z] + 1− E[e−sUn |R0 = z],
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and hence, after multiplication of both sides by rn+1 and summation, we obtain for Re s = 0:

(47) Rz(r, s)− e−sz − rφY (s)
λ

λ− s

M∑
i=1

piRz(r, ais) =
r

1− r
− rUz(r, s).

Restricting ourselves at this stage to Re s = 0 ensures that all terms are properly defined.
Multiplying both sides by λ− s one obtains:

(48) (λ− s)Rz(r, s)− rλφY (s)
M∑
i=1

piRz(r, ais) = (λ− s)[e−sz +
r

1− r
− rUz(r, s)].

Because all ai < 1, the steady-state distribution of the {Rn, n = 0, 1, . . . } process always
exists [13]. We shall restrict ourselves to the steady-state case. (The transient case can in
principle be studied in a similar way. Here it should be observed that, with fixed point a = 0,
we have K(0) = 1 + r

1−r − rUz(r, 0) = 1 6= 0. We are now in Case 2 of Subsection 2.2; |r| < 1

will guarantee the convergence of the corresponding pi11 . . . p
iM
M Li1,...,iM (z) as i1 + . . . + iM =

n→∞.)
Let R(s) = E[e−sR], with R a random variable with the steady-state distribution of the Rn

process. U(s) = E[e−sU ] is similarly defined. After multiplying both sides of (48) by 1 − r
and letting r → 1, an Abelian theorem for generating functions implies that

(49) (λ− s)R(s)− λφY (s)
M∑
i=1

piR(ais) = (λ− s)[1− U(s)].

Now make the following observations:

• The lefthand side of (49) is analytic in Re s > 0, and continuous in Re s ≥ 0.
• The righthand side of (49) is analytic in Re s < 0, and continuous in Re s ≤ 0.
• R(s) is for Re s ≥ 0 bounded by 1, and hence the lefthand side of (49) behaves at

most as a linear function in s for large s, Re s > 0.
• U(s) is for Re s ≤ 0 bounded by 1, and hence the righthand side of (49) behaves at

most as a linear function in s for large s, Re s < 0.

Liouville’s theorem [19] now implies that both sides of (49), in their respective half-planes,
are equal to the same linear function in s. We focus on the lefthand side of (49):

(50) (λ− s)R(s)− λφY (s)

M∑
i=1

piR(ais) = C0 + C1s, Re s ≥ 0.

Substituting s = 0 we see that C0 = 0. Taking s→∞ we see that C1 = −P(R = 0), but that
does not yet determine C1. Taking s = λ we observe that

(51) C1 = −φY (λ)
M∑
i=1

piR(aiλ).

In fact, it is not hard to interpret this relation (replacing C1 by −P(R = 0)), using (43) and
the fact that φY (λ) = P(B > Y ) and R(aiλ) = P(B > aiR).

We can rewrite (50) as follows:

(52) R(s) = H(s)
M∑
i=1

piR(ais) +K(s),
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where

(53) H(s) = φY (s)
λ

λ− s
, K(s) = C1

s

λ− s
.

Equation (52) has exactly the same form as (2). Observe that the fixed point of the iterates
αi(z) = aiz is z = 0, and that K(0) = 0. Hence Theorem 2 applies. It follows that

R(s) =

∞∑
k=0

∑
i1+···+iM=k

pi11 . . . p
iM
M Li1,...,iM (s)K(ai11 . . . a

iM
M s)

+ lim
n→∞

∑
i1+···+iM=n+1

pi11 . . . p
iM
M Li1,...,iM (s).(54)

We finally need to determine the constant C1 = −P(R = 0), that features in K(s). This is
done by taking s = aiλ, for i = 1, . . . ,M , in (54), and adding the resulting M expressions,
using (51):

C1 = −C1φY (λ)
M∑
j=1

pj

∞∑
k=0

∑
i1+···+iM=k

pi11 . . . p
iM
M Li1,...,iM (ajλ)

ai11 . . . a
iM
M aj

1− ai11 . . . a
iM
M aj

− φY (λ)
M∑
j=1

pj lim
n→∞

∑
i1+···+iM=n+1

pi11 . . . p
iM
M Li1,...,iM (ajλ),(55)

and hence

(56) C1 = −
φY (λ)

∑M
j=1 pj limn→∞

∑
i1+···+iM=n+1 p

i1
1 . . . p

iM
M Li1,...,iM (ajλ),

1 + φY (λ)
∑M

j=1 pj
∑∞

k=0

∑
i1+···+iM=k p

i1
1 . . . p

iM
M Li1,...,iM (ajλ)

a
i1
1 ...a

iM
M aj

1−ai11 ...a
iM
M aj

.

Just like in [8], the removable singularity s = λ requires some extra care, but poses no real
problems.

7. Conclusion and suggestions for further research

In this paper we have developed a method for treating recursions between random variables
that lead to functional equations of the form (2). We have also presented several examples of
branching processes, queueing processes and autoregressive processes, where such recursions
and ensuing functional equations naturally occur. A brief (by no means exhaustive) collection
of other queueing models which can be analysed with the approach of the present paper (and
for which the special case of Equation (1) is treated in the following references) is (i) the
M/G/1 queue with vacations [18], (ii) the globally gated polling model [5], (iii) the ASIP
tandem model [4], and (iv) a vacation plus retrials model [9].

Several interesting research questions present themselves. We mention the following ones.

• In [1] a vector version of (2) for the LST of the virtual workload has been treated, for
a specific queueing system with impatience. It would be interesting to study such a
vector version in more generality. Interestingly, in [1], the mappings αi(z) are of the
form αi(z) = z + θi. These commutative mappings, however, are no contractions.
• In this paper we have restricted ourselves to commutative contraction mappings. In

the noncommutative case, one has an explosion of terms which no longer can be
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grouped so neatly as in the analysis in Section 2. It would be interesting to investigate
what can still be accomplished in the noncommutative case.
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